Abstract

We demonstrate that large mode area (LMA) photonic crystal fibers (PCFs) can be used as single-mode patch-cords for 250 nm laser light. We have studied the transmission of the 250 nm output beam of a frequency-quadrupled diode laser through a triangular structure LMA PCF with 10 μm core. We have achieved single-mode output with coupling loss of 1.8 ± 0.6 dB and transmission loss of 1.5 ± 0.2 dB/m. The critical bend loss radius is approximately 6 cm. The transmission loss is compared with published bulk silica measurements. Effects of optically induced damage were observed after prolonged operation and have been studied as function of laser power and time. The optical damage occurs primarily at the fiber input and can be partly ameliorated by cleaving the fiber input. For input power levels of <~0.3 mW stable operation can be achieved for periods of >40 hours which is sufficient for many laboratory based applications. The results show the utility of these fibers for single-mode beam delivery in a spectral region where step-index single-mode fibers are not readily available.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Bartula, J. W. Walewski, and S. T. Sanders, “Generation of ultraviolet broadband light in a single-mode fiber,” Appl. Phys. B 84(3), 395–400 (2006).
    [CrossRef]
  2. M. E. Fermann, “Single-mode excitation of multimode fibers with ultrashort pulses,” Opt. Lett. 23(1), 52–54 (1998).
    [CrossRef]
  3. J. P. Koplow, D. A. V. Kliner, and L. Goldberg, “Single-mode operation of a coiled multimode fiber amplifier,” Opt. Lett. 25(7), 442–444 (2000).
    [CrossRef]
  4. K.-C. Hou, “High-Peak-Power Fiber-Laser Technology for Laser-Produced-Plasma Extreme Ultraviolet Lithography,” PhD, U Michigan (2008).
  5. A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibers (Kluwer Academic Publishers, Springer 2003), Chap. 5.
  6. N. Yamamoto, A.P.Yalin, L. Tao, T.B. Smith, A.D. Gallimore and Y. Arakawa “Development of Real-time Boron Nitride Erosion Monitoring System for Hall Thrusters by Cavity Ring-Down Spectroscopy,” Transactions Of The Japan Society For Aeronautical And Space Sciences, Space Technology Japan, 7 (ists26), Pb_1-Pb_6 (2009)
  7. D. P. Greenwood, T. H. Jeys, B. Johnson, J. M. Richardson, and M. P. Shatz, “Optical Techniques for Detecting and Identifying Biological-Warfare Agents,” Proc. IEEE 97(6), 971–989 (2009).
    [CrossRef]
  8. J. P. Booth, G. Cunge, L. Biennier, et al., “Ultraviolet cavity ring-down spectroscopy of free radicals in etching plasmas,” Chem. Phys. Lett. 317(6), 631–636 (2000).
    [CrossRef]
  9. T. Aizawa and H. Kosaka, “Investigation of early soot formation process in a diesel spray flame via excitation-emission matrix using a multi-wavelength laser source,” Int. J. Eng. Res. 9(1), 79–97 (2008).
    [CrossRef]
  10. T. Lee, W. G. Bessler, J. Yoo, C. Schulz, J. B. Jeffries, and R. K. Hanson, “Fluorescence quantum yield of carbon dioxide for quantitative UV laser-induced fluorescence in high-pressure flames,” Appl. Phys. B: Lasers Opt. 93, 677–685(2008)
  11. Crystal Fiber, http://www.crystal-fibre.com/datasheets/LMA-10-UV.pdf Accessed on Jan. 30, 2009.
  12. N. A. Mortensen and J. R. Folkenberg, “Near-field to far-field transition of photonic crystal fibers: symmetries and interference phenomena,” Opt. Express 10, 475–481 (2002).
    [PubMed]
  13. J. A. Buck, Fundamentals of Optical Fibers, (Wiley Series in Pure and Applied Optics, Wiley, 2004), 109–112.
  14. R. Kitamura, L. Pilon, and M. Jonasz, “Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature,” Appl. Opt. 46(33), 8118–8133 (2007).
    [CrossRef] [PubMed]
  15. W. P. Leung, M. Kulkarni, D. Krajnovich, and A. C. Tam, “Effect of intense and prolonged 248 nm pulsed-laser irradiation on the properties of ultraviolet-grade fused silica,” Appl. Phys. Lett. 58(6), 551–553 (1991).
    [CrossRef]
  16. K. Richard Schenker, P. Schermerhorn and W. G. Oldham, “Deep-ultraviolet damage to fused silica,” J. Vac. Sci. Technol. B 12, 3275–3279 (1994).
  17. G. Hillrichs, M. Dressel, H. Hack, R. Kunstmann, and W. Neu, “Transmission of XeCl Excimer Laser Pulses Through Optical Fibers: Dependence on Fiber and Laser Parameters,” Appl. Phys. B 54(3), 208–215 (1992).
    [CrossRef]
  18. M. Rothschild, D. J. Ehrlich, and D. C. Shaver, “Effects of excimer laser irradiation on the transmission, index of refraction, and density of ultraviolet grade fused silica,” Appl. Phys. Lett. 55(13), 1276–1278 (1989).
    [CrossRef]
  19. R. S. Taylor, K. E. Leopold, R. K. Brimacombe, and S. Mihailov, “Dependence of the damage and transmission properties of fused silica fibers on the excimer laser wavelength,” Appl. Opt. 27(15), 3124–3134 (1988).
    [CrossRef] [PubMed]
  20. j-Ultrasol fiber: http://www.j-fiber.com/index.php/8ed80fde5a4457444ca1651635e512b6/2/1/download/1326

