Abstract

Multi-transverse-mode competition, coupling induced instabilities and multi-pulse or satellite pulse oscillations were investigated experimentally and theoretically in laser-diode-pumped Cr,Nd:YAG self-Q-switched microchip lasers under large pump beam diameter. The different transverse modes have great effects on the laser pulse temporal characteristics such as pulse profile, pulse width, instability of peak power and repetition rate jitter. Multi-transverse-mode, multi-pulse oscillation and periodical pulsation were observed by varying the pump beam diameter. The effect of transverse modes on the instability and multi-pulse oscillation were studied by modified coupled rate equations by taking into account the transverse-mode competition of inversion population under different pump conditions. The numerically simulated results are in good agreement with the experimental results. These results show that the multi-pulse oscillation and instability in the pulse train were attributed to different transverse mode coupling and competition. The peak power instabilities and pulse repetition rate jitter of the laser pulses due to transverse mode coupling were also investigated.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. Zayhowski, “Passively Q-switched Nd:YAG microchip lasers and applications,” J. Alloy. Comp. 303–304(1-2), 393–400 (2000).
  2. G. J. Spuhler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B: Lasers Opt. 72, 285–287 (2001).
  3. J. Dong, P. Deng, Y. Liu, Y. Zhang, J. Xu, W. Chen, and X. Xie, “Passively Q-Switched Yb:YAG Laser with Cr(4+):YAG as the Saturable Absorber,” Appl. Opt. 40(24), 4303–4307 (2001).
  4. J. J. Zayhowski and C. Dill, “Diode-pumped passively Q-switched picosecond microchip lasers,” Opt. Lett. 19(18), 1427–1429 (1994).
    [PubMed]
  5. J. Dong, A. Shirakawa, and K. Ueda, “Sub-nanosecond passively Q-switched Yb:YAG/Cr4+:YAG sandwiched microchip laser,” Appl. Phys. B: Lasers Opt. 85(4), 513–518 (2006).
  6. J. Dong and K. Ueda, “Longitudinal-mode competition induced instabilities of Cr4+,Nd3+:Y3Al5O12 self-Q-switched two-mode laser,” Appl. Phys. Lett. 87(15), 151102 (2005).
  7. M. Wei, C. Cheng, and S. Wu, “Instability and satellite pulse of passively Q-switching Nd:LuVO4 laser with Cr4+:YAG saturable absorber,” Opt. Commun. 281(13), 3527–3531 (2008).
  8. J. Dong, A. Shirakawa, and K. Ueda, “Switchable pulses generation in passively Q-switched multilongitudinal-mode microchip laser,” Laser Phys. Lett. 4(2), 109–116 (2007).
  9. S. Longhi, “Theory of transverse modes in end-pumped microchip lasers,” J. Opt. Soc. Am. B 11(6), 1098–1107 (1994).
  10. J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31(11), 1890–1901 (1995).
  11. J. Dong and K. Ueda, “Observation of repetitively nanosecond pulse-width transverse patterns in microchip self-Q-switched laser,” Phys. Rev. A 73(5), 053824 (2006).
  12. S. P. Hegarty, G. Huyet, P. Porta, J. G. McInerney, K. D. Choquette, K. M. Geib, and H. Q. Hou, “Transverse-mode structure and pattern formation in oxide-confined vertical-cavity semiconductor lasers,” J. Opt. Soc. Am. B 16(11), 2060–2071 (1999).
  13. K. Otsuka, P. Mandel, and E. A. Viktorov, “Breakup of cw multimode oscillations and low-frequency instability in a microchip solid-state laser by high-density pumping,” Phys. Rev. A 56(4), 3226–3232 (1997).
  14. Y. F. Chen and Y. P. Lan, “Spontaneous transverse pattern formation in a microchip laser excited by a doughnut pump profile,” Appl. Phys. B 75(4-5), 453–456 (2002).
  15. Y. F. Chen and Y. P. Lan, “Observation of transverse patterns in an isotropic microchip laser,” Phys. Rev. A 67(4), 043814 (2003).
  16. G. K. Harkness and W. J. Firth, “Transverse modes of microchip solid state lasers,” J. Mod. Opt. 39(10), 2023–2037 (1992).
  17. A. A. Ishaaya, N. Davidson, and A. A. Friesem, “Very high-order pure Laguerre-Gaussian mode selection in a passive Q-switched Nd:YAG laser,” Opt. Express 13(13), 4952–4962 (2005).
    [PubMed]
  18. M. D. Wei, C. H. Chen, and K. C. Tu, “Spatial and temporal instability in a passively Q-switched Nd:YAG laser with a Cr4+:YAG saturable absorber,” Opt. Express 12(17), 3972–3980 (2004).
    [PubMed]
  19. S. Longhi, G. Cerullo, S. Taccheo, V. Magni, and P. Laporta, “Experimental observation of transverse effects in microchip solid-state laser,” Appl. Phys. Lett. 65(24), 3042–3044 (1994).
  20. S. P. Ng, D. Y. Tang, L. J. Qian, and L. J. Qin, “Satellite pulse generation in diode-pumped passively Q-switched Nd:GdVO4 lasers,” IEEE J. Quantum Electron. 42(7), 625–632 (2006).
  21. T. Taira, J. Saikawa, T. Kobayashi, and R. L. Byer, “Diode-pumped tunable Yb:YAG miniature lasers at room temperature: modeling and experiment,” IEEE J. Sel. Top. Quantum Electron. 3(1), 100–104 (1997).
  22. C. L. Tang, H. Statz, and G. Demars, “Spectral output and spiking behavior of solid-state lasers,” J. Appl. Phys. 34(8), 2289–2295 (1963).
  23. K. Otsuka, M. Georgiou, and P. Mandel, “Intensity fluctuations in multimode lasers with spatial hole burning,” Jpn. J. Appl. Phys. 31(Part 2, No. 9A), L1250–L1252 (1992).
  24. K. Otsuka, J. Y. Ko, T. Kubota, S. L. Hwong, T. S. Lim, J. L. Chern, B. A. Nguyen, and P. Mandel, “Instability in a laser-diode-pumped microchip Nd:YAG laser in a n-ary product scheme,” Opt. Lett. 26(14), 1060–1062 (2001).
  25. J. Dong, “Numerical modeling of CW-pumped repetitively passively Q-switched Yb:YAG lasers with Cr:YAG as saturable absorber,” Opt. Commun. 226(1-6), 337–344 (2003).
  26. R. Oron, L. Shimshi, S. Blit, N. Davidson, A. A. Friesem, and E. Hasman, “Laser operation with two orthogonally polarized transverse modes,” Appl. Opt. 41(18), 3634–3637 (2002).
    [PubMed]
  27. X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
  28. Y. Shimony, Z. Burshtein, and Y. Kalisky, “Cr4+:YAG as passive Q-switch and Brewster plate in a Nd:YAG laser,” IEEE J. Quantum Electron. 31(10), 1738–1741 (1995).
  29. Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. R. Kikta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34(2), 292–299 (1998).
  30. H. Eilers, K. R. Hoffman, W. M. Dennis, S. M. Jacobsen, and W. M. Yen, “Saturation of 1.064 μm absorption in Cr,Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61(25), 2958–2960 (1992).
  31. G. Xiao, J. H. Lim, S. Yang, E. V. Stryland, M. Bass, and L. Weichman, “Z-scan measurement of the ground and excited state absorption cross section of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35(7), 1086–1091 (1999).
  32. J. Dong, J. Lu, and K. Ueda, “Experiments and numerical simulation of a diode-laser-pumped Cr,Nd:YAG self-Q-switched laser,” J. Opt. Soc. Am. B 21(12), 2130–2136 (2004).
  33. J. Dong, P. Deng, Y. Lu, Y. Zhang, Y. Liu, J. Xu, and W. Chen, “Laser-diode-pumped Cr(4)+, Nd(3)+:YAG with self-Q-switched laser output of 1.4 W,” Opt. Lett. 25(15), 1101–1103 (2000).
  34. B. Lipavsky, Y. Kalisky, Z. Burshtein, Y. Shimony, and S. Rotman, “Some optical properties of Cr4+ - doped crystals,” Opt. Mater. 13(1), 117–127 (1999).
  35. W. Koechner, Solid State Laser Engineering (Springer-Verlag, Berlin, 1999), Chap. 2.

