Abstract

We demonstrate the feasibility of forming a compact integrated photonic spectrometer for operation in the visible wavelength range using the dispersive properties of a planar photonic crystal structure fabricated in silicon nitride. High wavelength resolution and compact device sizes in these spectrometers are enabled by combining superprism effect, negative diffraction effect, and negative refraction effect in a 45° rotated square lattice photonic crystal. Our experimental demonstration shows 1.2 nm wavelength resolution in a 70 µm by 130 µm photonic crystal structure with better performance than alternative structures for on-chip spectroscopy, confirming the unique capability of the proposed approach to realize compact integrated spectrometers.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ksendzov and Y. Lin, “Integrated optics ring-resonator sensors for protein detection,” Opt. Lett. 30(24), 3344–3346 (2005).
    [CrossRef]
  2. A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
    [CrossRef]
  3. A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18(23), 2520–2522 (2006).
    [CrossRef]
  4. J. Xu, D. Suarez, and D. S. Gottfried, “Detection of avian influenza virus using an interferometric biosensor,” Anal. Bioanal. Chem. 389(4), 1193–1199 (2007).
    [CrossRef] [PubMed]
  5. K. Zinoviev, L. G. Carrascosa, J. Sanchez del Rio, B. Sepulveda, C. Dominguez, and L. M. Lechuga, “Silicon photonic biosensors for lab-on-a-chip applications,” Adv. Opt. Technol. 2008, 383927 (2008).
  6. B. Momeni, S. Yegnanarayanan, M. Soltani, A. A. Eftekhar, E. S. Hosseini, and A. Adibi, “Silicon nanophotonic devices for integrated sensing,” J. Nanophoton. 3(1), 031001 (2009).
    [CrossRef]
  7. R. F. Wolffenbuttel, “State-of-the-art in integrated optical microspectrometers,” IEEE Trans. Instrum. Meas. 53(1), 197–202 (2004).
    [CrossRef]
  8. D. S. Goldman, P. L. White, and N. C. Anheier, “Miniaturized spectrometer employing planar waveguides and grating couplers for chemical analysis,” Appl. Opt. 29(31), 4583–4589 (1990).
    [CrossRef] [PubMed]
  9. D. Sander, M.-O. Dücker, O. Blume, and J. Muller, “An optical microspectrometer in SiON-slab-waveguides,” Proc. SPIE 2686, 100–107 (1996).
    [CrossRef]
  10. Y. Maruyama, K. Sawada, H. Takao, and M. Ishida, “A novel filterless fluorescence detection sensor for DNA analysis,” IEEE Trans. Electron. Dev. 53(3), 553–558 (2006).
    [CrossRef]
  11. D. A. Zauner, A. M. Jorgensen, T. A. Anhoj, and J. Hübner, “Concave reflective SU-8 photoresist gratings for flat-field integrated spectrometers,” Appl. Opt. 45(23), 5877–5880 (2006).
    [CrossRef] [PubMed]
  12. Y. Komai, H. Nagano, K. Okamoto, and K. Kodate, “Compact spectroscopic sensor using a visible arrayed waveguide grating,” Jpn. J. Appl. Phys. 45(No. 8B), 6742–6749 (2006).
    [CrossRef]
  13. S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delâge, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D.-X. Xu, “Planar waveguide Echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett. 16(2), 503–505 (2004).
    [CrossRef]
  14. Y. Hibino, “Recent advances in high-density and large-scale AWG multi/demultiplexers with higher index-contrast silica-based PLCs,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1090–1101 (2002).
    [CrossRef]
  15. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals: toward microscale lightwave circuits,” J. Lightwave Technol. 17(11), 2032–2038 (1999).
    [CrossRef]
  16. B. Momeni, J. Huang, M. Soltani, M. Askari, S. Mohammadi, M. Rakhshandehroo, and A. Adibi, “Compact wavelength demultiplexing using focusing negative index photonic crystal superprisms,” Opt. Express 14(6), 2413–2422 (2006).
    [CrossRef] [PubMed]
  17. B. Momeni, M. Chamanzar, E. S. Hosseini, M. Askari, M. Soltani, and A. Adibi, “Strong angular dispersion using higher bands of planar silicon photonic crystals,” Opt. Express 16(18), 14213–14220 (2008).
    [CrossRef] [PubMed]
  18. B. Momeni and A. Adibi, “An approximate effective index model for efficient analysis and control of beam propagation effects in photonic crystals,” J. Lightwave Technol. 23(3), 1522–1532 (2005).
    [CrossRef]
  19. B. Momeni and A. Adibi, “Preconditioned superprism-based photonic crystal demultiplexers: analysis and design,” Appl. Opt. 45(33), 8466–8476 (2006).
    [CrossRef] [PubMed]
  20. E. Shah Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range,” Opt. Express 17(17), 14543–14551 (2009).
    [CrossRef]
  21. J. J. Baumberg, N. M. B. Perney, M. C. Netti, M. D. C. Charlton, M. Zoorob, and G. J. Parker, “Visible-wavelength super-refraction in photonic crystal superprisms,” Appl. Phys. Lett. 85(3), 354–356 (2004).
    [CrossRef]
  22. B. Momeni, Q. Li, and A. Adibi, “Ultra-compact implementation of planar superprism-based demultiplexers in silicon,” in preparation.
  23. T. Baba and D. Ohsaki, “Interfaces of photonic crystals for high efficiency light transmission,” Jpn. J. Appl. Phys. 40(Part 1, No. 10), 5920–5924 (2001).
    [CrossRef]
  24. B. Momeni and A. Adibi, “Adiabatic matching stage for coupling of light to extended Bloch modes of photonic crystals,” Appl. Phys. Lett. 87(17), 171104 (2005).
    [CrossRef]
  25. K. Okamoto, Fundamentals of Optical Waveguides, San Diego: Academic Press, 2000.
  26. P. E. Barclay, K. Srinivasan, O. Painter, T. J. Watson, B. Lev, and H. Mabuchi, “Integration of fiber-coupled high-Q SiNx microdisks with atom chips,” Appl. Phys. Lett. 89(13), 131108 (2006).
    [CrossRef]
  27. B. Momeni, M. Askari, E. S. Hosseini, A. Atabaki, and A. Adibi, “An on-chip silicon grating spectrometer using a photonic crystal reflector,” submitted for publication.
  28. M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62(16), 10696–10705 (2000).
    [CrossRef]