2009

D. P. Greenwood, T. H. Jeys, B. Johnson, J. M. Richardson, and M. P. Shatz, “Optical Techniques for Detecting and Identifying Biological-Warfare Agents,” Proc. IEEE 97(6), 971–989 (2009).
[CrossRef]

2008

T. Aizawa and H. Kosaka, “Investigation of early soot formation process in a diesel spray flame via excitation-emission matrix using a multi-wavelength laser source,” Int. J. Eng. Res. 9(1), 79–97 (2008).
[CrossRef]

2007

2006

R. J. Bartula, J. W. Walewski, and S. T. Sanders, “Generation of ultraviolet broadband light in a single-mode fiber,” Appl. Phys. B 84(3), 395–400 (2006).
[CrossRef]

2002

2000

J. P. Booth, G. Cunge, L. Biennier, et al., “Ultraviolet cavity ring-down spectroscopy of free radicals in etching plasmas,” Chem. Phys. Lett. 317(6), 631–636 (2000).
[CrossRef]

J. P. Koplow, D. A. V. Kliner, and L. Goldberg, “Single-mode operation of a coiled multimode fiber amplifier,” Opt. Lett. 25(7), 442–444 (2000).
[CrossRef]

1998

1994

K. Richard Schenker, P. Schermerhorn and W. G. Oldham, “Deep-ultraviolet damage to fused silica,” J. Vac. Sci. Technol. B 12, 3275–3279 (1994).

1992

G. Hillrichs, M. Dressel, H. Hack, R. Kunstmann, and W. Neu, “Transmission of XeCl Excimer Laser Pulses Through Optical Fibers: Dependence on Fiber and Laser Parameters,” Appl. Phys. B 54(3), 208–215 (1992).
[CrossRef]

1991

W. P. Leung, M. Kulkarni, D. Krajnovich, and A. C. Tam, “Effect of intense and prolonged 248 nm pulsed-laser irradiation on the properties of ultraviolet-grade fused silica,” Appl. Phys. Lett. 58(6), 551–553 (1991).
[CrossRef]

1989

M. Rothschild, D. J. Ehrlich, and D. C. Shaver, “Effects of excimer laser irradiation on the transmission, index of refraction, and density of ultraviolet grade fused silica,” Appl. Phys. Lett. 55(13), 1276–1278 (1989).
[CrossRef]

1988

Aizawa, T.