2008

M. Wei, C. Cheng, and S. Wu, “Instability and satellite pulse of passively Q-switching Nd:LuVO4 laser with Cr4+:YAG saturable absorber,” Opt. Commun. 281(13), 3527–3531 (2008).

2007

J. Dong, A. Shirakawa, and K. Ueda, “Switchable pulses generation in passively Q-switched multilongitudinal-mode microchip laser,” Laser Phys. Lett. 4(2), 109–116 (2007).

2006

J. Dong, A. Shirakawa, and K. Ueda, “Sub-nanosecond passively Q-switched Yb:YAG/Cr4+:YAG sandwiched microchip laser,” Appl. Phys. B: Lasers Opt. 85(4), 513–518 (2006).

J. Dong and K. Ueda, “Observation of repetitively nanosecond pulse-width transverse patterns in microchip self-Q-switched laser,” Phys. Rev. A 73(5), 053824 (2006).

S. P. Ng, D. Y. Tang, L. J. Qian, and L. J. Qin, “Satellite pulse generation in diode-pumped passively Q-switched Nd:GdVO4 lasers,” IEEE J. Quantum Electron. 42(7), 625–632 (2006).

2005

A. A. Ishaaya, N. Davidson, and A. A. Friesem, “Very high-order pure Laguerre-Gaussian mode selection in a passive Q-switched Nd:YAG laser,” Opt. Express 13(13), 4952–4962 (2005).
[PubMed]

J. Dong and K. Ueda, “Longitudinal-mode competition induced instabilities of Cr4+,Nd3+:Y3Al5O12 self-Q-switched two-mode laser,” Appl. Phys. Lett. 87(15), 151102 (2005).

2004

2003

J. Dong, “Numerical modeling of CW-pumped repetitively passively Q-switched Yb:YAG lasers with Cr:YAG as saturable absorber,” Opt. Commun. 226(1-6), 337–344 (2003).

Y. F. Chen and Y. P. Lan, “Observation of transverse patterns in an isotropic microchip laser,” Phys. Rev. A 67(4), 043814 (2003).

