Abstract

We have proposed a novel grating-based optical reflection switch using a phase change material (PCM). The device switches on/off light or shifts the light propagation direction by switching the PCM grating between its amorphous and crystalline states. Thus, the switching status is non-volatile and the device is promising for realizing low power consumption. The device structure was designed and optimized by numerical simulations to obtain high switching efficiency. It is shown that there exists a parameter window where high efficiency is achievable. The static switching characteristics were confirmed by finite-difference time-domain (FDTD) simulations. The design scheme can also be applied to other planar dielectric gratings.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Chen, K. A. Rubin, R. W. Barton, "Compound materials for reversible, phase-change optical data storage," Appl. Phys. Lett. 49, 502 (1986).
    [CrossRef]
  2. D. Strand, D. V. Tsu, R. Miller, M. Hennessey and D. Jablonski, "Optical routers based on Ovonic phase change materials," E/PCOS2006 (European Phase Change and Ovonics Symposium), Grenoble, May 29-31, 2006, http://www.epcos.org/library/papers/pdf 2006/pdf contributed/Strand.pdf.
  3. H. Tsuda, "Proposal of an optical switch using phase-change material for future photonic network nodes," PCOS2007 (The 19th Symposium on Phase Change Optical Information Storage), pp. 39-42, Atami, Nov. 29-30, 2007.
  4. H. Horii, J. H. Yi, J. H. Park, Y. H. Ha, I. G. Baek, S. O. Park, Y. N. Hwang, S. H. Lee, Y. T. Kim, K. H. Lee, U-In Chung, and J. T. Moon, "A novel cell technology using N-doped GeSbTe films for phase change RAM," Proceedings of International Symposium on VLSI Technology, pp.177-178, Kyoto, June 10-12, 2003.
  5. A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, and T. Uruga, "Understanding the phasechange mechanism of rewritable optical medium," Nat. Mater. 3, 703 (2004).
    [CrossRef]
  6. M. Wuttig and N. Yamada, "Phase-change materials for rewritable data storage," Nat. Mater. 6, 824-832 (2007).
    [CrossRef]
  7. K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, "Resonant bonding in crystalline phase-change materials," Nat. Mater. 7, 653-658 (2008).
    [CrossRef]
  8. S. Nakamura, Y. Ueno, and K. Tajima, "Femtosecond switching with semiconductor-optical-amplifier-based Symmetric Mach-Zehnder-type all-optical switch," Appl. Phys. Lett. 78, 3929-3931 (2001).
    [CrossRef]
  9. T. Akiyama, N. Georgiev, T. Mozume, H. Yoshida, A. V. Gopal, and O. Wada, "1.55 um picosecond all-optical switching by using absorption in InGaAs-AlAs-AlAsSb coupled quantum wells," IEEE Photon. Technol. Lett. 14,495-497 (2002).
    [CrossRef]
  10. M. G. Moharam and T. K. Gaylord, "Diffraction analysis of dielectric surface-relief gratings," J. Opt. Soc. Am.  72, 1385-1392 (1982).
    [CrossRef]
  11. L. Li, "New formulation of the Fourier modal method for crossed surface-relief gratings," J. Opt. Soc. Am. A 14, 2758-2767 (1997).
    [CrossRef]
  12. A. Taflove and S. Hagness, Computational Electrodynamics: The Finite Difference Time DomainMethod. Boston (Artech House, Norwood, MA, 2nd edition, 2000).
  13. B. J. Choi, S. H. Oh, S. Choi, T. Eom, Y. C. Shin, K. M. Kim, K.-W. Yi, C. S. Hwang, Y. J. Kim, H. C. Park, T. S. Baek, and S. K. Hong, "Switching power reduction in phase change memory cell using CVD Ge2Sb2Te5 and ultrathin TiO2 films," J. Electrochem. Soc. 156(1), H59-H63 (2009).
    [CrossRef]

2009 (1)

B. J. Choi, S. H. Oh, S. Choi, T. Eom, Y. C. Shin, K. M. Kim, K.-W. Yi, C. S. Hwang, Y. J. Kim, H. C. Park, T. S. Baek, and S. K. Hong, "Switching power reduction in phase change memory cell using CVD Ge2Sb2Te5 and ultrathin TiO2 films," J. Electrochem. Soc. 156(1), H59-H63 (2009).
[CrossRef]

2008 (1)

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, "Resonant bonding in crystalline phase-change materials," Nat. Mater. 7, 653-658 (2008).
[CrossRef]

2007 (1)