2009 (2)

B. Momeni, S. Yegnanarayanan, M. Soltani, A. A. Eftekhar, E. S. Hosseini, and A. Adibi, “Silicon nanophotonic devices for integrated sensing,” J. Nanophoton. 3(1), 031001 (2009).
[CrossRef]

E. Shah Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range,” Opt. Express 17(17), 14543–14551 (2009).
[CrossRef]

2008 (2)

K. Zinoviev, L. G. Carrascosa, J. Sanchez del Rio, B. Sepulveda, C. Dominguez, and L. M. Lechuga, “Silicon photonic biosensors for lab-on-a-chip applications,” Adv. Opt. Technol. 2008, 383927 (2008).

B. Momeni, M. Chamanzar, E. S. Hosseini, M. Askari, M. Soltani, and A. Adibi, “Strong angular dispersion using higher bands of planar silicon photonic crystals,” Opt. Express 16(18), 14213–14220 (2008).
[CrossRef] [PubMed]

2007 (1)

J. Xu, D. Suarez, and D. S. Gottfried, “Detection of avian influenza virus using an interferometric biosensor,” Anal. Bioanal. Chem. 389(4), 1193–1199 (2007).
[CrossRef] [PubMed]

2006 (8)

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[CrossRef]

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18(23), 2520–2522 (2006).
[CrossRef]

B. Momeni, J. Huang, M. Soltani, M. Askari, S. Mohammadi, M. Rakhshandehroo, and A. Adibi, “Compact wavelength demultiplexing using focusing negative index photonic crystal superprisms,” Opt. Express 14(6), 2413–2422 (2006).
[CrossRef] [PubMed]

B. Momeni and A. Adibi, “Preconditioned superprism-based photonic crystal demultiplexers: analysis and design,” Appl. Opt. 45(33), 8466–8476 (2006).
[CrossRef] [PubMed]

Y. Maruyama, K. Sawada, H. Takao, and M. Ishida, “A novel filterless fluorescence detection sensor for DNA analysis,” IEEE Trans. Electron. Dev. 53(3), 553–558 (2006).
[CrossRef]

D. A. Zauner, A. M. Jorgensen, T. A. Anhoj, and J. Hübner, “Concave reflective SU-8 photoresist gratings for flat-field integrated spectrometers,” Appl. Opt. 45(23), 5877–5880 (2006).
[CrossRef] [PubMed]

Y. Komai, H. Nagano, K. Okamoto, and K. Kodate, “Compact spectroscopic sensor using a visible arrayed waveguide grating,” Jpn. J. Appl. Phys. 45(No. 8B), 6742–6749 (2006).
[CrossRef]

P. E. Barclay, K. Srinivasan, O. Painter, T. J. Watson, B. Lev, and H. Mabuchi, “Integration of fiber-coupled high-Q SiNx microdisks with atom chips,” Appl. Phys. Lett. 89(13), 131108 (2006).
[CrossRef]

2005 (3)

2004 (3)

R. F. Wolffenbuttel, “State-of-the-art in integrated optical microspectrometers,” IEEE Trans. Instrum. Meas. 53(1), 197–202 (2004).
[CrossRef]