2002

R. Oron, L. Shimshi, S. Blit, N. Davidson, A. A. Friesem, and E. Hasman, “Laser operation with two orthogonally polarized transverse modes,” Appl. Opt. 41(18), 3634–3637 (2002).
[PubMed]

Y. F. Chen and Y. P. Lan, “Spontaneous transverse pattern formation in a microchip laser excited by a doughnut pump profile,” Appl. Phys. B 75(4-5), 453–456 (2002).

2001

2000

J. J. Zayhowski, “Passively Q-switched Nd:YAG microchip lasers and applications,” J. Alloy. Comp. 303–304(1-2), 393–400 (2000).

J. Dong, P. Deng, Y. Lu, Y. Zhang, Y. Liu, J. Xu, and W. Chen, “Laser-diode-pumped Cr(4)+, Nd(3)+:YAG with self-Q-switched laser output of 1.4 W,” Opt. Lett. 25(15), 1101–1103 (2000).

1999

B. Lipavsky, Y. Kalisky, Z. Burshtein, Y. Shimony, and S. Rotman, “Some optical properties of Cr4+ - doped crystals,” Opt. Mater. 13(1), 117–127 (1999).

G. Xiao, J. H. Lim, S. Yang, E. V. Stryland, M. Bass, and L. Weichman, “Z-scan measurement of the ground and excited state absorption cross section of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35(7), 1086–1091 (1999).

S. P. Hegarty, G. Huyet, P. Porta, J. G. McInerney, K. D. Choquette, K. M. Geib, and H. Q. Hou, “Transverse-mode structure and pattern formation in oxide-confined vertical-cavity semiconductor lasers,” J. Opt. Soc. Am. B 16(11), 2060–2071 (1999).

1998

Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. R. Kikta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34(2), 292–299 (1998).

1997

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).

K. Otsuka, P. Mandel, and E. A. Viktorov, “Breakup of cw multimode oscillations and low-frequency instability in a microchip solid-state laser by high-density pumping,” Phys. Rev. A 56(4), 3226–3232 (1997).

T. Taira, J. Saikawa, T. Kobayashi, and R. L. Byer, “Diode-pumped tunable Yb:YAG miniature lasers at room temperature: modeling and experiment,” IEEE J. Sel. Top. Quantum Electron. 3(1), 100–104 (1997).

1995

J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31(11), 1890–1901 (1995).

Y. Shimony, Z. Burshtein, and Y. Kalisky, “Cr4+:YAG as passive Q-switch and Brewster plate in a Nd:YAG laser,” IEEE J. Quantum Electron. 31(10), 1738–1741 (1995).

1994

S. Longhi, “Theory of transverse modes in end-pumped microchip lasers,” J. Opt. Soc. Am. B 11(6), 1098–1107 (1994).

J. J. Zayhowski and C. Dill, “Diode-pumped passively Q-switched picosecond microchip lasers,” Opt. Lett. 19(18), 1427–1429 (1994).
[PubMed]

S. Longhi, G. Cerullo, S. Taccheo, V. Magni, and P. Laporta, “Experimental observation of transverse effects in microchip solid-state laser,” Appl. Phys. Lett. 65(24), 3042–3044 (1994).

1992

G. K. Harkness and W. J. Firth, “Transverse modes of microchip solid state lasers,” J. Mod. Opt. 39(10), 2023–2037 (1992).

H. Eilers, K. R. Hoffman, W. M. Dennis, S. M. Jacobsen, and W. M. Yen, “Saturation of 1.064 μm absorption in Cr,Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61(25), 2958–2960 (1992).

K. Otsuka, M. Georgiou, and P. Mandel, “Intensity fluctuations in multimode lasers with spatial hole burning,” Jpn. J. Appl. Phys. 31(Part 2, No. 9A), L1250–L1252 (1992).

1963

C. L. Tang, H. Statz, and G. Demars, “Spectral output and spiking behavior of solid-state lasers,” J. Appl. Phys. 34(8), 2289–2295 (1963).

Bass, M.

G. Xiao, J. H. Lim, S. Yang, E. V. Stryland, M. Bass, and L. Weichman, “Z-scan measurement of the ground and excited state absorption cross section of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35(7), 1086–1091 (1999).

Blau, P.

Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. R. Kikta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34(2), 292–299 (1998).

Blit, S.

Burshtein, Z.

B. Lipavsky, Y. Kalisky, Z. Burshtein, Y. Shimony, and S. Rotman, “Some optical properties of Cr4+ - doped crystals,” Opt. Mater. 13(1), 117–127 (1999).

Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. R. Kikta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34(2), 292–299 (1998).

Y. Shimony, Z. Burshtein, and Y. Kalisky, “Cr4+:YAG as passive Q-switch and Brewster plate in a Nd:YAG laser,” IEEE J. Quantum Electron. 31(10), 1738–1741 (1995).

Byer, R. L.

T. Taira, J. Saikawa, T. Kobayashi, and R. L. Byer, “Diode-pumped tunable Yb:YAG miniature lasers at room temperature: modeling and experiment,” IEEE J. Sel. Top. Quantum Electron. 3(1), 100–104 (1997).

Cerullo, G.

S. Longhi, G. Cerullo, S. Taccheo, V. Magni, and P. Laporta, “Experimental observation of transverse effects in microchip solid-state laser,” Appl. Phys. Lett. 65(24), 3042–3044 (1994).

