Abstract

We present the first report on experimental observation of nonlinear spectral broadening in an all-solid photonic band gap Bragg fiber of relatively large mode area ~62 μm2. The theoretically designed Bragg fiber for this specific application was fabricated by the well known MCVD technique. Nonlinear spectral broadening was observed by launching high power femtosecond pulses of 1067 nm pump wavelength. These first results indicate that fabrication of such Bragg fibers, once perfected, should potentially serve as an alternative route for realization of supercontinuum light.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Fink, D. J. Ripin, S. Fan, C. Chen, J. D. Joannepoulos, and E. L. Thomas, “Guiding optical light in air using an all-dielectric structure,” J. Lightwave Technol. 17(11), 2039–2041 (1999).
    [CrossRef]
  2. P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fibers,” J. Opt. Soc. Am. 68(9), 1196–1201 (1978).
    [CrossRef]
  3. V. N. Melekhin and A. B. Manenkov, “Dielectric tube as a low-loss waveguide,” Zhurnal Technicheskoi Fiziki 38, 2113–2115 (1968).
  4. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420(6916), 650–653 (2002).
    [CrossRef] [PubMed]
  5. G. Vienne, Y. Xu, C. Jakobsen, H. J. Deyerl, T. P. Hansen, B. H. Larsen, J. B. Jensen, T. Sorensen, M. Terrel, Y. Huang, R. Lee, N. A. Mortensen, J. Broeng, H. Simonsen, A. Bjarklev, and A. Yariv, “First demonstration of air-silica Bragg fiber,” Optical Fiber Communication Conference (OFC) paper: PD25 (2004). URL http://www.opticsinfobase.org/abstract.cfm?URI=URI=OFC-2004-P%
  6. E. Pone, C. Dubois, N. Gu, Y. Gao, A. Dupuis, F. Boismenu, S. Lacroix, and M. Skorobogatiy, “Drawing of the hollow all-polymer Bragg fibers,” Opt. Express 14 (13), 5838–5852 (2006). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-14-13-5838 .
  7. X. Feng, T. M. Monro, P. Petropoulos, V. Finazzi, and D. J. Richardson, “Extruded single-mode high-index-core one-dimensional microstructured optical fiber with high index-contrast for highly nonlinear optical devices,” Appl. Phys. Lett. 87(8), 081110 (2005).
    [CrossRef]
  8. F. Brechet, P. Roy, J. Marcou, and D. Pagnoux, “Single-mode propagation into depressed-core-index photonic bandgap fiber designed for zero-dispersion propagation at short wavelengths,” Electron. Lett. 36(6), 514–515 (2000).
    [CrossRef]
  9. S. Février, R. Jamier, J. M. Blondy, S. L. Semjonov, M. E. Likhachev, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, and A. N. Guryanov, “Low-loss singlemode large mode area all-silica photonic bandgap fiber,” Opt. Express 14 (2), 562–569 (2006). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-14-2-562
  10. J. R. Ott, M. Heuck, C. Agger, P. D. Rasmussen, and O. Bang, “Label-free and selective nonlinear fiber-optical biosensing,” Opt. Express 16 (25), 20834–20847 (2008). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-16-25-20834
  11. J. Mandon, E. Sorokin, I. T. Sorokina, G. Guelachvili, and N. Picqu, “Supercontinua for high-resolution absorption multiplex infrared spectroscopy,” Opt. Lett. 33 (3), 285–287 (2008).URL http://ol.osa.org/abstract.cfm?URI=ol-33-3-285 .
  12. B. P. Pal, S. Dasgupta, M. R. Shenoy, and A. Sysoliatin, “Supercontinuum generation in a Bragg fiber: A Novel Proposal,” Optoelectron. Lett. 2(5), 342–344 (2006).
    [CrossRef]
  13. S. Dasgupta, B. P. Pal, and M. R. Shenoy, “Nonlinear Spectral Broadening in Solid-Core Bragg Fibers,” J. Lightwave Technol. 25(9), 2475–2481 (2007).
    [CrossRef]
  14. S. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. Engeness, M. Soljacic, S. Jacobs, J. Joannopoulos, and Y. Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9,748–779(2001) URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-9-13-748
  15. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic Press, San Diego, 1995).
  16. S. Février, R. Jamier, J.-M. Blondy, S. L. Semjonov, M. E. Likhachev, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, and A. N. Guryanov, “Low-loss singlemode large mode area all-silica photonic bandgap fiber,” Opt. Express 14 (2), 562–569 (2006). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-14-2-562 .
  17. K. J. Rowland, S. A. V., and T. M. Monro, “Novel Low-Loss Bandgaps in all-silica Bragg Fibers,” J. Lightwave Technol. 26 (1), 43–51 (2008). URL http://jlt.osa.org/abstract.cfm?URI=JLT-26-1-43
  18. A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87(20), 203901 (2001).
    [CrossRef] [PubMed]
  19. P. Pal, and W. H. Knox, “End-sealing short dispersion micromanaged tapered holey fibers by hole-collapsing,” Opt. Express 15, 13531–13538 (2007). URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-21-13531vv