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delâge, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D.-X. Xu, “Planar waveguide Echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett. 16(2), 503–505 (2004).
[CrossRef]

J. J. Baumberg, N. M. B. Perney, M. C. Netti, M. D. C. Charlton, M. Zoorob, and G. J. Parker, “Visible-wavelength super-refraction in photonic crystal superprisms,” Appl. Phys. Lett. 85(3), 354–356 (2004).
[CrossRef]

2002 (1)

Y. Hibino, “Recent advances in high-density and large-scale AWG multi/demultiplexers with higher index-contrast silica-based PLCs,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1090–1101 (2002).
[CrossRef]

2001 (1)

T. Baba and D. Ohsaki, “Interfaces of photonic crystals for high efficiency light transmission,” Jpn. J. Appl. Phys. 40(Part 1, No. 10), 5920–5924 (2001).
[CrossRef]

2000 (1)

M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62(16), 10696–10705 (2000).
[CrossRef]

1999 (1)

1996 (1)

D. Sander, M.-O. Dücker, O. Blume, and J. Muller, “An optical microspectrometer in SiON-slab-waveguides,” Proc. SPIE 2686, 100–107 (1996).
[CrossRef]

1990 (1)

Adibi, A.

B. Momeni, S. Yegnanarayanan, M. Soltani, A. A. Eftekhar, E. S. Hosseini, and A. Adibi, “Silicon nanophotonic devices for integrated sensing,” J. Nanophoton. 3(1), 031001 (2009).
[CrossRef]

E. Shah Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range,” Opt. Express 17(17), 14543–14551 (2009).
[CrossRef]

B. Momeni, M. Chamanzar, E. S. Hosseini, M. Askari, M. Soltani, and A. Adibi, “Strong angular dispersion using higher bands of planar silicon photonic crystals,” Opt. Express 16(18), 14213–14220 (2008).
[CrossRef] [PubMed]

B. Momeni and A. Adibi, “Preconditioned superprism-based photonic crystal demultiplexers: analysis and design,” Appl. Opt. 45(33), 8466–8476 (2006).
[CrossRef] [PubMed]

B. Momeni, J. Huang, M. Soltani, M. Askari, S. Mohammadi, M. Rakhshandehroo, and A. Adibi, “Compact wavelength demultiplexing using focusing negative index photonic crystal superprisms,” Opt. Express 14(6), 2413–2422 (2006).
[CrossRef] [PubMed]

B. Momeni and A. Adibi, “An approximate effective index model for efficient analysis and control of beam propagation effects in photonic crystals,” J. Lightwave Technol. 23(3), 1522–1532 (2005).
[CrossRef]

B. Momeni and A. Adibi, “Adiabatic matching stage for coupling of light to extended Bloch modes of photonic crystals,” Appl. Phys. Lett. 87(17), 171104 (2005).
[CrossRef]

B. Momeni, Q. Li, and A. Adibi, “Ultra-compact implementation of planar superprism-based demultiplexers in silicon,” in preparation.

B. Momeni, M. Askari, E. S. Hosseini, A. Atabaki, and A. Adibi, “An on-chip silicon grating spectrometer using a photonic crystal reflector,” submitted for publication.

Aldridge, J. C.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[CrossRef]

Anheier, N. C.

Anhoj, T. A.

Anthes-Washburn, M.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[CrossRef]

Askari, M.

Atabaki, A.

B. Momeni, M. Askari, E. S. Hosseini, A. Atabaki, and A. Adibi, “An on-chip silicon grating spectrometer using a photonic crystal reflector,” submitted for publication.

Atabaki, A. H.

Baba, T.

T. Baba and D. Ohsaki, “Interfaces of photonic crystals for high efficiency light transmission,” Jpn. J. Appl. Phys. 40(Part 1, No. 10), 5920–5924 (2001).
[CrossRef]

Balakrishnan, A.

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delâge, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D.-X. Xu, “Planar waveguide Echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett. 16(2), 503–505 (2004).
[CrossRef]

Barclay, P. E.

P. E. Barclay, K. Srinivasan, O. Painter, T. J. Watson, B. Lev, and H. Mabuchi, “Integration of fiber-coupled high-Q SiNx microdisks with atom chips,” Appl. Phys. Lett. 89(13), 131108 (2006).
[CrossRef]

Baumberg, J. J.

J. J. Baumberg, N. M. B. Perney, M. C. Netti, M. D. C. Charlton, M. Zoorob, and G. J. Parker, “Visible-wavelength super-refraction in photonic crystal superprisms,” Appl. Phys. Lett. 85(3), 354–356 (2004).
[CrossRef]

Blume, O.