Chen, C. H.

Chen, W.

Chen, Y. F.

Y. F. Chen and Y. P. Lan, “Observation of transverse patterns in an isotropic microchip laser,” Phys. Rev. A 67(4), 043814 (2003).

Y. F. Chen and Y. P. Lan, “Spontaneous transverse pattern formation in a microchip laser excited by a doughnut pump profile,” Appl. Phys. B 75(4-5), 453–456 (2002).

Cheng, C.

M. Wei, C. Cheng, and S. Wu, “Instability and satellite pulse of passively Q-switching Nd:LuVO4 laser with Cr4+:YAG saturable absorber,” Opt. Commun. 281(13), 3527–3531 (2008).

Chern, J. L.

Choquette, K. D.

Davidson, N.

Degnan, J. J.

J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31(11), 1890–1901 (1995).

Demars, G.

C. L. Tang, H. Statz, and G. Demars, “Spectral output and spiking behavior of solid-state lasers,” J. Appl. Phys. 34(8), 2289–2295 (1963).

Deng, P.

Dennis, W. M.

H. Eilers, K. R. Hoffman, W. M. Dennis, S. M. Jacobsen, and W. M. Yen, “Saturation of 1.064 μm absorption in Cr,Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61(25), 2958–2960 (1992).

Dill, C.

Dong, J.

J. Dong, A. Shirakawa, and K. Ueda, “Switchable pulses generation in passively Q-switched multilongitudinal-mode microchip laser,” Laser Phys. Lett. 4(2), 109–116 (2007).

J. Dong and K. Ueda, “Observation of repetitively nanosecond pulse-width transverse patterns in microchip self-Q-switched laser,” Phys. Rev. A 73(5), 053824 (2006).

J. Dong, A. Shirakawa, and K. Ueda, “Sub-nanosecond passively Q-switched Yb:YAG/Cr4+:YAG sandwiched microchip laser,” Appl. Phys. B: Lasers Opt. 85(4), 513–518 (2006).

J. Dong and K. Ueda, “Longitudinal-mode competition induced instabilities of Cr4+,Nd3+:Y3Al5O12 self-Q-switched two-mode laser,” Appl. Phys. Lett. 87(15), 151102 (2005).

J. Dong, J. Lu, and K. Ueda, “Experiments and numerical simulation of a diode-laser-pumped Cr,Nd:YAG self-Q-switched laser,” J. Opt. Soc. Am. B 21(12), 2130–2136 (2004).

J. Dong, “Numerical modeling of CW-pumped repetitively passively Q-switched Yb:YAG lasers with Cr:YAG as saturable absorber,” Opt. Commun. 226(1-6), 337–344 (2003).

J. Dong, P. Deng, Y. Liu, Y. Zhang, J. Xu, W. Chen, and X. Xie, “Passively Q-Switched Yb:YAG Laser with Cr(4+):YAG as the Saturable Absorber,” Appl. Opt. 40(24), 4303–4307 (2001).

J. Dong, P. Deng, Y. Lu, Y. Zhang, Y. Liu, J. Xu, and W. Chen, “Laser-diode-pumped Cr(4)+, Nd(3)+:YAG with self-Q-switched laser output of 1.4 W,” Opt. Lett. 25(15), 1101–1103 (2000).

Eilers, H.

H. Eilers, K. R. Hoffman, W. M. Dennis, S. M. Jacobsen, and W. M. Yen, “Saturation of 1.064 μm absorption in Cr,Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61(25), 2958–2960 (1992).

Firth, W. J.

G. K. Harkness and W. J. Firth, “Transverse modes of microchip solid state lasers,” J. Mod. Opt. 39(10), 2023–2037 (1992).

Friesem, A. A.

Geib, K. M.

Georgiou, M.

K. Otsuka, M. Georgiou, and P. Mandel, “Intensity fluctuations in multimode lasers with spatial hole burning,” Jpn. J. Appl. Phys. 31(Part 2, No. 9A), L1250–L1252 (1992).

Graf, M.

G. J. Spuhler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B: Lasers Opt. 72, 285–287 (2001).

Harder, C.

G. J. Spuhler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B: Lasers Opt. 72, 285–287 (2001).

Harkness, G. K.

G. K. Harkness and W. J. Firth, “Transverse modes of microchip solid state lasers,” J. Mod. Opt. 39(10), 2023–2037 (1992).

Hasman, E.

Hegarty, S. P.

Hoffman, K. R.

H. Eilers, K. R. Hoffman, W. M. Dennis, S. M. Jacobsen, and W. M. Yen, “Saturation of 1.064 μm absorption in Cr,Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61(25), 2958–2960 (1992).

Hou, H. Q.

Huber, G.

G. J. Spuhler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B: Lasers Opt. 72, 285–287 (2001).

Huyet, G.

Hwong, S. L.

Ishaaya, A. A.

Jacobsen, S. M.

H. Eilers, K. R. Hoffman, W. M. Dennis, S. M. Jacobsen, and W. M. Yen, “Saturation of 1.064 μm absorption in Cr,Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61(25), 2958–2960 (1992).

Kalisky, Y.

B. Lipavsky, Y. Kalisky, Z. Burshtein, Y. Shimony, and S. Rotman, “Some optical properties of Cr4+ - doped crystals,” Opt. Mater. 13(1), 117–127 (1999).

Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. R. Kikta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34(2), 292–299 (1998).

Y. Shimony, Z. Burshtein, and Y. Kalisky, “Cr4+:YAG as passive Q-switch and Brewster plate in a Nd:YAG laser,” IEEE J. Quantum Electron. 31(10), 1738–1741 (1995).

Keller, U.

G. J. Spuhler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B: Lasers Opt. 72, 285–287 (2001).

Kikta, M. R.

Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. R. Kikta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34(2), 292–299 (1998).

Ko, J. Y.

Kobayashi, T.

T. Taira, J. Saikawa, T. Kobayashi, and R. L. Byer, “Diode-pumped tunable Yb:YAG miniature lasers at room temperature: modeling and experiment,” IEEE J. Sel. Top. Quantum Electron. 3(1), 100–104 (1997).

Kubota, T.

Kullberg, M. P.

G. J. Spuhler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B: Lasers Opt. 72, 285–287 (2001).

Lan, Y. P.

Y. F. Chen and Y. P. Lan, “Observation of transverse patterns in an isotropic microchip laser,” Phys. Rev. A 67(4), 043814 (2003).

Y. F. Chen and Y. P. Lan, “Spontaneous transverse pattern formation in a microchip laser excited by a doughnut pump profile,” Appl. Phys. B 75(4-5), 453–456 (2002).

Laporta, P.

S. Longhi, G. Cerullo, S. Taccheo, V. Magni, and P. Laporta, “Experimental observation of transverse effects in microchip solid-state laser,” Appl. Phys. Lett. 65(24), 3042–3044 (1994).

Lim, J. H.

G. Xiao, J. H. Lim, S. Yang, E. V. Stryland, M. Bass, and L. Weichman, “Z-scan measurement of the ground and excited state absorption cross section of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35(7), 1086–1091 (1999).

Lim, T. S.

Lipavsky, B.

B. Lipavsky, Y. Kalisky, Z. Burshtein, Y. Shimony, and S. Rotman, “Some optical properties of Cr4+ - doped crystals,” Opt. Mater. 13(1), 117–127 (1999).

Liu, Y.

Longhi, S.

S. Longhi, “Theory of transverse modes in end-pumped microchip lasers,” J. Opt. Soc. Am. B 11(6), 1098–1107 (1994).

S. Longhi, G. Cerullo, S. Taccheo, V. Magni, and P. Laporta, “Experimental observation of transverse effects in microchip solid-state laser,” Appl. Phys. Lett. 65(24), 3042–3044 (1994).

Lu, J.

Lu, Y.

Magni, V.

S. Longhi, G. Cerullo, S. Taccheo, V. Magni, and P. Laporta, “Experimental observation of transverse effects in microchip solid-state laser,” Appl. Phys. Lett. 65(24), 3042–3044 (1994).

Mandel, P.

K. Otsuka, J. Y. Ko, T. Kubota, S. L. Hwong, T. S. Lim, J. L. Chern, B. A. Nguyen, and P. Mandel, “Instability in a laser-diode-pumped microchip Nd:YAG laser in a n-ary product scheme,” Opt. Lett. 26(14), 1060–1062 (2001).

K. Otsuka, P. Mandel, and E. A. Viktorov, “Breakup of cw multimode oscillations and low-frequency instability in a microchip solid-state laser by high-density pumping,” Phys. Rev. A 56(4), 3226–3232 (1997).

K. Otsuka, M. Georgiou, and P. Mandel, “Intensity fluctuations in multimode lasers with spatial hole burning,” Jpn. J. Appl. Phys. 31(Part 2, No. 9A), L1250–L1252 (1992).

McInerney, J. G.

Mix, E.

G. J. Spuhler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B: Lasers Opt. 72, 285–287 (2001).

Moser, M.

G. J. Spuhler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B: Lasers Opt. 72, 285–287 (2001).

Ng, S. P.

S. P. Ng, D. Y. Tang, L. J. Qian, and L. J. Qin, “Satellite pulse generation in diode-pumped passively Q-switched Nd:GdVO4 lasers,” IEEE J. Quantum Electron. 42(7), 625–632 (2006).

Nguyen, B. A.

Oron, R.

Otsuka, K.

K. Otsuka, J. Y. Ko, T. Kubota, S. L. Hwong, T. S. Lim, J. L. Chern, B. A. Nguyen, and P. Mandel, “Instability in a laser-diode-pumped microchip Nd:YAG laser in a n-ary product scheme,” Opt. Lett. 26(14), 1060–1062 (2001).

K. Otsuka, P. Mandel, and E. A. Viktorov, “Breakup of cw multimode oscillations and low-frequency instability in a microchip solid-state laser by high-density pumping,” Phys. Rev. A 56(4), 3226–3232 (1997).

K. Otsuka, M. Georgiou, and P. Mandel, “Intensity fluctuations in multimode lasers with spatial hole burning,” Jpn. J. Appl. Phys. 31(Part 2, No. 9A), L1250–L1252 (1992).

Paschotta, R.

G. J. Spuhler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B: Lasers Opt. 72, 285–287 (2001).

Porta, P.

Qian, L. J.

