Abstract

Doubly-resonant four-wave mixing (DR-FWM) is a nondegenerate four-wave mixing process in which four photons interact to coherently probe two distinct Raman resonances. We demonstrate DR-FWM microscopy as a label-free and nondestructive molecular imaging modality with high chemical specificity on the submicron scale by imaging alkyne-substituted oleic acid in both aqueous and lipid-rich environments. DR-FWM microscopy is contrasted to coherent anti-Stokes Raman scattering (CARS) microscopy and it is shown that the coherent addition of two simultaneously probed Raman resonances leads to a significant increase in signal without increasing the non-resonant background. Thus, this scheme enables the detection of weak Raman signals through amplification by a strong Raman resonance, potentially increasing the overall detection sensitivity beyond what has been demonstrated by either CARS or stimulated Raman scattering (SRS).

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
    [CrossRef]
  2. M. Müller and A. Zumbusch, “Coherent anti-stokes Raman scattering microscopy,” ChemPhysChem 8(15), 2157–2170 (2007).
    [CrossRef]
  3. J. Chan, S. Fore, S. Wachsman-Hogiu, and T. Huser, “Raman spectroscopy and microscopy of individual cells and cellular components,” Laser Photon. Rev. 2(5), 325–349 (2008).
    [CrossRef]
  4. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
    [CrossRef] [PubMed]
  5. S. Wachsmann-Hogiu, T. Weeks, and T. Huser, “Chemical analysis in vivo and in vitro by Raman spectroscopy--from single cells to humans,” Curr. Opin. Biotechnol. 20(1), 63–73 (2009).
    [CrossRef] [PubMed]
  6. C. L. Evans and X. S. Xie, “Coherent Anti-Stokes Raman Scattering Microscopy: Chemical Imaging for Biology and Medicine,” Ann. Rev. Anal. Chem. 1(1), 883–909 (2008).
    [CrossRef]
  7. F. Ganikhanov, C. L. Evans, B. G. Saar, and X. S. Xie, “High-sensitivity vibrational imaging with frequency modulation coherent anti-Stokes Raman scattering (FM CARS) microscopy,” Opt. Lett. 31(12), 1872–1874 (2006).
    [CrossRef] [PubMed]
  8. M. Jurna, J. P. Korterik, C. Otto, and H. L. Offerhaus, “Shot noise limited heterodyne detection of CARS signals,” Opt. Express 15(23), 15207–15213 (2007).
    [CrossRef] [PubMed]
  9. E. O. Potma, C. L. Evans, and X. S. Xie, “Heterodyne coherent anti-Stokes Raman scattering (CARS) imaging,” Opt. Lett. 31(2), 241–243 (2006).
    [CrossRef] [PubMed]
  10. H. Lotem, R. T. Lynch, and N. Bloembergen, “Interference between Raman resonances in four-wave difference mixing,” Phys. Rev. A 14(5), 1748–1755 (1976).
    [CrossRef]
  11. S. A. J. Druet, B. Attal, T. K. Gustafson, and J.-P. Taran, “Electronic resonance enhancement of coherent anti-Stokes Raman scattering,” Phys. Rev. A 18(4), 1529–1557 (1978).
    [CrossRef]
  12. Y. J. Lee, Y. Liu, and M. T. Cicerone, “Characterization of three-color CARS in a two-pulse broadband CARS spectrum,” Opt. Lett. 32(22), 3370–3372 (2007).
    [CrossRef] [PubMed]
  13. A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay,” Appl. Phys. Lett. 80(9), 1505–1507 (2002).
    [CrossRef]
  14. I. W. Schie, T. Weeks, G. P. McNerney, S. Fore, J. K. Sampson, S. Wachsmann-Hogiu, J. C. Rutledge, and T. Huser, “Simultaneous forward and epi-CARS microscopy with a single detector by time-correlated single photon counting,” Opt. Express 16(3), 2168–2175 (2008).
    [CrossRef] [PubMed]
  15. R. Lynch, S. Kramer, H. Lotem, and N. Bloembergen, “Double Resonance Interference in Third-Order Light Mixing,” Opt. Commun. 16(3), 372–375 (1976).
    [CrossRef]
  16. S. Saha and R. Hellwarth, “Raman-Induced Phase Conjugation Spectroscopy,” Phys. Rev. A 27(2), 919–922 (1983).
    [CrossRef]
  17. H. Fei, Y. Zhang, L. Han, F. Zhao, and Z. Wei, “Raman-enhanced nondegenerate four-wave mixing,” Appl. Phys. B 52(6), 395–399 (1991).
    [CrossRef]
  18. W. M. Tolles, J. W. Nibler, J. R. Mcdonald, and A. B. Harvey, “Review of Theory and Application of Coherent Anti-Stokes Raman-Spectroscopy (CARS),” Appl. Spectrosc. 31(4), 253–271 (1977).
    [CrossRef]
  19. G. Bjorklund, “Effects of focusing on third-order nonlinear processes in isotropic media,” IEEE J. Quantum Electron. 11(6), 287–296 (1975).
    [CrossRef]