D. Sander, M.-O. Dücker, O. Blume, and J. Muller, “An optical microspectrometer in SiON-slab-waveguides,” Proc. SPIE 2686, 100–107 (1996).
[CrossRef]

Carrascosa, L. G.

K. Zinoviev, L. G. Carrascosa, J. Sanchez del Rio, B. Sepulveda, C. Dominguez, and L. M. Lechuga, “Silicon photonic biosensors for lab-on-a-chip applications,” Adv. Opt. Technol. 2008, 383927 (2008).

Chamanzar, M.

Charbonneau, S.

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delâge, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D.-X. Xu, “Planar waveguide Echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett. 16(2), 503–505 (2004).
[CrossRef]

Charlton, M. D. C.

J. J. Baumberg, N. M. B. Perney, M. C. Netti, M. D. C. Charlton, M. Zoorob, and G. J. Parker, “Visible-wavelength super-refraction in photonic crystal superprisms,” Appl. Phys. Lett. 85(3), 354–356 (2004).
[CrossRef]

Chbouki, N.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[CrossRef]

Cheben, P.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18(23), 2520–2522 (2006).
[CrossRef]

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delâge, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D.-X. Xu, “Planar waveguide Echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett. 16(2), 503–505 (2004).
[CrossRef]

Chu, S.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[CrossRef]

Cloutier, M.

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delâge, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D.-X. Xu, “Planar waveguide Echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett. 16(2), 503–505 (2004).
[CrossRef]

Delâge, A.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18(23), 2520–2522 (2006).
[CrossRef]

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delâge, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D.-X. Xu, “Planar waveguide Echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett. 16(2), 503–505 (2004).
[CrossRef]

Densmore, A.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18(23), 2520–2522 (2006).
[CrossRef]

Desai, T. A.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[CrossRef]

Dominguez, C.

K. Zinoviev, L. G. Carrascosa, J. Sanchez del Rio, B. Sepulveda, C. Dominguez, and L. M. Lechuga, “Silicon photonic biosensors for lab-on-a-chip applications,” Adv. Opt. Technol. 2008, 383927 (2008).

Dossou, K.

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delâge, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D.-X. Xu, “Planar waveguide Echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett. 16(2), 503–505 (2004).
[CrossRef]

Dücker, M.-O.

D. Sander, M.-O. Dücker, O. Blume, and J. Muller, “An optical microspectrometer in SiON-slab-waveguides,” Proc. SPIE 2686, 100–107 (1996).
[CrossRef]

Eftekhar, A. A.

B. Momeni, S. Yegnanarayanan, M. Soltani, A. A. Eftekhar, E. S. Hosseini, and A. Adibi, “Silicon nanophotonic devices for integrated sensing,” J. Nanophoton. 3(1), 031001 (2009).
[CrossRef]

Erickson, L.

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delâge, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D.-X. Xu, “Planar waveguide Echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett. 16(2), 503–505 (2004).
[CrossRef]

Gao, M.

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delâge, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D.-X. Xu, “Planar waveguide Echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett. 16(2), 503–505 (2004).
[CrossRef]

Gill, D.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[CrossRef]

Goldberg, B. B.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[CrossRef]

Goldman, D. S.

Gottfried, D. S.

J. Xu, D. Suarez, and D. S. Gottfried, “Detection of avian influenza virus using an interferometric biosensor,” Anal. Bioanal. Chem. 389(4), 1193–1199 (2007).
[CrossRef] [PubMed]

Hibino, Y.

Y. Hibino, “Recent advances in high-density and large-scale AWG multi/demultiplexers with higher index-contrast silica-based PLCs,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1090–1101 (2002).
[CrossRef]

Hosseini, E. S.

B. Momeni, S. Yegnanarayanan, M. Soltani, A. A. Eftekhar, E. S. Hosseini, and A. Adibi, “Silicon nanophotonic devices for integrated sensing,” J. Nanophoton. 3(1), 031001 (2009).
[CrossRef]

B. Momeni, M. Chamanzar, E. S. Hosseini, M. Askari, M. Soltani, and A. Adibi, “Strong angular dispersion using higher bands of planar silicon photonic crystals,” Opt. Express 16(18), 14213–14220 (2008).
[CrossRef] [PubMed]

B. Momeni, M. Askari, E. S. Hosseini, A. Atabaki, and A. Adibi, “An on-chip silicon grating spectrometer using a photonic crystal reflector,” submitted for publication.

Hryniewicz, J.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[CrossRef]

Huang, J.

Hübner, J.

Ishida, M.

Y. Maruyama, K. Sawada, H. Takao, and M. Ishida, “A novel filterless fluorescence detection sensor for DNA analysis,” IEEE Trans. Electron. Dev. 53(3), 553–558 (2006).
[CrossRef]

Janz, S.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18(23), 2520–2522 (2006).
[CrossRef]

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delâge, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D.-X. Xu, “Planar waveguide Echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett. 16(2), 503–505 (2004).
[CrossRef]

Jorgensen, A. M.