T. Aizawa and H. Kosaka, “Investigation of early soot formation process in a diesel spray flame via excitation-emission matrix using a multi-wavelength laser source,” Int. J. Eng. Res. 9(1), 79–97 (2008).
[CrossRef]

Bartula, R. J.

R. J. Bartula, J. W. Walewski, and S. T. Sanders, “Generation of ultraviolet broadband light in a single-mode fiber,” Appl. Phys. B 84(3), 395–400 (2006).
[CrossRef]

Biennier, L.

J. P. Booth, G. Cunge, L. Biennier, et al., “Ultraviolet cavity ring-down spectroscopy of free radicals in etching plasmas,” Chem. Phys. Lett. 317(6), 631–636 (2000).
[CrossRef]

Booth, J. P.

J. P. Booth, G. Cunge, L. Biennier, et al., “Ultraviolet cavity ring-down spectroscopy of free radicals in etching plasmas,” Chem. Phys. Lett. 317(6), 631–636 (2000).
[CrossRef]

Brimacombe, R. K.

Cunge, G.

J. P. Booth, G. Cunge, L. Biennier, et al., “Ultraviolet cavity ring-down spectroscopy of free radicals in etching plasmas,” Chem. Phys. Lett. 317(6), 631–636 (2000).
[CrossRef]

Dressel, M.

G. Hillrichs, M. Dressel, H. Hack, R. Kunstmann, and W. Neu, “Transmission of XeCl Excimer Laser Pulses Through Optical Fibers: Dependence on Fiber and Laser Parameters,” Appl. Phys. B 54(3), 208–215 (1992).
[CrossRef]

Ehrlich, D. J.

M. Rothschild, D. J. Ehrlich, and D. C. Shaver, “Effects of excimer laser irradiation on the transmission, index of refraction, and density of ultraviolet grade fused silica,” Appl. Phys. Lett. 55(13), 1276–1278 (1989).
[CrossRef]

Fermann, M. E.

Folkenberg, J. R.

Goldberg, L.

Greenwood, D. P.

D. P. Greenwood, T. H. Jeys, B. Johnson, J. M. Richardson, and M. P. Shatz, “Optical Techniques for Detecting and Identifying Biological-Warfare Agents,” Proc. IEEE 97(6), 971–989 (2009).
[CrossRef]

Hack, H.

G. Hillrichs, M. Dressel, H. Hack, R. Kunstmann, and W. Neu, “Transmission of XeCl Excimer Laser Pulses Through Optical Fibers: Dependence on Fiber and Laser Parameters,” Appl. Phys. B 54(3), 208–215 (1992).
[CrossRef]

Hillrichs, G.

G. Hillrichs, M. Dressel, H. Hack, R. Kunstmann, and W. Neu, “Transmission of XeCl Excimer Laser Pulses Through Optical Fibers: Dependence on Fiber and Laser Parameters,” Appl. Phys. B 54(3), 208–215 (1992).
[CrossRef]

Jeys, T. H.

D. P. Greenwood, T. H. Jeys, B. Johnson, J. M. Richardson, and M. P. Shatz, “Optical Techniques for Detecting and Identifying Biological-Warfare Agents,” Proc. IEEE 97(6), 971–989 (2009).
[CrossRef]

Johnson, B.

D. P. Greenwood, T. H. Jeys, B. Johnson, J. M. Richardson, and M. P. Shatz, “Optical Techniques for Detecting and Identifying Biological-Warfare Agents,” Proc. IEEE 97(6), 971–989 (2009).
[CrossRef]

Jonasz, M.

Kitamura, R.

Kliner, D. A. V.

Koplow, J. P.

Kosaka, H.

T. Aizawa and H. Kosaka, “Investigation of early soot formation process in a diesel spray flame via excitation-emission matrix using a multi-wavelength laser source,” Int. J. Eng. Res. 9(1), 79–97 (2008).
[CrossRef]

Krajnovich, D.

W. P. Leung, M. Kulkarni, D. Krajnovich, and A. C. Tam, “Effect of intense and prolonged 248 nm pulsed-laser irradiation on the properties of ultraviolet-grade fused silica,” Appl. Phys. Lett. 58(6), 551–553 (1991).
[CrossRef]

Kulkarni, M.