2009 (1)

S. Wachsmann-Hogiu, T. Weeks, and T. Huser, “Chemical analysis in vivo and in vitro by Raman spectroscopy--from single cells to humans,” Curr. Opin. Biotechnol. 20(1), 63–73 (2009).
[CrossRef] [PubMed]

2008 (4)

C. L. Evans and X. S. Xie, “Coherent Anti-Stokes Raman Scattering Microscopy: Chemical Imaging for Biology and Medicine,” Ann. Rev. Anal. Chem. 1(1), 883–909 (2008).
[CrossRef]

J. Chan, S. Fore, S. Wachsman-Hogiu, and T. Huser, “Raman spectroscopy and microscopy of individual cells and cellular components,” Laser Photon. Rev. 2(5), 325–349 (2008).
[CrossRef]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

I. W. Schie, T. Weeks, G. P. McNerney, S. Fore, J. K. Sampson, S. Wachsmann-Hogiu, J. C. Rutledge, and T. Huser, “Simultaneous forward and epi-CARS microscopy with a single detector by time-correlated single photon counting,” Opt. Express 16(3), 2168–2175 (2008).
[CrossRef] [PubMed]

2007 (3)

2006 (2)

2004 (1)

J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[CrossRef]

2002 (1)

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay,” Appl. Phys. Lett. 80(9), 1505–1507 (2002).
[CrossRef]

1991 (1)

H. Fei, Y. Zhang, L. Han, F. Zhao, and Z. Wei, “Raman-enhanced nondegenerate four-wave mixing,” Appl. Phys. B 52(6), 395–399 (1991).
[CrossRef]

1983 (1)

S. Saha and R. Hellwarth, “Raman-Induced Phase Conjugation Spectroscopy,” Phys. Rev. A 27(2), 919–922 (1983).
[CrossRef]

1978 (1)

S. A. J. Druet, B. Attal, T. K. Gustafson, and J.-P. Taran, “Electronic resonance enhancement of coherent anti-Stokes Raman scattering,” Phys. Rev. A 18(4), 1529–1557 (1978).
[CrossRef]

1977 (1)

1976 (2)

R. Lynch, S. Kramer, H. Lotem, and N. Bloembergen, “Double Resonance Interference in Third-Order Light Mixing,” Opt. Commun. 16(3), 372–375 (1976).
[CrossRef]

H. Lotem, R. T. Lynch, and N. Bloembergen, “Interference between Raman resonances in four-wave difference mixing,” Phys. Rev. A 14(5), 1748–1755 (1976).
[CrossRef]

1975 (1)

G. Bjorklund, “Effects of focusing on third-order nonlinear processes in isotropic media,” IEEE J. Quantum Electron. 11(6), 287–296 (1975).
[CrossRef]

Attal, B.

S. A. J. Druet, B. Attal, T. K. Gustafson, and J.-P. Taran, “Electronic resonance enhancement of coherent anti-Stokes Raman scattering,” Phys. Rev. A 18(4), 1529–1557 (1978).
[CrossRef]

Bjorklund, G.

G. Bjorklund, “Effects of focusing on third-order nonlinear processes in isotropic media,” IEEE J. Quantum Electron. 11(6), 287–296 (1975).
[CrossRef]

Bloembergen, N.

R. Lynch, S. Kramer, H. Lotem, and N. Bloembergen, “Double Resonance Interference in Third-Order Light Mixing,” Opt. Commun. 16(3), 372–375 (1976).
[CrossRef]

H. Lotem, R. T. Lynch, and N. Bloembergen, “Interference between Raman resonances in four-wave difference mixing,” Phys. Rev. A 14(5), 1748–1755 (1976).
[CrossRef]

Book, L. D.

