Abstract

We present experimental demonstrations of in-building impulse radio (IR) ultra-wideband (UWB) link consisting of 100 m multi mode fiber (MMF) and 4 m wireless transmission at a record 4 Gbps, and a record 8 m wireless transmission at 2.5 Gbps. A directly modulated vertical cavity surface emitting laser (VCSEL) was used for the generation of the optical signal. 8 m at 2.5 Gbps corresponds to a bit rate - distance product of 20; the highest yet reported for wireless IR-UWB transmission.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Federal Communications Commission, "Revision of Part 15 of the Commission’s Rules regarding Ultra-Wideband Transmission Systems," (2002)
  2. M. Abtahi, M. Mirshafiei, J. Magne, S. LaRochelle, and L. A. Rusch, "All-Optical 500-Mb/s UWB Transceiver: An Experimental Demonstration," J. Lightwave Technol. 26, 2795-2802 (2008).
    [CrossRef]
  3. M. Hanawa, K. Mori, K. Nakamura, A. Matsui, Y. Kanda, and K. Nonaka, "Dispersion tolerant UWB-IR-over-Fiber transmission under FCC indoor spectrum mask," OFC/NFOEC2009, March 2009, California, USA, Paper: OTuJ3 (2008).
  4. C. Wang, F. Zeng, and J. P. Yao, "All-fiber ultrawideband pulse generation based on spectral shaping and dispersion-induced frequency-to-time conversion," IEEE Photon. Technol. Lett. 19, 137-139 (2007).
    [CrossRef]
  5. Q. Wang and J. Yao, "An electrically switchable optical ultrawideband pulse generator," J. Lightwave Technol. 25, 3626-3633 (2007).
    [CrossRef]
  6. Q. Wang, F. Zeng, S. Blais, and J. Yao, "Optical ultrawideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier," Opt. Lett. 31, 3083-3085 (2006).
    [CrossRef] [PubMed]
  7. H. Chen, M. Chen, C. Qiu, and S. Xie, "A novel composite method for ultra-wideband doublet pulses generation," IEEE Photon. Technol. Lett. 19, 2021-2023 (2007).
    [CrossRef]
  8. J. Li, S. Fu, K. Xu, J. Wu, J. Lin, M. Tang, and P. Shum, "Photonic ultrawideband monocycle pulse generation using a single electro-optic modulator," Opt. Lett. 33, 288-290 (2008).
    [CrossRef] [PubMed]
  9. W. P. Lin and J. Y. Chen, "Implementation of a new ultrawide-band impulse system," IEEE Photon. Technol. Lett. 17, 2418-2420 (2005).
    [CrossRef]
  10. M. Abtahi, J. Magne, M. Mirshafiei, L. A. Rusch, and S. LaRochelle, "Generation of power-efficient FCCcompliant UWB waveforms using FBGs: Analysis and experiment," J. Lightw. Technol. 26, 628-635 (2008).
    [CrossRef]
  11. Q. Wang and J. Yao, "UWB doublet generation using nonlinearly biased electro-optic intensity modulator," Electron. Lett. 42, 1304-1305 (2006).
    [CrossRef]
  12. T. Kawanishi, T. Sakamoto, and M. Izutsu, "Ultra-wide-band radio signal generation using optical frequencyshift-keying technique," IEEE Microw. Wireless Compon. Lett. 15, 153-155 (2005).
    [CrossRef]
  13. V. Torres-Company, K. Prince, and I. T. Monroy, "Fiber transmission and generation of ultrawideband pulses by direct current modulation of semiconductor lasers and chirp-to-intensity conversion," Opt. Lett. 33, 222-224 (2008).
    [CrossRef] [PubMed]
  14. T. B. Gibbon, X. Yu and I. T. Monroy, "Photonic ultra-wideband 781.25 Mbit/s signal generation and transmission incorporating digital signal processing detectio," IEEE Photon. Technol. Lett., accepted for publication (2009)
  15. H. Shams, A. Kaszubowska-Anandarajeh, P. Perry and L. P. Barry "Optical generation, fiber distribution and air transmission for Ultra Wide Band over fiber system," OFC/NFOEC2009 March 2009, California, USA, post deadline paper (2009).
  16. C. Lethien, C. Loyez, J-P. Vilcot and N. Rolland, "A multi-hop UWB radio over polymer fibre system for 60-GHz hybrid network," European workshop on photonic solutions for wireless, access, and in house networks, 35-36, May 2009, Duisburg, Germany (2009)
  17. M. Maria, J. Perez, M. Beltran, R. Llorente and J. Marti, "Integrated performance analysis of UWB wireless optical transmission in FTTH networks," 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society LEOS 2008, 87-88 (2008)

2009

T. B. Gibbon, X. Yu and I. T. Monroy, "Photonic ultra-wideband 781.25 Mbit/s signal generation and transmission incorporating digital signal processing detectio," IEEE Photon. Technol. Lett., accepted for publication (2009)