S. P. Ng, D. Y. Tang, L. J. Qian, and L. J. Qin, “Satellite pulse generation in diode-pumped passively Q-switched Nd:GdVO4 lasers,” IEEE J. Quantum Electron. 42(7), 625–632 (2006).

Qin, L. J.

S. P. Ng, D. Y. Tang, L. J. Qian, and L. J. Qin, “Satellite pulse generation in diode-pumped passively Q-switched Nd:GdVO4 lasers,” IEEE J. Quantum Electron. 42(7), 625–632 (2006).

Rotman, S.

B. Lipavsky, Y. Kalisky, Z. Burshtein, Y. Shimony, and S. Rotman, “Some optical properties of Cr4+ - doped crystals,” Opt. Mater. 13(1), 117–127 (1999).

Saikawa, J.

T. Taira, J. Saikawa, T. Kobayashi, and R. L. Byer, “Diode-pumped tunable Yb:YAG miniature lasers at room temperature: modeling and experiment,” IEEE J. Sel. Top. Quantum Electron. 3(1), 100–104 (1997).

Shimony, Y.

B. Lipavsky, Y. Kalisky, Z. Burshtein, Y. Shimony, and S. Rotman, “Some optical properties of Cr4+ - doped crystals,” Opt. Mater. 13(1), 117–127 (1999).

Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. R. Kikta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34(2), 292–299 (1998).

Y. Shimony, Z. Burshtein, and Y. Kalisky, “Cr4+:YAG as passive Q-switch and Brewster plate in a Nd:YAG laser,” IEEE J. Quantum Electron. 31(10), 1738–1741 (1995).

Shimshi, L.

Shirakawa, A.

J. Dong, A. Shirakawa, and K. Ueda, “Switchable pulses generation in passively Q-switched multilongitudinal-mode microchip laser,” Laser Phys. Lett. 4(2), 109–116 (2007).

J. Dong, A. Shirakawa, and K. Ueda, “Sub-nanosecond passively Q-switched Yb:YAG/Cr4+:YAG sandwiched microchip laser,” Appl. Phys. B: Lasers Opt. 85(4), 513–518 (2006).

Spuhler, G. J.

G. J. Spuhler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B: Lasers Opt. 72, 285–287 (2001).

Statz, H.

C. L. Tang, H. Statz, and G. Demars, “Spectral output and spiking behavior of solid-state lasers,” J. Appl. Phys. 34(8), 2289–2295 (1963).

Stryland, E. V.

G. Xiao, J. H. Lim, S. Yang, E. V. Stryland, M. Bass, and L. Weichman, “Z-scan measurement of the ground and excited state absorption cross section of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35(7), 1086–1091 (1999).

Sun, L.

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).

Taccheo, S.

S. Longhi, G. Cerullo, S. Taccheo, V. Magni, and P. Laporta, “Experimental observation of transverse effects in microchip solid-state laser,” Appl. Phys. Lett. 65(24), 3042–3044 (1994).

Taira, T.

T. Taira, J. Saikawa, T. Kobayashi, and R. L. Byer, “Diode-pumped tunable Yb:YAG miniature lasers at room temperature: modeling and experiment,” IEEE J. Sel. Top. Quantum Electron. 3(1), 100–104 (1997).

Tang, C. L.

C. L. Tang, H. Statz, and G. Demars, “Spectral output and spiking behavior of solid-state lasers,” J. Appl. Phys. 34(8), 2289–2295 (1963).

Tang, D. Y.

S. P. Ng, D. Y. Tang, L. J. Qian, and L. J. Qin, “Satellite pulse generation in diode-pumped passively Q-switched Nd:GdVO4 lasers,” IEEE J. Quantum Electron. 42(7), 625–632 (2006).

Tu, K. C.

Ueda, K.

J. Dong, A. Shirakawa, and K. Ueda, “Switchable pulses generation in passively Q-switched multilongitudinal-mode microchip laser,” Laser Phys. Lett. 4(2), 109–116 (2007).

J. Dong and K. Ueda, “Observation of repetitively nanosecond pulse-width transverse patterns in microchip self-Q-switched laser,” Phys. Rev. A 73(5), 053824 (2006).

J. Dong, A. Shirakawa, and K. Ueda, “Sub-nanosecond passively Q-switched Yb:YAG/Cr4+:YAG sandwiched microchip laser,” Appl. Phys. B: Lasers Opt. 85(4), 513–518 (2006).

J. Dong and K. Ueda, “Longitudinal-mode competition induced instabilities of Cr4+,Nd3+:Y3Al5O12 self-Q-switched two-mode laser,” Appl. Phys. Lett. 87(15), 151102 (2005).

J. Dong, J. Lu, and K. Ueda, “Experiments and numerical simulation of a diode-laser-pumped Cr,Nd:YAG self-Q-switched laser,” J. Opt. Soc. Am. B 21(12), 2130–2136 (2004).

Viktorov, E. A.

K. Otsuka, P. Mandel, and E. A. Viktorov, “Breakup of cw multimode oscillations and low-frequency instability in a microchip solid-state laser by high-density pumping,” Phys. Rev. A 56(4), 3226–3232 (1997).

Wang, Q.

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).

Wei, M.

M. Wei, C. Cheng, and S. Wu, “Instability and satellite pulse of passively Q-switching Nd:LuVO4 laser with Cr4+:YAG saturable absorber,” Opt. Commun. 281(13), 3527–3531 (2008).