Kawakami, S.

Kawashima, T.

King, O.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[CrossRef]

Kodate, K.

Y. Komai, H. Nagano, K. Okamoto, and K. Kodate, “Compact spectroscopic sensor using a visible arrayed waveguide grating,” Jpn. J. Appl. Phys. 45(No. 8B), 6742–6749 (2006).
[CrossRef]

Komai, Y.

Y. Komai, H. Nagano, K. Okamoto, and K. Kodate, “Compact spectroscopic sensor using a visible arrayed waveguide grating,” Jpn. J. Appl. Phys. 45(No. 8B), 6742–6749 (2006).
[CrossRef]

Kosaka, H.

Krug, P. A.

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delâge, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D.-X. Xu, “Planar waveguide Echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett. 16(2), 503–505 (2004).
[CrossRef]

Ksendzov, A.

Lamontagne, B.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18(23), 2520–2522 (2006).
[CrossRef]

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delâge, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D.-X. Xu, “Planar waveguide Echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett. 16(2), 503–505 (2004).
[CrossRef]

Lapointe, J.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18(23), 2520–2522 (2006).
[CrossRef]

Lechuga, L. M.

K. Zinoviev, L. G. Carrascosa, J. Sanchez del Rio, B. Sepulveda, C. Dominguez, and L. M. Lechuga, “Silicon photonic biosensors for lab-on-a-chip applications,” Adv. Opt. Technol. 2008, 383927 (2008).

Lev, B.

P. E. Barclay, K. Srinivasan, O. Painter, T. J. Watson, B. Lev, and H. Mabuchi, “Integration of fiber-coupled high-Q SiNx microdisks with atom chips,” Appl. Phys. Lett. 89(13), 131108 (2006).
[CrossRef]

Li, Q.

B. Momeni, Q. Li, and A. Adibi, “Ultra-compact implementation of planar superprism-based demultiplexers in silicon,” in preparation.

Lin, Y.

Little, B. E.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[CrossRef]

Mabuchi, H.

P. E. Barclay, K. Srinivasan, O. Painter, T. J. Watson, B. Lev, and H. Mabuchi, “Integration of fiber-coupled high-Q SiNx microdisks with atom chips,” Appl. Phys. Lett. 89(13), 131108 (2006).
[CrossRef]

Maruyama, Y.

Y. Maruyama, K. Sawada, H. Takao, and M. Ishida, “A novel filterless fluorescence detection sensor for DNA analysis,” IEEE Trans. Electron. Dev. 53(3), 553–558 (2006).
[CrossRef]

Mohammadi, S.

Momeni, B.

B. Momeni, S. Yegnanarayanan, M. Soltani, A. A. Eftekhar, E. S. Hosseini, and A. Adibi, “Silicon nanophotonic devices for integrated sensing,” J. Nanophoton. 3(1), 031001 (2009).
[CrossRef]

B. Momeni, M. Chamanzar, E. S. Hosseini, M. Askari, M. Soltani, and A. Adibi, “Strong angular dispersion using higher bands of planar silicon photonic crystals,” Opt. Express 16(18), 14213–14220 (2008).
[CrossRef] [PubMed]

B. Momeni, J. Huang, M. Soltani, M. Askari, S. Mohammadi, M. Rakhshandehroo, and A. Adibi, “Compact wavelength demultiplexing using focusing negative index photonic crystal superprisms,” Opt. Express 14(6), 2413–2422 (2006).
[CrossRef] [PubMed]

B. Momeni and A. Adibi, “Preconditioned superprism-based photonic crystal demultiplexers: analysis and design,” Appl. Opt. 45(33), 8466–8476 (2006).
[CrossRef] [PubMed]

B. Momeni and A. Adibi, “An approximate effective index model for efficient analysis and control of beam propagation effects in photonic crystals,” J. Lightwave Technol. 23(3), 1522–1532 (2005).
[CrossRef]

B. Momeni and A. Adibi, “Adiabatic matching stage for coupling of light to extended Bloch modes of photonic crystals,” Appl. Phys. Lett. 87(17), 171104 (2005).
[CrossRef]

B. Momeni, Q. Li, and A. Adibi, “Ultra-compact implementation of planar superprism-based demultiplexers in silicon,” in preparation.

B. Momeni, M. Askari, E. S. Hosseini, A. Atabaki, and A. Adibi, “An on-chip silicon grating spectrometer using a photonic crystal reflector,” submitted for publication.

Muller, J.