M. Wuttig and N. Yamada, "Phase-change materials for rewritable data storage," Nat. Mater. 6, 824-832 (2007).
[CrossRef]

2004 (1)

A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, and T. Uruga, "Understanding the phasechange mechanism of rewritable optical medium," Nat. Mater. 3, 703 (2004).
[CrossRef]

2002 (1)

T. Akiyama, N. Georgiev, T. Mozume, H. Yoshida, A. V. Gopal, and O. Wada, "1.55 um picosecond all-optical switching by using absorption in InGaAs-AlAs-AlAsSb coupled quantum wells," IEEE Photon. Technol. Lett. 14,495-497 (2002).
[CrossRef]

2001 (1)

S. Nakamura, Y. Ueno, and K. Tajima, "Femtosecond switching with semiconductor-optical-amplifier-based Symmetric Mach-Zehnder-type all-optical switch," Appl. Phys. Lett. 78, 3929-3931 (2001).
[CrossRef]

1997 (1)

1986 (1)

M. Chen, K. A. Rubin, R. W. Barton, "Compound materials for reversible, phase-change optical data storage," Appl. Phys. Lett. 49, 502 (1986).
[CrossRef]

1982 (1)

Akiyama, T.

T. Akiyama, N. Georgiev, T. Mozume, H. Yoshida, A. V. Gopal, and O. Wada, "1.55 um picosecond all-optical switching by using absorption in InGaAs-AlAs-AlAsSb coupled quantum wells," IEEE Photon. Technol. Lett. 14,495-497 (2002).
[CrossRef]

Ankudinov, A. L.

A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, and T. Uruga, "Understanding the phasechange mechanism of rewritable optical medium," Nat. Mater. 3, 703 (2004).
[CrossRef]

Baek, T. S.

B. J. Choi, S. H. Oh, S. Choi, T. Eom, Y. C. Shin, K. M. Kim, K.-W. Yi, C. S. Hwang, Y. J. Kim, H. C. Park, T. S. Baek, and S. K. Hong, "Switching power reduction in phase change memory cell using CVD Ge2Sb2Te5 and ultrathin TiO2 films," J. Electrochem. Soc. 156(1), H59-H63 (2009).
[CrossRef]

Barton, R. W.

M. Chen, K. A. Rubin, R. W. Barton, "Compound materials for reversible, phase-change optical data storage," Appl. Phys. Lett. 49, 502 (1986).
[CrossRef]

Chen, M.

M. Chen, K. A. Rubin, R. W. Barton, "Compound materials for reversible, phase-change optical data storage," Appl. Phys. Lett. 49, 502 (1986).
[CrossRef]

Choi, B. J.

B. J. Choi, S. H. Oh, S. Choi, T. Eom, Y. C. Shin, K. M. Kim, K.-W. Yi, C. S. Hwang, Y. J. Kim, H. C. Park, T. S. Baek, and S. K. Hong, "Switching power reduction in phase change memory cell using CVD Ge2Sb2Te5 and ultrathin TiO2 films," J. Electrochem. Soc. 156(1), H59-H63 (2009).
[CrossRef]

Choi, S.

B. J. Choi, S. H. Oh, S. Choi, T. Eom, Y. C. Shin, K. M. Kim, K.-W. Yi, C. S. Hwang, Y. J. Kim, H. C. Park, T. S. Baek, and S. K. Hong, "Switching power reduction in phase change memory cell using CVD Ge2Sb2Te5 and ultrathin TiO2 films," J. Electrochem. Soc. 156(1), H59-H63 (2009).
[CrossRef]

Eom, T.

B. J. Choi, S. H. Oh, S. Choi, T. Eom, Y. C. Shin, K. M. Kim, K.-W. Yi, C. S. Hwang, Y. J. Kim, H. C. Park, T. S. Baek, and S. K. Hong, "Switching power reduction in phase change memory cell using CVD Ge2Sb2Te5 and ultrathin TiO2 films," J. Electrochem. Soc. 156(1), H59-H63 (2009).
[CrossRef]

Fons, P.

A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, and T. Uruga, "Understanding the phasechange mechanism of rewritable optical medium," Nat. Mater. 3, 703 (2004).
[CrossRef]

Frenkel, A. I.

A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, and T. Uruga, "Understanding the phasechange mechanism of rewritable optical medium," Nat. Mater. 3, 703 (2004).
[CrossRef]

Gaylord, T. K.

Georgiev, N.