Wei, M. D.

Weichman, L.

G. Xiao, J. H. Lim, S. Yang, E. V. Stryland, M. Bass, and L. Weichman, “Z-scan measurement of the ground and excited state absorption cross section of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35(7), 1086–1091 (1999).

Wu, S.

M. Wei, C. Cheng, and S. Wu, “Instability and satellite pulse of passively Q-switching Nd:LuVO4 laser with Cr4+:YAG saturable absorber,” Opt. Commun. 281(13), 3527–3531 (2008).

Xiao, G.

G. Xiao, J. H. Lim, S. Yang, E. V. Stryland, M. Bass, and L. Weichman, “Z-scan measurement of the ground and excited state absorption cross section of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35(7), 1086–1091 (1999).

Xie, X.

Xu, J.

Yang, S.

G. Xiao, J. H. Lim, S. Yang, E. V. Stryland, M. Bass, and L. Weichman, “Z-scan measurement of the ground and excited state absorption cross section of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35(7), 1086–1091 (1999).

Yen, W. M.

H. Eilers, K. R. Hoffman, W. M. Dennis, S. M. Jacobsen, and W. M. Yen, “Saturation of 1.064 μm absorption in Cr,Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61(25), 2958–2960 (1992).

Zayhowski, J. J.

J. J. Zayhowski, “Passively Q-switched Nd:YAG microchip lasers and applications,” J. Alloy. Comp. 303–304(1-2), 393–400 (2000).

J. J. Zayhowski and C. Dill, “Diode-pumped passively Q-switched picosecond microchip lasers,” Opt. Lett. 19(18), 1427–1429 (1994).
[PubMed]

Zhang, Q.

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).

Zhang, S.

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).

Zhang, X.

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).

Zhang, Y.

Zhao, S.

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).

Appl. Opt.

Appl. Phys. B

Y. F. Chen and Y. P. Lan, “Spontaneous transverse pattern formation in a microchip laser excited by a doughnut pump profile,” Appl. Phys. B 75(4-5), 453–456 (2002).

Appl. Phys. B: Lasers Opt.

G. J. Spuhler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B: Lasers Opt. 72, 285–287 (2001).

J. Dong, A. Shirakawa, and K. Ueda, “Sub-nanosecond passively Q-switched Yb:YAG/Cr4+:YAG sandwiched microchip laser,” Appl. Phys. B: Lasers Opt. 85(4), 513–518 (2006).

Appl. Phys. Lett.

J. Dong and K. Ueda, “Longitudinal-mode competition induced instabilities of Cr4+,Nd3+:Y3Al5O12 self-Q-switched two-mode laser,” Appl. Phys. Lett. 87(15), 151102 (2005).

S. Longhi, G. Cerullo, S. Taccheo, V. Magni, and P. Laporta, “Experimental observation of transverse effects in microchip solid-state laser,” Appl. Phys. Lett. 65(24), 3042–3044 (1994).

H. Eilers, K. R. Hoffman, W. M. Dennis, S. M. Jacobsen, and W. M. Yen, “Saturation of 1.064 μm absorption in Cr,Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61(25), 2958–2960 (1992).

IEEE J. Quantum Electron.

G. Xiao, J. H. Lim, S. Yang, E. V. Stryland, M. Bass, and L. Weichman, “Z-scan measurement of the ground and excited state absorption cross section of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35(7), 1086–1091 (1999).

S. P. Ng, D. Y. Tang, L. J. Qian, and L. J. Qin, “Satellite pulse generation in diode-pumped passively Q-switched Nd:GdVO4 lasers,” IEEE J. Quantum Electron. 42(7), 625–632 (2006).

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).

Y. Shimony, Z. Burshtein, and Y. Kalisky, “Cr4+:YAG as passive Q-switch and Brewster plate in a Nd:YAG laser,” IEEE J. Quantum Electron. 31(10), 1738–1741 (1995).

Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. R. Kikta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34(2), 292–299 (1998).

J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31(11), 1890–1901 (1995).

IEEE J. Sel. Top. Quantum Electron.

T. Taira, J. Saikawa, T. Kobayashi, and R. L. Byer, “Diode-pumped tunable Yb:YAG miniature lasers at room temperature: modeling and experiment,” IEEE J. Sel. Top. Quantum Electron. 3(1), 100–104 (1997).

J. Alloy. Comp.

J. J. Zayhowski, “Passively Q-switched Nd:YAG microchip lasers and applications,” J. Alloy. Comp. 303–304(1-2), 393–400 (2000).

J. Appl. Phys.

C. L. Tang, H. Statz, and G. Demars, “Spectral output and spiking behavior of solid-state lasers,” J. Appl. Phys. 34(8), 2289–2295 (1963).

J. Mod. Opt.

G. K. Harkness and W. J. Firth, “Transverse modes of microchip solid state lasers,” J. Mod. Opt. 39(10), 2023–2037 (1992).

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

K. Otsuka, M. Georgiou, and P. Mandel, “Intensity fluctuations in multimode lasers with spatial hole burning,” Jpn. J. Appl. Phys. 31(Part 2, No. 9A), L1250–L1252 (1992).

Laser Phys. Lett.