D. Sander, M.-O. Dücker, O. Blume, and J. Muller, “An optical microspectrometer in SiON-slab-waveguides,” Proc. SPIE 2686, 100–107 (1996).
[CrossRef]

Nagano, H.

Y. Komai, H. Nagano, K. Okamoto, and K. Kodate, “Compact spectroscopic sensor using a visible arrayed waveguide grating,” Jpn. J. Appl. Phys. 45(No. 8B), 6742–6749 (2006).
[CrossRef]

Netti, M. C.

J. J. Baumberg, N. M. B. Perney, M. C. Netti, M. D. C. Charlton, M. Zoorob, and G. J. Parker, “Visible-wavelength super-refraction in photonic crystal superprisms,” Appl. Phys. Lett. 85(3), 354–356 (2004).
[CrossRef]

Notomi, M.

M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62(16), 10696–10705 (2000).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals: toward microscale lightwave circuits,” J. Lightwave Technol. 17(11), 2032–2038 (1999).
[CrossRef]

Ohsaki, D.

T. Baba and D. Ohsaki, “Interfaces of photonic crystals for high efficiency light transmission,” Jpn. J. Appl. Phys. 40(Part 1, No. 10), 5920–5924 (2001).
[CrossRef]

Okamoto, K.

Y. Komai, H. Nagano, K. Okamoto, and K. Kodate, “Compact spectroscopic sensor using a visible arrayed waveguide grating,” Jpn. J. Appl. Phys. 45(No. 8B), 6742–6749 (2006).
[CrossRef]

Packirisamy, M.

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delâge, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D.-X. Xu, “Planar waveguide Echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett. 16(2), 503–505 (2004).
[CrossRef]

Painter, O.

P. E. Barclay, K. Srinivasan, O. Painter, T. J. Watson, B. Lev, and H. Mabuchi, “Integration of fiber-coupled high-Q SiNx microdisks with atom chips,” Appl. Phys. Lett. 89(13), 131108 (2006).
[CrossRef]

Parker, G. J.

J. J. Baumberg, N. M. B. Perney, M. C. Netti, M. D. C. Charlton, M. Zoorob, and G. J. Parker, “Visible-wavelength super-refraction in photonic crystal superprisms,” Appl. Phys. Lett. 85(3), 354–356 (2004).
[CrossRef]

Pearson, M.

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delâge, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D.-X. Xu, “Planar waveguide Echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett. 16(2), 503–505 (2004).
[CrossRef]

Perney, N. M. B.

J. J. Baumberg, N. M. B. Perney, M. C. Netti, M. D. C. Charlton, M. Zoorob, and G. J. Parker, “Visible-wavelength super-refraction in photonic crystal superprisms,” Appl. Phys. Lett. 85(3), 354–356 (2004).
[CrossRef]

Popat, K. C.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[CrossRef]

Post, E.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18(23), 2520–2522 (2006).
[CrossRef]

Rakhshandehroo, M.

Sanchez del Rio, J.

K. Zinoviev, L. G. Carrascosa, J. Sanchez del Rio, B. Sepulveda, C. Dominguez, and L. M. Lechuga, “Silicon photonic biosensors for lab-on-a-chip applications,” Adv. Opt. Technol. 2008, 383927 (2008).

Sander, D.

D. Sander, M.-O. Dücker, O. Blume, and J. Muller, “An optical microspectrometer in SiON-slab-waveguides,” Proc. SPIE 2686, 100–107 (1996).
[CrossRef]

Sato, T.

Sawada, K.

Y. Maruyama, K. Sawada, H. Takao, and M. Ishida, “A novel filterless fluorescence detection sensor for DNA analysis,” IEEE Trans. Electron. Dev. 53(3), 553–558 (2006).
[CrossRef]

Schmid, J. H.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18(23), 2520–2522 (2006).
[CrossRef]

Sepulveda, B.

K. Zinoviev, L. G. Carrascosa, J. Sanchez del Rio, B. Sepulveda, C. Dominguez, and L. M. Lechuga, “Silicon photonic biosensors for lab-on-a-chip applications,” Adv. Opt. Technol. 2008, 383927 (2008).

Shah Hosseini, E.

Soltani, M.

Srinivasan, K.

P. E. Barclay, K. Srinivasan, O. Painter, T. J. Watson, B. Lev, and H. Mabuchi, “Integration of fiber-coupled high-Q SiNx microdisks with atom chips,” Appl. Phys. Lett. 89(13), 131108 (2006).
[CrossRef]

Suarez, D.

J. Xu, D. Suarez, and D. S. Gottfried, “Detection of avian influenza virus using an interferometric biosensor,” Anal. Bioanal. Chem. 389(4), 1193–1199 (2007).
[CrossRef] [PubMed]

Takao, H.