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay,” Appl. Phys. Lett. 80(9), 1505–1507 (2002).
[CrossRef]

Chan, J.

J. Chan, S. Fore, S. Wachsman-Hogiu, and T. Huser, “Raman spectroscopy and microscopy of individual cells and cellular components,” Laser Photon. Rev. 2(5), 325–349 (2008).
[CrossRef]

Cheng, J. X.

J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[CrossRef]

Cicerone, M. T.

Druet, S. A. J.

S. A. J. Druet, B. Attal, T. K. Gustafson, and J.-P. Taran, “Electronic resonance enhancement of coherent anti-Stokes Raman scattering,” Phys. Rev. A 18(4), 1529–1557 (1978).
[CrossRef]

Evans, C. L.

Fei, H.

H. Fei, Y. Zhang, L. Han, F. Zhao, and Z. Wei, “Raman-enhanced nondegenerate four-wave mixing,” Appl. Phys. B 52(6), 395–399 (1991).
[CrossRef]

Fore, S.

Freudiger, C. W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Ganikhanov, F.

Gustafson, T. K.

S. A. J. Druet, B. Attal, T. K. Gustafson, and J.-P. Taran, “Electronic resonance enhancement of coherent anti-Stokes Raman scattering,” Phys. Rev. A 18(4), 1529–1557 (1978).
[CrossRef]

Han, L.

H. Fei, Y. Zhang, L. Han, F. Zhao, and Z. Wei, “Raman-enhanced nondegenerate four-wave mixing,” Appl. Phys. B 52(6), 395–399 (1991).
[CrossRef]

Harvey, A. B.

He, C. W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Hellwarth, R.

S. Saha and R. Hellwarth, “Raman-Induced Phase Conjugation Spectroscopy,” Phys. Rev. A 27(2), 919–922 (1983).
[CrossRef]

Holtom, G. R.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Huser, T.

S. Wachsmann-Hogiu, T. Weeks, and T. Huser, “Chemical analysis in vivo and in vitro by Raman spectroscopy--from single cells to humans,” Curr. Opin. Biotechnol. 20(1), 63–73 (2009).
[CrossRef] [PubMed]

J. Chan, S. Fore, S. Wachsman-Hogiu, and T. Huser, “Raman spectroscopy and microscopy of individual cells and cellular components,” Laser Photon. Rev. 2(5), 325–349 (2008).
[CrossRef]

I. W. Schie, T. Weeks, G. P. McNerney, S. Fore, J. K. Sampson, S. Wachsmann-Hogiu, J. C. Rutledge, and T. Huser, “Simultaneous forward and epi-CARS microscopy with a single detector by time-correlated single photon counting,” Opt. Express 16(3), 2168–2175 (2008).
[CrossRef] [PubMed]

Jurna, M.

Kang, J. X.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Korterik, J. P.

Kramer, S.

R. Lynch, S. Kramer, H. Lotem, and N. Bloembergen, “Double Resonance Interference in Third-Order Light Mixing,” Opt. Commun. 16(3), 372–375 (1976).
[CrossRef]

Lee, Y. J.

Liu, Y.

Lotem, H.

R. Lynch, S. Kramer, H. Lotem, and N. Bloembergen, “Double Resonance Interference in Third-Order Light Mixing,” Opt. Commun. 16(3), 372–375 (1976).
[CrossRef]

H. Lotem, R. T. Lynch, and N. Bloembergen, “Interference between Raman resonances in four-wave difference mixing,” Phys. Rev. A 14(5), 1748–1755 (1976).
[CrossRef]

Lu, S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Lynch, R.

R. Lynch, S. Kramer, H. Lotem, and N. Bloembergen, “Double Resonance Interference in Third-Order Light Mixing,” Opt. Commun. 16(3), 372–375 (1976).
[CrossRef]

Lynch, R. T.

H. Lotem, R. T. Lynch, and N. Bloembergen, “Interference between Raman resonances in four-wave difference mixing,” Phys. Rev. A 14(5), 1748–1755 (1976).
[CrossRef]

Mcdonald, J. R.

McNerney, G. P.