J. Dong, A. Shirakawa, and K. Ueda, “Switchable pulses generation in passively Q-switched multilongitudinal-mode microchip laser,” Laser Phys. Lett. 4(2), 109–116 (2007).

Opt. Commun.

M. Wei, C. Cheng, and S. Wu, “Instability and satellite pulse of passively Q-switching Nd:LuVO4 laser with Cr4+:YAG saturable absorber,” Opt. Commun. 281(13), 3527–3531 (2008).

J. Dong, “Numerical modeling of CW-pumped repetitively passively Q-switched Yb:YAG lasers with Cr:YAG as saturable absorber,” Opt. Commun. 226(1-6), 337–344 (2003).

Opt. Express

Opt. Lett.

Opt. Mater.

B. Lipavsky, Y. Kalisky, Z. Burshtein, Y. Shimony, and S. Rotman, “Some optical properties of Cr4+ - doped crystals,” Opt. Mater. 13(1), 117–127 (1999).

Phys. Rev. A

Y. F. Chen and Y. P. Lan, “Observation of transverse patterns in an isotropic microchip laser,” Phys. Rev. A 67(4), 043814 (2003).

K. Otsuka, P. Mandel, and E. A. Viktorov, “Breakup of cw multimode oscillations and low-frequency instability in a microchip solid-state laser by high-density pumping,” Phys. Rev. A 56(4), 3226–3232 (1997).

J. Dong and K. Ueda, “Observation of repetitively nanosecond pulse-width transverse patterns in microchip self-Q-switched laser,” Phys. Rev. A 73(5), 053824 (2006).

Other

W. Koechner, Solid State Laser Engineering (Springer-Verlag, Berlin, 1999), Chap. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic diagram of experimental setup used to observe instabilities and multiple-pulse oscillation in a laser-diode pumped microchip Cr,Nd:YAG self-Q-switched laser, BS, beam splitter; FL, focal lens; OC, output coupler; (b) Variation of the pump beam waist with position of the Cr,Nd:YAG sample.

Fig. 2
Fig. 2

Transverse patterns of Cr,Nd:YAG self-Q-switched laser at different Cr,Nd:YAG sample positions, z, along the pump beam direction, (a) –3.5 mm, (b) –3 mm, (c) –2 mm, (d) −0.5 mm, (e) 0, (f) 1 mm, (g) 2 mm, (h) 3 mm, (i) 4 mm, (j) 5 mm.

Fig. 3
Fig. 3

The average output power and pulse energy of Cr,Nd:YAG self-Q-switched laser as a function of the position of the Cr,Nd:YAG sample along the pump beam [11].

Fig. 4
Fig. 4

The observed pulse profiles of Cr,Nd:YAG self-Q-switched laser with pump beam diameters when the Cr,Nd:YAG sample was positioned away from the focus point of the pump beam. (a) z = – 3 mm; (b) z = 0 mm; (c) z = 3.5 mm; (d) z = 5 mm.

Fig. 5
Fig. 5

The variation of pulse trains of Cr,Nd:YAG self-Q-switched laser when the Cr,Nd:YAG sample was set at different positions of the pump beam. (a) Period-2 pulsation oscillates when z = –3.5 mm; (b) period-7 pulsation oscillates when z = –3 mm; (c) period-4 pulsation oscillated when z = – 2 mm; (d) period-4 pulsation oscillates when z = −0.5 mm; (e) period-4 pulsation oscillates when z = 0 mm; (f) period-10 pulsation oscillates when z = 1 mm; (g) period-8 pulsation oscillates when z = 2.5 mm; (h) period-6 pulsation oscillates when z = 3 mm; (i) period-7 pulsation oscillates when z = 4 mm; (i) period-1 pulsation oscillates when z = 5 mm.

Fig. 6
Fig. 6

Numerical simulations of the multi-pulse oscillation in self-Q-switched Cr,Nd:YAG multi-transverse-mode lasers. The evolutions of the inversion populations of gain medium, inversion populations of the Cr4+ saturable absorber, and the photon density of different pulses as a function of time, (a) three pulses oscillation under pump beam diameter of 380 μm; (b) two pulses generation under pump beam diameter of 150 μm.

Fig. 7
Fig. 7

Numerical simulations of the pulse trains under pump power of 2.5 W with different pump beam diameters (a) 380 μm, (b) 330 μm, (c) 250 μm, (d) 160 μm, (e) 150 μm, which are in good agreement with those observed in Fig. 4 (a) – (e).

Tables (1)

Tables Icon

Table 1 The parameters of Cr,Nd:YAG laser used in numerical simulations

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ωp2(z)=ω02[1+(M2)2λp2(zz0)2n2π2ω04]
I(z,r)=Pinπωp2(z)exp(2r2ωp2(z))
dnudt=W(γ20+γ21)nui=1NCi(nunlni2)φicσ
dnldt=γ10nl+γ21nu+i=1NCi(nunlni2)φicσ
dnidt=Ci(nunl)φicσni(γ21+i=1NCiφicσ)
dφidt=φitr[(Ci2(nunlni2)σlln(1R)Li2(σgNs+σe(N0Ns))ls)]
dNsdt=(N0Ns)γsσgcNsi=1Nφi
ni=2Lc0Lcn(z,t)cos(2kiz)dz

Metrics