2007

2006

B. P. Pal, S. Dasgupta, M. R. Shenoy, and A. Sysoliatin, “Supercontinuum generation in a Bragg fiber: A Novel Proposal,” Optoelectron. Lett. 2(5), 342–344 (2006).
[CrossRef]

2005

X. Feng, T. M. Monro, P. Petropoulos, V. Finazzi, and D. J. Richardson, “Extruded single-mode high-index-core one-dimensional microstructured optical fiber with high index-contrast for highly nonlinear optical devices,” Appl. Phys. Lett. 87(8), 081110 (2005).
[CrossRef]

2002

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420(6916), 650–653 (2002).
[CrossRef] [PubMed]

2001

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87(20), 203901 (2001).
[CrossRef] [PubMed]

2000

F. Brechet, P. Roy, J. Marcou, and D. Pagnoux, “Single-mode propagation into depressed-core-index photonic bandgap fiber designed for zero-dispersion propagation at short wavelengths,” Electron. Lett. 36(6), 514–515 (2000).
[CrossRef]

1999

1978

1968

V. N. Melekhin and A. B. Manenkov, “Dielectric tube as a low-loss waveguide,” Zhurnal Technicheskoi Fiziki 38, 2113–2115 (1968).

Benoit, G.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420(6916), 650–653 (2002).
[CrossRef] [PubMed]

Brechet, F.

F. Brechet, P. Roy, J. Marcou, and D. Pagnoux, “Single-mode propagation into depressed-core-index photonic bandgap fiber designed for zero-dispersion propagation at short wavelengths,” Electron. Lett. 36(6), 514–515 (2000).
[CrossRef]

Chen, C.

Dasgupta, S.

S. Dasgupta, B. P. Pal, and M. R. Shenoy, “Nonlinear Spectral Broadening in Solid-Core Bragg Fibers,” J. Lightwave Technol. 25(9), 2475–2481 (2007).
[CrossRef]

B. P. Pal, S. Dasgupta, M. R. Shenoy, and A. Sysoliatin, “Supercontinuum generation in a Bragg fiber: A Novel Proposal,” Optoelectron. Lett. 2(5), 342–344 (2006).
[CrossRef]

Fan, S.

Feng, X.

X. Feng, T. M. Monro, P. Petropoulos, V. Finazzi, and D. J. Richardson, “Extruded single-mode high-index-core one-dimensional microstructured optical fiber with high index-contrast for highly nonlinear optical devices,” Appl. Phys. Lett. 87(8), 081110 (2005).
[CrossRef]

Finazzi, V.

X. Feng, T. M. Monro, P. Petropoulos, V. Finazzi, and D. J. Richardson, “Extruded single-mode high-index-core one-dimensional microstructured optical fiber with high index-contrast for highly nonlinear optical devices,” Appl. Phys. Lett. 87(8), 081110 (2005).
[CrossRef]

Fink, Y.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420(6916), 650–653 (2002).
[CrossRef] [PubMed]

Y. Fink, D. J. Ripin, S. Fan, C. Chen, J. D. Joannepoulos, and E. L. Thomas, “Guiding optical light in air using an all-dielectric structure,” J. Lightwave Technol. 17(11), 2039–2041 (1999).
[CrossRef]

Hart, S. D.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420(6916), 650–653 (2002).
[CrossRef] [PubMed]

Herrmann, J.

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87(20), 203901 (2001).
[CrossRef] [PubMed]

Husakou, A. V.

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87(20), 203901 (2001).
[CrossRef] [PubMed]

Joannepoulos, J. D.

Joannopoulos, J. D.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420(6916), 650–653 (2002).
[CrossRef] [PubMed]

Manenkov, A. B.

V. N. Melekhin and A. B. Manenkov, “Dielectric tube as a low-loss waveguide,” Zhurnal Technicheskoi Fiziki 38, 2113–2115 (1968).