Min, W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Müller, M.

M. Müller and A. Zumbusch, “Coherent anti-stokes Raman scattering microscopy,” ChemPhysChem 8(15), 2157–2170 (2007).
[CrossRef]

Nibler, J. W.

Offerhaus, H. L.

Otto, C.

Potma, E. O.

Rutledge, J. C.

Saar, B. G.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

F. Ganikhanov, C. L. Evans, B. G. Saar, and X. S. Xie, “High-sensitivity vibrational imaging with frequency modulation coherent anti-Stokes Raman scattering (FM CARS) microscopy,” Opt. Lett. 31(12), 1872–1874 (2006).
[CrossRef] [PubMed]

Saha, S.

S. Saha and R. Hellwarth, “Raman-Induced Phase Conjugation Spectroscopy,” Phys. Rev. A 27(2), 919–922 (1983).
[CrossRef]

Sampson, J. K.

Schie, I. W.

Taran, J.-P.

S. A. J. Druet, B. Attal, T. K. Gustafson, and J.-P. Taran, “Electronic resonance enhancement of coherent anti-Stokes Raman scattering,” Phys. Rev. A 18(4), 1529–1557 (1978).
[CrossRef]

Tolles, W. M.

Tsai, J. C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Volkmer, A.

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay,” Appl. Phys. Lett. 80(9), 1505–1507 (2002).
[CrossRef]

Wachsman-Hogiu, S.

J. Chan, S. Fore, S. Wachsman-Hogiu, and T. Huser, “Raman spectroscopy and microscopy of individual cells and cellular components,” Laser Photon. Rev. 2(5), 325–349 (2008).
[CrossRef]

Wachsmann-Hogiu, S.

Weeks, T.

Wei, Z.

H. Fei, Y. Zhang, L. Han, F. Zhao, and Z. Wei, “Raman-enhanced nondegenerate four-wave mixing,” Appl. Phys. B 52(6), 395–399 (1991).
[CrossRef]

Xie, X. S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

C. L. Evans and X. S. Xie, “Coherent Anti-Stokes Raman Scattering Microscopy: Chemical Imaging for Biology and Medicine,” Ann. Rev. Anal. Chem. 1(1), 883–909 (2008).
[CrossRef]

F. Ganikhanov, C. L. Evans, B. G. Saar, and X. S. Xie, “High-sensitivity vibrational imaging with frequency modulation coherent anti-Stokes Raman scattering (FM CARS) microscopy,” Opt. Lett. 31(12), 1872–1874 (2006).
[CrossRef] [PubMed]

E. O. Potma, C. L. Evans, and X. S. Xie, “Heterodyne coherent anti-Stokes Raman scattering (CARS) imaging,” Opt. Lett. 31(2), 241–243 (2006).
[CrossRef] [PubMed]

J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[CrossRef]

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay,” Appl. Phys. Lett. 80(9), 1505–1507 (2002).
[CrossRef]

Zhang, Y.

H. Fei, Y. Zhang, L. Han, F. Zhao, and Z. Wei, “Raman-enhanced nondegenerate four-wave mixing,” Appl. Phys. B 52(6), 395–399 (1991).
[CrossRef]

Zhao, F.

H. Fei, Y. Zhang, L. Han, F. Zhao, and Z. Wei, “Raman-enhanced nondegenerate four-wave mixing,” Appl. Phys. B 52(6), 395–399 (1991).
[CrossRef]

Zumbusch, A.

M. Müller and A. Zumbusch, “Coherent anti-stokes Raman scattering microscopy,” ChemPhysChem 8(15), 2157–2170 (2007).
[CrossRef]

Ann. Rev. Anal. Chem. (1)

C. L. Evans and X. S. Xie, “Coherent Anti-Stokes Raman Scattering Microscopy: Chemical Imaging for Biology and Medicine,” Ann. Rev. Anal. Chem. 1(1), 883–909 (2008).
[CrossRef]

Appl. Phys. B (1)

H. Fei, Y. Zhang, L. Han, F. Zhao, and Z. Wei, “Raman-enhanced nondegenerate four-wave mixing,” Appl. Phys. B 52(6), 395–399 (1991).
[CrossRef]

Appl. Phys. Lett. (1)

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay,” Appl. Phys. Lett. 80(9), 1505–1507 (2002).
[CrossRef]