T. Akiyama, N. Georgiev, T. Mozume, H. Yoshida, A. V. Gopal, and O. Wada, "1.55 um picosecond all-optical switching by using absorption in InGaAs-AlAs-AlAsSb coupled quantum wells," IEEE Photon. Technol. Lett. 14,495-497 (2002).
[CrossRef]

Gopal, A. V.

T. Akiyama, N. Georgiev, T. Mozume, H. Yoshida, A. V. Gopal, and O. Wada, "1.55 um picosecond all-optical switching by using absorption in InGaAs-AlAs-AlAsSb coupled quantum wells," IEEE Photon. Technol. Lett. 14,495-497 (2002).
[CrossRef]

Hong, S. K.

B. J. Choi, S. H. Oh, S. Choi, T. Eom, Y. C. Shin, K. M. Kim, K.-W. Yi, C. S. Hwang, Y. J. Kim, H. C. Park, T. S. Baek, and S. K. Hong, "Switching power reduction in phase change memory cell using CVD Ge2Sb2Te5 and ultrathin TiO2 films," J. Electrochem. Soc. 156(1), H59-H63 (2009).
[CrossRef]

Hwang, C. S.

B. J. Choi, S. H. Oh, S. Choi, T. Eom, Y. C. Shin, K. M. Kim, K.-W. Yi, C. S. Hwang, Y. J. Kim, H. C. Park, T. S. Baek, and S. K. Hong, "Switching power reduction in phase change memory cell using CVD Ge2Sb2Te5 and ultrathin TiO2 films," J. Electrochem. Soc. 156(1), H59-H63 (2009).
[CrossRef]

Kim, K. M.

B. J. Choi, S. H. Oh, S. Choi, T. Eom, Y. C. Shin, K. M. Kim, K.-W. Yi, C. S. Hwang, Y. J. Kim, H. C. Park, T. S. Baek, and S. K. Hong, "Switching power reduction in phase change memory cell using CVD Ge2Sb2Te5 and ultrathin TiO2 films," J. Electrochem. Soc. 156(1), H59-H63 (2009).
[CrossRef]

Kim, Y. J.

B. J. Choi, S. H. Oh, S. Choi, T. Eom, Y. C. Shin, K. M. Kim, K.-W. Yi, C. S. Hwang, Y. J. Kim, H. C. Park, T. S. Baek, and S. K. Hong, "Switching power reduction in phase change memory cell using CVD Ge2Sb2Te5 and ultrathin TiO2 films," J. Electrochem. Soc. 156(1), H59-H63 (2009).
[CrossRef]

Kolobov, A. V.

A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, and T. Uruga, "Understanding the phasechange mechanism of rewritable optical medium," Nat. Mater. 3, 703 (2004).
[CrossRef]

Kremers, S.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, "Resonant bonding in crystalline phase-change materials," Nat. Mater. 7, 653-658 (2008).
[CrossRef]

Lencer, D.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, "Resonant bonding in crystalline phase-change materials," Nat. Mater. 7, 653-658 (2008).
[CrossRef]

Li, L.

Moharam, M. G.

Mozume, T.

T. Akiyama, N. Georgiev, T. Mozume, H. Yoshida, A. V. Gopal, and O. Wada, "1.55 um picosecond all-optical switching by using absorption in InGaAs-AlAs-AlAsSb coupled quantum wells," IEEE Photon. Technol. Lett. 14,495-497 (2002).
[CrossRef]

Nakamura, S.

S. Nakamura, Y. Ueno, and K. Tajima, "Femtosecond switching with semiconductor-optical-amplifier-based Symmetric Mach-Zehnder-type all-optical switch," Appl. Phys. Lett. 78, 3929-3931 (2001).
[CrossRef]

Oh, S. H.

B. J. Choi, S. H. Oh, S. Choi, T. Eom, Y. C. Shin, K. M. Kim, K.-W. Yi, C. S. Hwang, Y. J. Kim, H. C. Park, T. S. Baek, and S. K. Hong, "Switching power reduction in phase change memory cell using CVD Ge2Sb2Te5 and ultrathin TiO2 films," J. Electrochem. Soc. 156(1), H59-H63 (2009).
[CrossRef]

Park, H. C.

B. J. Choi, S. H. Oh, S. Choi, T. Eom, Y. C. Shin, K. M. Kim, K.-W. Yi, C. S. Hwang, Y. J. Kim, H. C. Park, T. S. Baek, and S. K. Hong, "Switching power reduction in phase change memory cell using CVD Ge2Sb2Te5 and ultrathin TiO2 films," J. Electrochem. Soc. 156(1), H59-H63 (2009).
[CrossRef]

Robertson, J.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, "Resonant bonding in crystalline phase-change materials," Nat. Mater. 7, 653-658 (2008).
[CrossRef]

Rubin, K. A.