2008

2007

C. Wang, F. Zeng, and J. P. Yao, "All-fiber ultrawideband pulse generation based on spectral shaping and dispersion-induced frequency-to-time conversion," IEEE Photon. Technol. Lett. 19, 137-139 (2007).
[CrossRef]

Q. Wang and J. Yao, "An electrically switchable optical ultrawideband pulse generator," J. Lightwave Technol. 25, 3626-3633 (2007).
[CrossRef]

H. Chen, M. Chen, C. Qiu, and S. Xie, "A novel composite method for ultra-wideband doublet pulses generation," IEEE Photon. Technol. Lett. 19, 2021-2023 (2007).
[CrossRef]

2006

2005

T. Kawanishi, T. Sakamoto, and M. Izutsu, "Ultra-wide-band radio signal generation using optical frequencyshift-keying technique," IEEE Microw. Wireless Compon. Lett. 15, 153-155 (2005).
[CrossRef]

W. P. Lin and J. Y. Chen, "Implementation of a new ultrawide-band impulse system," IEEE Photon. Technol. Lett. 17, 2418-2420 (2005).
[CrossRef]

Abtahi, M.

M. Abtahi, M. Mirshafiei, J. Magne, S. LaRochelle, and L. A. Rusch, "All-Optical 500-Mb/s UWB Transceiver: An Experimental Demonstration," J. Lightwave Technol. 26, 2795-2802 (2008).
[CrossRef]

M. Abtahi, J. Magne, M. Mirshafiei, L. A. Rusch, and S. LaRochelle, "Generation of power-efficient FCCcompliant UWB waveforms using FBGs: Analysis and experiment," J. Lightw. Technol. 26, 628-635 (2008).
[CrossRef]

Blais, S.

Chen, H.

H. Chen, M. Chen, C. Qiu, and S. Xie, "A novel composite method for ultra-wideband doublet pulses generation," IEEE Photon. Technol. Lett. 19, 2021-2023 (2007).
[CrossRef]

Chen, J. Y.

W. P. Lin and J. Y. Chen, "Implementation of a new ultrawide-band impulse system," IEEE Photon. Technol. Lett. 17, 2418-2420 (2005).
[CrossRef]

Chen, M.

H. Chen, M. Chen, C. Qiu, and S. Xie, "A novel composite method for ultra-wideband doublet pulses generation," IEEE Photon. Technol. Lett. 19, 2021-2023 (2007).
[CrossRef]

Fu, S.

Gibbon, T. B.

T. B. Gibbon, X. Yu and I. T. Monroy, "Photonic ultra-wideband 781.25 Mbit/s signal generation and transmission incorporating digital signal processing detectio," IEEE Photon. Technol. Lett., accepted for publication (2009)

Izutsu, M.

T. Kawanishi, T. Sakamoto, and M. Izutsu, "Ultra-wide-band radio signal generation using optical frequencyshift-keying technique," IEEE Microw. Wireless Compon. Lett. 15, 153-155 (2005).
[CrossRef]

Kawanishi, T.

T. Kawanishi, T. Sakamoto, and M. Izutsu, "Ultra-wide-band radio signal generation using optical frequencyshift-keying technique," IEEE Microw. Wireless Compon. Lett. 15, 153-155 (2005).
[CrossRef]

Li, J.

Lin, J.

Lin, W. P.

W. P. Lin and J. Y. Chen, "Implementation of a new ultrawide-band impulse system," IEEE Photon. Technol. Lett. 17, 2418-2420 (2005).
[CrossRef]

Mirshafiei, M.

Monroy, I. T.

T. B. Gibbon, X. Yu and I. T. Monroy, "Photonic ultra-wideband 781.25 Mbit/s signal generation and transmission incorporating digital signal processing detectio," IEEE Photon. Technol. Lett., accepted for publication (2009)

V. Torres-Company, K. Prince, and I. T. Monroy, "Fiber transmission and generation of ultrawideband pulses by direct current modulation of semiconductor lasers and chirp-to-intensity conversion," Opt. Lett. 33, 222-224 (2008).
[CrossRef] [PubMed]

Prince, K.

Qiu, C.

H. Chen, M. Chen, C. Qiu, and S. Xie, "A novel composite method for ultra-wideband doublet pulses generation," IEEE Photon. Technol. Lett. 19, 2021-2023 (2007).
[CrossRef]

Sakamoto, T.

T. Kawanishi, T. Sakamoto, and M. Izutsu, "Ultra-wide-band radio signal generation using optical frequencyshift-keying technique," IEEE Microw. Wireless Compon. Lett. 15, 153-155 (2005).
[CrossRef]

Shum, P.

Tang, M.

Torres-Company, V.

Wang, C.

C. Wang, F. Zeng, and J. P. Yao, "All-fiber ultrawideband pulse generation based on spectral shaping and dispersion-induced frequency-to-time conversion," IEEE Photon. Technol. Lett. 19, 137-139 (2007).
[CrossRef]

Wang, Q.

Wu, J.

Xie, S.

H. Chen, M. Chen, C. Qiu, and S. Xie, "A novel composite method for ultra-wideband doublet pulses generation," IEEE Photon. Technol. Lett. 19, 2021-2023 (2007).
[CrossRef]

Xu, K.