Y. Maruyama, K. Sawada, H. Takao, and M. Ishida, “A novel filterless fluorescence detection sensor for DNA analysis,” IEEE Trans. Electron. Dev. 53(3), 553–558 (2006).
[CrossRef]

Tamamura, T.

Tomita, A.

Unlu, M. S.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[CrossRef]

Van, V.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[CrossRef]

Waldron, P.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18(23), 2520–2522 (2006).
[CrossRef]

Watson, T. J.

P. E. Barclay, K. Srinivasan, O. Painter, T. J. Watson, B. Lev, and H. Mabuchi, “Integration of fiber-coupled high-Q SiNx microdisks with atom chips,” Appl. Phys. Lett. 89(13), 131108 (2006).
[CrossRef]

White, P. L.

Wolffenbuttel, R. F.

R. F. Wolffenbuttel, “State-of-the-art in integrated optical microspectrometers,” IEEE Trans. Instrum. Meas. 53(1), 197–202 (2004).
[CrossRef]

Xu, D.-X.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18(23), 2520–2522 (2006).
[CrossRef]

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delâge, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D.-X. Xu, “Planar waveguide Echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett. 16(2), 503–505 (2004).
[CrossRef]

Xu, J.

J. Xu, D. Suarez, and D. S. Gottfried, “Detection of avian influenza virus using an interferometric biosensor,” Anal. Bioanal. Chem. 389(4), 1193–1199 (2007).
[CrossRef] [PubMed]

Yalcin, A.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[CrossRef]

Yegnanarayanan, S.

B. Momeni, S. Yegnanarayanan, M. Soltani, A. A. Eftekhar, E. S. Hosseini, and A. Adibi, “Silicon nanophotonic devices for integrated sensing,” J. Nanophoton. 3(1), 031001 (2009).
[CrossRef]

E. Shah Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range,” Opt. Express 17(17), 14543–14551 (2009).
[CrossRef]

Zauner, D. A.

Zinoviev, K.

K. Zinoviev, L. G. Carrascosa, J. Sanchez del Rio, B. Sepulveda, C. Dominguez, and L. M. Lechuga, “Silicon photonic biosensors for lab-on-a-chip applications,” Adv. Opt. Technol. 2008, 383927 (2008).

Zoorob, M.

J. J. Baumberg, N. M. B. Perney, M. C. Netti, M. D. C. Charlton, M. Zoorob, and G. J. Parker, “Visible-wavelength super-refraction in photonic crystal superprisms,” Appl. Phys. Lett. 85(3), 354–356 (2004).
[CrossRef]

Adv. Opt. Technol. (1)

K. Zinoviev, L. G. Carrascosa, J. Sanchez del Rio, B. Sepulveda, C. Dominguez, and L. M. Lechuga, “Silicon photonic biosensors for lab-on-a-chip applications,” Adv. Opt. Technol. 2008, 383927 (2008).

Anal. Bioanal. Chem. (1)

J. Xu, D. Suarez, and D. S. Gottfried, “Detection of avian influenza virus using an interferometric biosensor,” Anal. Bioanal. Chem. 389(4), 1193–1199 (2007).
[CrossRef] [PubMed]

Appl. Opt. (3)

Appl. Phys. Lett. (3)

J. J. Baumberg, N. M. B. Perney, M. C. Netti, M. D. C. Charlton, M. Zoorob, and G. J. Parker, “Visible-wavelength super-refraction in photonic crystal superprisms,” Appl. Phys. Lett. 85(3), 354–356 (2004).
[CrossRef]

B. Momeni and A. Adibi, “Adiabatic matching stage for coupling of light to extended Bloch modes of photonic crystals,” Appl. Phys. Lett. 87(17), 171104 (2005).
[CrossRef]

P. E. Barclay, K. Srinivasan, O. Painter, T. J. Watson, B. Lev, and H. Mabuchi, “Integration of fiber-coupled high-Q SiNx microdisks with atom chips,” Appl. Phys. Lett. 89(13), 131108 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

Y. Hibino, “Recent advances in high-density and large-scale AWG multi/demultiplexers with higher index-contrast silica-based PLCs,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1090–1101 (2002).
[CrossRef]

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18(23), 2520–2522 (2006).
[CrossRef]

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delâge, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D.-X. Xu, “Planar waveguide Echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett. 16(2), 503–505 (2004).
[CrossRef]

IEEE Trans. Electron. Dev. (1)

Y. Maruyama, K. Sawada, H. Takao, and M. Ishida, “A novel filterless fluorescence detection sensor for DNA analysis,” IEEE Trans. Electron. Dev. 53(3), 553–558 (2006).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

R. F. Wolffenbuttel, “State-of-the-art in integrated optical microspectrometers,” IEEE Trans. Instrum. Meas. 53(1), 197–202 (2004).
[CrossRef]