M. Chen, K. A. Rubin, R. W. Barton, "Compound materials for reversible, phase-change optical data storage," Appl. Phys. Lett. 49, 502 (1986).
[CrossRef]

Shin, Y. C.

B. J. Choi, S. H. Oh, S. Choi, T. Eom, Y. C. Shin, K. M. Kim, K.-W. Yi, C. S. Hwang, Y. J. Kim, H. C. Park, T. S. Baek, and S. K. Hong, "Switching power reduction in phase change memory cell using CVD Ge2Sb2Te5 and ultrathin TiO2 films," J. Electrochem. Soc. 156(1), H59-H63 (2009).
[CrossRef]

Shportko, K.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, "Resonant bonding in crystalline phase-change materials," Nat. Mater. 7, 653-658 (2008).
[CrossRef]

Tajima, K.

S. Nakamura, Y. Ueno, and K. Tajima, "Femtosecond switching with semiconductor-optical-amplifier-based Symmetric Mach-Zehnder-type all-optical switch," Appl. Phys. Lett. 78, 3929-3931 (2001).
[CrossRef]

Tominaga, J.

A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, and T. Uruga, "Understanding the phasechange mechanism of rewritable optical medium," Nat. Mater. 3, 703 (2004).
[CrossRef]

Ueno, Y.

S. Nakamura, Y. Ueno, and K. Tajima, "Femtosecond switching with semiconductor-optical-amplifier-based Symmetric Mach-Zehnder-type all-optical switch," Appl. Phys. Lett. 78, 3929-3931 (2001).
[CrossRef]

Uruga, T.

A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, and T. Uruga, "Understanding the phasechange mechanism of rewritable optical medium," Nat. Mater. 3, 703 (2004).
[CrossRef]

Wada, O.

T. Akiyama, N. Georgiev, T. Mozume, H. Yoshida, A. V. Gopal, and O. Wada, "1.55 um picosecond all-optical switching by using absorption in InGaAs-AlAs-AlAsSb coupled quantum wells," IEEE Photon. Technol. Lett. 14,495-497 (2002).
[CrossRef]

Woda, M.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, "Resonant bonding in crystalline phase-change materials," Nat. Mater. 7, 653-658 (2008).
[CrossRef]

Wuttig, M.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, "Resonant bonding in crystalline phase-change materials," Nat. Mater. 7, 653-658 (2008).
[CrossRef]

M. Wuttig and N. Yamada, "Phase-change materials for rewritable data storage," Nat. Mater. 6, 824-832 (2007).
[CrossRef]

Yamada, N.

M. Wuttig and N. Yamada, "Phase-change materials for rewritable data storage," Nat. Mater. 6, 824-832 (2007).
[CrossRef]

Yi, K.-W.

B. J. Choi, S. H. Oh, S. Choi, T. Eom, Y. C. Shin, K. M. Kim, K.-W. Yi, C. S. Hwang, Y. J. Kim, H. C. Park, T. S. Baek, and S. K. Hong, "Switching power reduction in phase change memory cell using CVD Ge2Sb2Te5 and ultrathin TiO2 films," J. Electrochem. Soc. 156(1), H59-H63 (2009).
[CrossRef]

Yoshida, H.

T. Akiyama, N. Georgiev, T. Mozume, H. Yoshida, A. V. Gopal, and O. Wada, "1.55 um picosecond all-optical switching by using absorption in InGaAs-AlAs-AlAsSb coupled quantum wells," IEEE Photon. Technol. Lett. 14,495-497 (2002).
[CrossRef]

Appl. Phys. Lett. (2)

M. Chen, K. A. Rubin, R. W. Barton, "Compound materials for reversible, phase-change optical data storage," Appl. Phys. Lett. 49, 502 (1986).
[CrossRef]

S. Nakamura, Y. Ueno, and K. Tajima, "Femtosecond switching with semiconductor-optical-amplifier-based Symmetric Mach-Zehnder-type all-optical switch," Appl. Phys. Lett. 78, 3929-3931 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

T. Akiyama, N. Georgiev, T. Mozume, H. Yoshida, A. V. Gopal, and O. Wada, "1.55 um picosecond all-optical switching by using absorption in InGaAs-AlAs-AlAsSb coupled quantum wells," IEEE Photon. Technol. Lett. 14,495-497 (2002).
[CrossRef]