Yao, J.

Yao, J. P.

C. Wang, F. Zeng, and J. P. Yao, "All-fiber ultrawideband pulse generation based on spectral shaping and dispersion-induced frequency-to-time conversion," IEEE Photon. Technol. Lett. 19, 137-139 (2007).
[CrossRef]

Yu, X.

T. B. Gibbon, X. Yu and I. T. Monroy, "Photonic ultra-wideband 781.25 Mbit/s signal generation and transmission incorporating digital signal processing detectio," IEEE Photon. Technol. Lett., accepted for publication (2009)

Zeng, F.

C. Wang, F. Zeng, and J. P. Yao, "All-fiber ultrawideband pulse generation based on spectral shaping and dispersion-induced frequency-to-time conversion," IEEE Photon. Technol. Lett. 19, 137-139 (2007).
[CrossRef]

Q. Wang, F. Zeng, S. Blais, and J. Yao, "Optical ultrawideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier," Opt. Lett. 31, 3083-3085 (2006).
[CrossRef] [PubMed]

Electron. Lett.

Q. Wang and J. Yao, "UWB doublet generation using nonlinearly biased electro-optic intensity modulator," Electron. Lett. 42, 1304-1305 (2006).
[CrossRef]

IEEE Microw. Wireless Compon. Lett.

T. Kawanishi, T. Sakamoto, and M. Izutsu, "Ultra-wide-band radio signal generation using optical frequencyshift-keying technique," IEEE Microw. Wireless Compon. Lett. 15, 153-155 (2005).
[CrossRef]

IEEE Photon. Technol. Lett.

T. B. Gibbon, X. Yu and I. T. Monroy, "Photonic ultra-wideband 781.25 Mbit/s signal generation and transmission incorporating digital signal processing detectio," IEEE Photon. Technol. Lett., accepted for publication (2009)

C. Wang, F. Zeng, and J. P. Yao, "All-fiber ultrawideband pulse generation based on spectral shaping and dispersion-induced frequency-to-time conversion," IEEE Photon. Technol. Lett. 19, 137-139 (2007).
[CrossRef]

H. Chen, M. Chen, C. Qiu, and S. Xie, "A novel composite method for ultra-wideband doublet pulses generation," IEEE Photon. Technol. Lett. 19, 2021-2023 (2007).
[CrossRef]

W. P. Lin and J. Y. Chen, "Implementation of a new ultrawide-band impulse system," IEEE Photon. Technol. Lett. 17, 2418-2420 (2005).
[CrossRef]

J. Lightw. Technol.

M. Abtahi, J. Magne, M. Mirshafiei, L. A. Rusch, and S. LaRochelle, "Generation of power-efficient FCCcompliant UWB waveforms using FBGs: Analysis and experiment," J. Lightw. Technol. 26, 628-635 (2008).
[CrossRef]

J. Lightwave Technol.

Opt. Lett.

Other

Federal Communications Commission, "Revision of Part 15 of the Commission’s Rules regarding Ultra-Wideband Transmission Systems," (2002)

H. Shams, A. Kaszubowska-Anandarajeh, P. Perry and L. P. Barry "Optical generation, fiber distribution and air transmission for Ultra Wide Band over fiber system," OFC/NFOEC2009 March 2009, California, USA, post deadline paper (2009).

C. Lethien, C. Loyez, J-P. Vilcot and N. Rolland, "A multi-hop UWB radio over polymer fibre system for 60-GHz hybrid network," European workshop on photonic solutions for wireless, access, and in house networks, 35-36, May 2009, Duisburg, Germany (2009)

M. Maria, J. Perez, M. Beltran, R. Llorente and J. Marti, "Integrated performance analysis of UWB wireless optical transmission in FTTH networks," 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society LEOS 2008, 87-88 (2008)

M. Hanawa, K. Mori, K. Nakamura, A. Matsui, Y. Kanda, and K. Nonaka, "Dispersion tolerant UWB-IR-over-Fiber transmission under FCC indoor spectrum mask," OFC/NFOEC2009, March 2009, California, USA, Paper: OTuJ3 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of the setup used in the experiment. AWG denotes the arbitrary waveform generator, VCSEL the vertical cavity surface emitting laser, MMF the multi mode fiber, PD the photo diode and DSP digital signal processing in the receiver.

Fig. 2.
Fig. 2.

Measured electrical spectral densities at the antenna input, together with the FCC mask and the effective mask.

Fig. 3.
Fig. 3.

Eye diagrams of the purely electrical signal measured after 4 m wireless transmission and demodulation by correlation with the original 5th order Gaussian pulse.

Fig. 4.
Fig. 4.

Errors in 100,000 bits after demodulation. Forward error correction (FEC) limit is also shown.

Fig. 5.
Fig. 5.

Part of the received signal corresponding to the pattern ‘000101001100’ at bit rates 1, 2.5 and 4 Gbps measured after 4, 6 and 8 m wireless transmission

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

y(t)=A2π[t5σ11+10t3σ915tσ7]·et22σ2,

Metrics