Appl. Spectrosc. (1)

ChemPhysChem (1)

M. Müller and A. Zumbusch, “Coherent anti-stokes Raman scattering microscopy,” ChemPhysChem 8(15), 2157–2170 (2007).
[CrossRef]

Curr. Opin. Biotechnol. (1)

S. Wachsmann-Hogiu, T. Weeks, and T. Huser, “Chemical analysis in vivo and in vitro by Raman spectroscopy--from single cells to humans,” Curr. Opin. Biotechnol. 20(1), 63–73 (2009).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

G. Bjorklund, “Effects of focusing on third-order nonlinear processes in isotropic media,” IEEE J. Quantum Electron. 11(6), 287–296 (1975).
[CrossRef]

J. Phys. Chem. B (1)

J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[CrossRef]

Laser Photon. Rev. (1)

J. Chan, S. Fore, S. Wachsman-Hogiu, and T. Huser, “Raman spectroscopy and microscopy of individual cells and cellular components,” Laser Photon. Rev. 2(5), 325–349 (2008).
[CrossRef]

Opt. Commun. (1)

R. Lynch, S. Kramer, H. Lotem, and N. Bloembergen, “Double Resonance Interference in Third-Order Light Mixing,” Opt. Commun. 16(3), 372–375 (1976).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. A (3)

S. Saha and R. Hellwarth, “Raman-Induced Phase Conjugation Spectroscopy,” Phys. Rev. A 27(2), 919–922 (1983).
[CrossRef]

H. Lotem, R. T. Lynch, and N. Bloembergen, “Interference between Raman resonances in four-wave difference mixing,” Phys. Rev. A 14(5), 1748–1755 (1976).
[CrossRef]

S. A. J. Druet, B. Attal, T. K. Gustafson, and J.-P. Taran, “Electronic resonance enhancement of coherent anti-Stokes Raman scattering,” Phys. Rev. A 18(4), 1529–1557 (1978).
[CrossRef]

Science (1)

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Energy diagrams describing the CARS process, Case 1, and the non-degenerate four-wave mixing process, Cases 2 and 3. (b) Spontaneous Raman spectrum of modified oleic acid taken with 785 nm excitation and software corrected for instrument response. R’ and R indicate an alkyne, and an aliphatic CH stretch mode, respectively.

Fig. 2
Fig. 2

Images of dried modified oleic acid at different spectral locations within the 2D DR-FWM parameter space. Each image is tuned relative to two Raman resonances. The scale bar is 10 μm and intensity is given in arbitrary units. (a) <IDR-FWM >=124. (b) <IDR-FWM >=100. (c) <IDR-FWM >=199. (d) <IDR-FWM >=117. (e) <IDR-FWM >=240. (f) <IDR-FWM >=354. (g) <IDR-FWM >=315. (h) <IDR-FWM >=374. (i) <IDR-FWM >=626. CARS images were taken of the same sample for comparison. (j) <ICARS >=124. (k) <ICARS >=202. (l) <ICARS >=253.

Fig. 3
Fig. 3

(a) Calculated DR-FWM parameter space. (b-d) Cuts through the 2D space as labeled. (e) CARS peak for comparison. Error bars are one standard deviation of averaged pixel data obtained from the images in Fig. 2.

Fig. 4
Fig. 4

(a) DR-FWM image obtained by probing the 2115 cm−1 and the 2845 cm−1 Raman resonances of modified oleic acid crystal-like structures in a bath of pure oleic acid simultaneously. (b) CARS image of the same region using the 2845 cm−1 Raman resonances. (c) CARS image of the same region using the 2115 cm−1 Raman resonances. (d) Difference between images a) and b) highlighting the enhancement of the 2115 cm−1 signal by DR-FWM. Note that in each case the white line indicates the cross sections shown in the inset.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

IDRFWM|χDRFWM(3)|2=(χNR(3))2+χNR(3)(χR(3)+χR(3)*+χR(3)+χR(3)*)+......χR(3)χR(3)*+χR(3)*χR(3)+|χR(3)|2+|χR(3)|2
χCARS(3)=χNR(3)+χR(3)
ICARS(χNR(3))2+|χR(3)|22
|χDRFWM(3)|2=(1+|χR(3)||χR(3)|)2|χR(3)|2

Metrics