J. Lightwave Technol. (2)

J. Nanophoton. (1)

B. Momeni, S. Yegnanarayanan, M. Soltani, A. A. Eftekhar, E. S. Hosseini, and A. Adibi, “Silicon nanophotonic devices for integrated sensing,” J. Nanophoton. 3(1), 031001 (2009).
[CrossRef]

Jpn. J. Appl. Phys. (2)

Y. Komai, H. Nagano, K. Okamoto, and K. Kodate, “Compact spectroscopic sensor using a visible arrayed waveguide grating,” Jpn. J. Appl. Phys. 45(No. 8B), 6742–6749 (2006).
[CrossRef]

T. Baba and D. Ohsaki, “Interfaces of photonic crystals for high efficiency light transmission,” Jpn. J. Appl. Phys. 40(Part 1, No. 10), 5920–5924 (2001).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (1)

M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62(16), 10696–10705 (2000).
[CrossRef]

Proc. SPIE (1)

D. Sander, M.-O. Dücker, O. Blume, and J. Muller, “An optical microspectrometer in SiON-slab-waveguides,” Proc. SPIE 2686, 100–107 (1996).
[CrossRef]

Other (3)

B. Momeni, M. Askari, E. S. Hosseini, A. Atabaki, and A. Adibi, “An on-chip silicon grating spectrometer using a photonic crystal reflector,” submitted for publication.

K. Okamoto, Fundamentals of Optical Waveguides, San Diego: Academic Press, 2000.

B. Momeni, Q. Li, and A. Adibi, “Ultra-compact implementation of planar superprism-based demultiplexers in silicon,” in preparation.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic visualization of the wavelength separation in a focusing superprism photonic crystal spectrometer is shown. (b) Band structure of a 45°-rotated square lattice planar photonic crystal in SiN on oxide, with holes of 85 nm radius and a lattice constant of 240 nm is shown. Numbers on each contour are the corresponding wavelength for that contour. The shaded regions exclude the modes that leak to the substrate and are not confined to the SiN layer slab. The inset shows the relative direction of the lattice with respect to the principal lattice directions.

Fig. 2
Fig. 2

(a) The configuration used for the simulation of optical beam propagation in a SiN PC is shown. A 45°-rotated square lattice photonics crystal with L = 70 µm, 2r = 170 nm, a = 240 nm is assumed. The thickness of the SiN slab is 205 nm, the incident angle is 13°, and the light has TE-like polarization. (b) Output beam profiles at different wavelengths (653.6 nm, 656.0 nm, and 658.4 nm) for input beam waist of 2w0 = 4 µm are plotted. The input beam is preconditioned to compensate the effect of second-order diffraction at 656 nm. (c) For the same structure as in part (b), output beam profiles at different input beam waists of 2w0 = 2.7, 4.0, and 6.0 µm are shown.

Fig. 3
Fig. 3

(a) SEM image of the fabricated structure is shown with a rotated PC region and an array of waveguides at the output. The incident beam is directed from a tapered waveguide from the left side of the device at an incident angle of 13° with respect to the interface of the photonic crystal region. (b) SEM image of the details of the photonic crystal region is shown. From SEM images, the lattice constant in the fabricated device is a = 240 nm, and the diameter of holes is 168 nm (compared to the 170 nm designed value).

Fig. 4
Fig. 4

(a) Measured normalized transmission responses in adjacent channels are shown for seven output waveguides, showing a 3-dB wavelength resolution less than 1.2 nm. (b) The experimentally measured angle of refraction (solid curve) is shown and compared with theoretical prediction (dotted line). Theoretical results are corrected by a wavelength shift of 1.1% that accounts for the deviations of the thickness of the SiN slab and the size of holes from the designed values.

Fig. 5
Fig. 5

Simulated channel responses of optical beams at different wavelengths (calculated at 50 pm wavelength steps) in a planar photonic crystal spectrometer are shown. All the parameters of the simulated structure are similar to the fabricated structure in Fig. 2. Similar to Fig. 4(b), the theoretical results are corrected by a wavelength shift of 1.1% to account for the deviations of the fabricated structure from the designed values. The simulated channel response for each output waveguide in these results is in good agreement with the experimental measurements in Fig. 4(a).

Fig. 6
Fig. 6

SEM images of alternative on-chip spectrometers implemented in SiN for comparison of spectroscopy performance are shown. (a) An AWG spectrometer with a size-scale of l = 300 µm and wavelength resolution of 1.2 nm. (b) A folded grating spectrometer with a size-scale of l = 600 µm and wavelength resolution of 1.5 nm. The inset magnifies a portion of the grating reflector that consists of a periodic pattern of air holes next to a wide trench [27].

Tables (1)

Tables Icon

Table 1 The performances of SiN spectrometers based on different operation principles are compared.

Metrics