W. P. Leung, M. Kulkarni, D. Krajnovich, and A. C. Tam, “Effect of intense and prolonged 248 nm pulsed-laser irradiation on the properties of ultraviolet-grade fused silica,” Appl. Phys. Lett. 58(6), 551–553 (1991).
[CrossRef]

Kunstmann, R.

G. Hillrichs, M. Dressel, H. Hack, R. Kunstmann, and W. Neu, “Transmission of XeCl Excimer Laser Pulses Through Optical Fibers: Dependence on Fiber and Laser Parameters,” Appl. Phys. B 54(3), 208–215 (1992).
[CrossRef]

Leopold, K. E.

Leung, W. P.

W. P. Leung, M. Kulkarni, D. Krajnovich, and A. C. Tam, “Effect of intense and prolonged 248 nm pulsed-laser irradiation on the properties of ultraviolet-grade fused silica,” Appl. Phys. Lett. 58(6), 551–553 (1991).
[CrossRef]

Mihailov, S.

Mortensen, N. A.

Neu, W.

G. Hillrichs, M. Dressel, H. Hack, R. Kunstmann, and W. Neu, “Transmission of XeCl Excimer Laser Pulses Through Optical Fibers: Dependence on Fiber and Laser Parameters,” Appl. Phys. B 54(3), 208–215 (1992).
[CrossRef]

Pilon, L.

Richard Schenker, K.

K. Richard Schenker, P. Schermerhorn and W. G. Oldham, “Deep-ultraviolet damage to fused silica,” J. Vac. Sci. Technol. B 12, 3275–3279 (1994).

Richardson, J. M.

D. P. Greenwood, T. H. Jeys, B. Johnson, J. M. Richardson, and M. P. Shatz, “Optical Techniques for Detecting and Identifying Biological-Warfare Agents,” Proc. IEEE 97(6), 971–989 (2009).
[CrossRef]

Rothschild, M.

M. Rothschild, D. J. Ehrlich, and D. C. Shaver, “Effects of excimer laser irradiation on the transmission, index of refraction, and density of ultraviolet grade fused silica,” Appl. Phys. Lett. 55(13), 1276–1278 (1989).
[CrossRef]

Sanders, S. T.

R. J. Bartula, J. W. Walewski, and S. T. Sanders, “Generation of ultraviolet broadband light in a single-mode fiber,” Appl. Phys. B 84(3), 395–400 (2006).
[CrossRef]

Shatz, M. P.

D. P. Greenwood, T. H. Jeys, B. Johnson, J. M. Richardson, and M. P. Shatz, “Optical Techniques for Detecting and Identifying Biological-Warfare Agents,” Proc. IEEE 97(6), 971–989 (2009).
[CrossRef]

Shaver, D. C.

M. Rothschild, D. J. Ehrlich, and D. C. Shaver, “Effects of excimer laser irradiation on the transmission, index of refraction, and density of ultraviolet grade fused silica,” Appl. Phys. Lett. 55(13), 1276–1278 (1989).
[CrossRef]

Tam, A. C.

W. P. Leung, M. Kulkarni, D. Krajnovich, and A. C. Tam, “Effect of intense and prolonged 248 nm pulsed-laser irradiation on the properties of ultraviolet-grade fused silica,” Appl. Phys. Lett. 58(6), 551–553 (1991).
[CrossRef]

Taylor, R. S.

Walewski, J. W.

R. J. Bartula, J. W. Walewski, and S. T. Sanders, “Generation of ultraviolet broadband light in a single-mode fiber,” Appl. Phys. B 84(3), 395–400 (2006).
[CrossRef]

Appl. Opt.

Appl. Phys. B

G. Hillrichs, M. Dressel, H. Hack, R. Kunstmann, and W. Neu, “Transmission of XeCl Excimer Laser Pulses Through Optical Fibers: Dependence on Fiber and Laser Parameters,” Appl. Phys. B 54(3), 208–215 (1992).
[CrossRef]

R. J. Bartula, J. W. Walewski, and S. T. Sanders, “Generation of ultraviolet broadband light in a single-mode fiber,” Appl. Phys. B 84(3), 395–400 (2006).
[CrossRef]

Appl. Phys. Lett.