J. Electrochem. Soc. (1)

B. J. Choi, S. H. Oh, S. Choi, T. Eom, Y. C. Shin, K. M. Kim, K.-W. Yi, C. S. Hwang, Y. J. Kim, H. C. Park, T. S. Baek, and S. K. Hong, "Switching power reduction in phase change memory cell using CVD Ge2Sb2Te5 and ultrathin TiO2 films," J. Electrochem. Soc. 156(1), H59-H63 (2009).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Nat. Mater. (3)

A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, and T. Uruga, "Understanding the phasechange mechanism of rewritable optical medium," Nat. Mater. 3, 703 (2004).
[CrossRef]

M. Wuttig and N. Yamada, "Phase-change materials for rewritable data storage," Nat. Mater. 6, 824-832 (2007).
[CrossRef]

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, "Resonant bonding in crystalline phase-change materials," Nat. Mater. 7, 653-658 (2008).
[CrossRef]

Other (4)

A. Taflove and S. Hagness, Computational Electrodynamics: The Finite Difference Time DomainMethod. Boston (Artech House, Norwood, MA, 2nd edition, 2000).

D. Strand, D. V. Tsu, R. Miller, M. Hennessey and D. Jablonski, "Optical routers based on Ovonic phase change materials," E/PCOS2006 (European Phase Change and Ovonics Symposium), Grenoble, May 29-31, 2006, http://www.epcos.org/library/papers/pdf 2006/pdf contributed/Strand.pdf.

H. Tsuda, "Proposal of an optical switch using phase-change material for future photonic network nodes," PCOS2007 (The 19th Symposium on Phase Change Optical Information Storage), pp. 39-42, Atami, Nov. 29-30, 2007.

H. Horii, J. H. Yi, J. H. Park, Y. H. Ha, I. G. Baek, S. O. Park, Y. N. Hwang, S. H. Lee, Y. T. Kim, K. H. Lee, U-In Chung, and J. T. Moon, "A novel cell technology using N-doped GeSbTe films for phase change RAM," Proceedings of International Symposium on VLSI Technology, pp.177-178, Kyoto, June 10-12, 2003.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

The measured refractive index of Ge2Sb2Te5 PCMin the amorphous and crystalline states.

Fig. 2.
Fig. 2.

The schematic structure of a PCM grating device. The grating is implemented at the interface between two media with refractive indices n 1 and n 2. The light is incident from medium n 1.

Fig. 3.
Fig. 3.

Contour maps showing the diffraction efficiency of s-polarized light as a function of light incidence angle and grating period, simulated for an amorphous GST grating of 50 nm thick. The grating is sandwiched between SiO2 and air. Other diffraction orders vanish unless d becomes larger.

Fig. 4.
Fig. 4.

Contour maps showing the diffraction efficiency of s-polarized light as a function of light incidence angle and grating period for a crystalline GST grating. Other parameters are the same as those in Fig. 3.

Fig. 5.
Fig. 5.

The summarization of the existence conditions of the diffraction orders. The white area is the preferable working window.

Fig. 6.
Fig. 6.

The maximum efficiency of the m=-1 diffraction as a function of grating thickness, estimated for three grating periods, 550 nm, 600 nm and 700 nm or both amorphous and crystalline GSTs. The filling ratio of grating or the ratio of GST to air is fixed at 0.5.

Fig. 7.
Fig. 7.

The maximum efficiency of the m=-1 diffraction as a function of the GST filling ratio. The grating thickness is fixed at 50 nm.

Fig. 8.
Fig. 8.

Simulated diffraction efficiencies for s-polarized light by the GST grating at various diffraction orders. Note that m=0 means the specular reflection. All diffraction orders other than m=0 and -1 are computed to be zero, so not plotted in the figure. It is assumed that the GST is amorphous or crystalline, and that the grating is optimized to a structure 50 nm thick with a period of 600 nm and a filling ratio of 0.5.

Fig. 9.
Fig. 9.

FDTD simulations of the s-polarized light propagation for an incidence angle of 62.2°. The GST grating plane is indicated by the horizontal line at y=6 µm, above which is SiO2 (n=1.46).

Fig. 10.
Fig. 10.

The maximum efficiency of the m=-1 diffraction as a function of the optical wavelength for the light incident at an angle of 65°. The device parameters are the same as those in Fig. 8.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

sinθ1,m=sinθi+mλn1d,m=0,±1,±2, ,
sinθ2,m=n1n2 sinθi+m λn2d , m=0,±,1±2, ,

Metrics