Marcou, J.

F. Brechet, P. Roy, J. Marcou, and D. Pagnoux, “Single-mode propagation into depressed-core-index photonic bandgap fiber designed for zero-dispersion propagation at short wavelengths,” Electron. Lett. 36(6), 514–515 (2000).
[CrossRef]

Marom, E.

Melekhin, V. N.

V. N. Melekhin and A. B. Manenkov, “Dielectric tube as a low-loss waveguide,” Zhurnal Technicheskoi Fiziki 38, 2113–2115 (1968).

Monro, T. M.

X. Feng, T. M. Monro, P. Petropoulos, V. Finazzi, and D. J. Richardson, “Extruded single-mode high-index-core one-dimensional microstructured optical fiber with high index-contrast for highly nonlinear optical devices,” Appl. Phys. Lett. 87(8), 081110 (2005).
[CrossRef]

Pagnoux, D.

F. Brechet, P. Roy, J. Marcou, and D. Pagnoux, “Single-mode propagation into depressed-core-index photonic bandgap fiber designed for zero-dispersion propagation at short wavelengths,” Electron. Lett. 36(6), 514–515 (2000).
[CrossRef]

Pal, B. P.

S. Dasgupta, B. P. Pal, and M. R. Shenoy, “Nonlinear Spectral Broadening in Solid-Core Bragg Fibers,” J. Lightwave Technol. 25(9), 2475–2481 (2007).
[CrossRef]

B. P. Pal, S. Dasgupta, M. R. Shenoy, and A. Sysoliatin, “Supercontinuum generation in a Bragg fiber: A Novel Proposal,” Optoelectron. Lett. 2(5), 342–344 (2006).
[CrossRef]

Petropoulos, P.

X. Feng, T. M. Monro, P. Petropoulos, V. Finazzi, and D. J. Richardson, “Extruded single-mode high-index-core one-dimensional microstructured optical fiber with high index-contrast for highly nonlinear optical devices,” Appl. Phys. Lett. 87(8), 081110 (2005).
[CrossRef]

Richardson, D. J.

X. Feng, T. M. Monro, P. Petropoulos, V. Finazzi, and D. J. Richardson, “Extruded single-mode high-index-core one-dimensional microstructured optical fiber with high index-contrast for highly nonlinear optical devices,” Appl. Phys. Lett. 87(8), 081110 (2005).
[CrossRef]

Ripin, D. J.

Roy, P.

F. Brechet, P. Roy, J. Marcou, and D. Pagnoux, “Single-mode propagation into depressed-core-index photonic bandgap fiber designed for zero-dispersion propagation at short wavelengths,” Electron. Lett. 36(6), 514–515 (2000).
[CrossRef]

Shenoy, M. R.

S. Dasgupta, B. P. Pal, and M. R. Shenoy, “Nonlinear Spectral Broadening in Solid-Core Bragg Fibers,” J. Lightwave Technol. 25(9), 2475–2481 (2007).
[CrossRef]

B. P. Pal, S. Dasgupta, M. R. Shenoy, and A. Sysoliatin, “Supercontinuum generation in a Bragg fiber: A Novel Proposal,” Optoelectron. Lett. 2(5), 342–344 (2006).
[CrossRef]

Sysoliatin, A.

B. P. Pal, S. Dasgupta, M. R. Shenoy, and A. Sysoliatin, “Supercontinuum generation in a Bragg fiber: A Novel Proposal,” Optoelectron. Lett. 2(5), 342–344 (2006).
[CrossRef]

Temelkuran, B.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420(6916), 650–653 (2002).
[CrossRef] [PubMed]

Thomas, E. L.

Yariv, A.

Yeh, P.

Appl. Phys. Lett.

X. Feng, T. M. Monro, P. Petropoulos, V. Finazzi, and D. J. Richardson, “Extruded single-mode high-index-core one-dimensional microstructured optical fiber with high index-contrast for highly nonlinear optical devices,” Appl. Phys. Lett. 87(8), 081110 (2005).
[CrossRef]

Electron. Lett.

F. Brechet, P. Roy, J. Marcou, and D. Pagnoux, “Single-mode propagation into depressed-core-index photonic bandgap fiber designed for zero-dispersion propagation at short wavelengths,” Electron. Lett. 36(6), 514–515 (2000).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am.

Nature

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420(6916), 650–653 (2002).
[CrossRef] [PubMed]

Optoelectron. Lett.