M. Rothschild, D. J. Ehrlich, and D. C. Shaver, “Effects of excimer laser irradiation on the transmission, index of refraction, and density of ultraviolet grade fused silica,” Appl. Phys. Lett. 55(13), 1276–1278 (1989).
[CrossRef]

W. P. Leung, M. Kulkarni, D. Krajnovich, and A. C. Tam, “Effect of intense and prolonged 248 nm pulsed-laser irradiation on the properties of ultraviolet-grade fused silica,” Appl. Phys. Lett. 58(6), 551–553 (1991).
[CrossRef]

Chem. Phys. Lett.

J. P. Booth, G. Cunge, L. Biennier, et al., “Ultraviolet cavity ring-down spectroscopy of free radicals in etching plasmas,” Chem. Phys. Lett. 317(6), 631–636 (2000).
[CrossRef]

Int. J. Eng. Res.

T. Aizawa and H. Kosaka, “Investigation of early soot formation process in a diesel spray flame via excitation-emission matrix using a multi-wavelength laser source,” Int. J. Eng. Res. 9(1), 79–97 (2008).
[CrossRef]

J. Vac. Sci. Technol. B

K. Richard Schenker, P. Schermerhorn and W. G. Oldham, “Deep-ultraviolet damage to fused silica,” J. Vac. Sci. Technol. B 12, 3275–3279 (1994).

Opt. Express

Opt. Lett.

Proc. IEEE

D. P. Greenwood, T. H. Jeys, B. Johnson, J. M. Richardson, and M. P. Shatz, “Optical Techniques for Detecting and Identifying Biological-Warfare Agents,” Proc. IEEE 97(6), 971–989 (2009).
[CrossRef]

Other

K.-C. Hou, “High-Peak-Power Fiber-Laser Technology for Laser-Produced-Plasma Extreme Ultraviolet Lithography,” PhD, U Michigan (2008).

A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibers (Kluwer Academic Publishers, Springer 2003), Chap. 5.

N. Yamamoto, A.P.Yalin, L. Tao, T.B. Smith, A.D. Gallimore and Y. Arakawa “Development of Real-time Boron Nitride Erosion Monitoring System for Hall Thrusters by Cavity Ring-Down Spectroscopy,” Transactions Of The Japan Society For Aeronautical And Space Sciences, Space Technology Japan, 7 (ists26), Pb_1-Pb_6 (2009)

T. Lee, W. G. Bessler, J. Yoo, C. Schulz, J. B. Jeffries, and R. K. Hanson, “Fluorescence quantum yield of carbon dioxide for quantitative UV laser-induced fluorescence in high-pressure flames,” Appl. Phys. B: Lasers Opt. 93, 677–685(2008)

Crystal Fiber, http://www.crystal-fibre.com/datasheets/LMA-10-UV.pdf Accessed on Jan. 30, 2009.

J. A. Buck, Fundamentals of Optical Fibers, (Wiley Series in Pure and Applied Optics, Wiley, 2004), 109–112.

j-Ultrasol fiber: http://www.j-fiber.com/index.php/8ed80fde5a4457444ca1651635e512b6/2/1/download/1326

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of fiber launch

Fig. 2
Fig. 2

Photograph of single mode fiber output. The image is saturated in the center region.

Fig. 3
Fig. 3

Beam dimension versus position for M2 determination.

Fig. 4
Fig. 4

Loss measurements: Plot of fiber transmission versus fiber length.

Fig. 5
Fig. 5

Bend loss measurements: Plot of bend loss versus radius of curvature.

Fig. 6
Fig. 6

Left: Photograph showing red emission near fiber tip. Right: Photograph showing red emission over length of fiber. The jacket of the fiber has been removed at the fiber end.

Fig. 7
Fig. 7

Power dependence of optical damage.

Fig. 8
Fig. 8

Effect of cleaving fiber input tip on optical damage.

Metrics