B. P. Pal, S. Dasgupta, M. R. Shenoy, and A. Sysoliatin, “Supercontinuum generation in a Bragg fiber: A Novel Proposal,” Optoelectron. Lett. 2(5), 342–344 (2006).
[CrossRef]

Phys. Rev. Lett.

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87(20), 203901 (2001).
[CrossRef] [PubMed]

Zhurnal Technicheskoi Fiziki

V. N. Melekhin and A. B. Manenkov, “Dielectric tube as a low-loss waveguide,” Zhurnal Technicheskoi Fiziki 38, 2113–2115 (1968).

Other

G. Vienne, Y. Xu, C. Jakobsen, H. J. Deyerl, T. P. Hansen, B. H. Larsen, J. B. Jensen, T. Sorensen, M. Terrel, Y. Huang, R. Lee, N. A. Mortensen, J. Broeng, H. Simonsen, A. Bjarklev, and A. Yariv, “First demonstration of air-silica Bragg fiber,” Optical Fiber Communication Conference (OFC) paper: PD25 (2004). URL http://www.opticsinfobase.org/abstract.cfm?URI=URI=OFC-2004-P%

E. Pone, C. Dubois, N. Gu, Y. Gao, A. Dupuis, F. Boismenu, S. Lacroix, and M. Skorobogatiy, “Drawing of the hollow all-polymer Bragg fibers,” Opt. Express 14 (13), 5838–5852 (2006). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-14-13-5838 .

S. Février, R. Jamier, J. M. Blondy, S. L. Semjonov, M. E. Likhachev, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, and A. N. Guryanov, “Low-loss singlemode large mode area all-silica photonic bandgap fiber,” Opt. Express 14 (2), 562–569 (2006). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-14-2-562

J. R. Ott, M. Heuck, C. Agger, P. D. Rasmussen, and O. Bang, “Label-free and selective nonlinear fiber-optical biosensing,” Opt. Express 16 (25), 20834–20847 (2008). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-16-25-20834

J. Mandon, E. Sorokin, I. T. Sorokina, G. Guelachvili, and N. Picqu, “Supercontinua for high-resolution absorption multiplex infrared spectroscopy,” Opt. Lett. 33 (3), 285–287 (2008).URL http://ol.osa.org/abstract.cfm?URI=ol-33-3-285 .

P. Pal, and W. H. Knox, “End-sealing short dispersion micromanaged tapered holey fibers by hole-collapsing,” Opt. Express 15, 13531–13538 (2007). URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-21-13531vv

S. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. Engeness, M. Soljacic, S. Jacobs, J. Joannopoulos, and Y. Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9,748–779(2001) URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-9-13-748

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic Press, San Diego, 1995).

S. Février, R. Jamier, J.-M. Blondy, S. L. Semjonov, M. E. Likhachev, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, and A. N. Guryanov, “Low-loss singlemode large mode area all-silica photonic bandgap fiber,” Opt. Express 14 (2), 562–569 (2006). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-14-2-562 .

K. J. Rowland, S. A. V., and T. M. Monro, “Novel Low-Loss Bandgaps in all-silica Bragg Fibers,” J. Lightwave Technol. 26 (1), 43–51 (2008). URL http://jlt.osa.org/abstract.cfm?URI=JLT-26-1-43

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Optical microscope image of end facet of the fabricated Bragg fiber. (b) Schematic of index profile showing fiber geometry and nomenclature.

Fig. 2
Fig. 2

Near field mode images shown for the white light coupled to (a) cladding and (b) core; (c) core-localized and (d) a higher order mode at 1064 nm; (e) Calibrated fundamental mode profiles in the horizontal x-axis and the vertical y-axis.

Fig. 3
Fig. 3

(a) Insertion loss spectrum of a 5 cm length of the fiber and (b) Results of cutback measurement performed at 1064 nm.

Fig. 4
Fig. 4

(a) Spectral broadening in a 3 cm section of Bragg fiber showing (from bottom to top curve) the input pulse spectrum, 19 kW, 59 kW and 82 kW launched peak power and (b) evolution of the spectral broadening for selected lengths of Bragg fiber.

Fig. 5
Fig. 5

(a) Simulated dispersion and radiation loss of the Bragg fiber under study and (b) Simulation result (black) and corresponding experimental curve (blue) show spectra in a fiber of length 3.5 m for an input peak power of 59 kW.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Az+α2A+β1At+iβ222At2β363At3+...=iγ[1+iω0t]   [A(z,t)R(t')|A(z,tt')|2dt']

Metrics