Abstract

We conducted a numerical study on the excitation of a two-colored temporal soliton in a segmented quasi-phase-matching (QPM) structure. The device has three parts: a periodic QPM grating for second-harmonic generation, a single domain for phase shift, and a periodic QPM grating for soliton evolution. The second harmonic pulse generated in the first grating works as a seed in the cascaded up-and-down conversions in the second grating. The numerical results showed that the second harmonic seeding enables the excitation of soliton pulses with an improved spatio-temporal intensity profile in a broad bandwidth of the wave-vector mismatch.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. I. Stegeman, D. J. Hagan, and L. Torner, “? (2) Cascading Phenomena and Their Applications to All-Optical Signal Processing, Mode-Locking, Pulse Compression and Solitons,” J. Opt. Quant. Electron. 28(12), 1691–1740 (1996).
    [CrossRef]
  2. F. W. Wise, L. Qian, and X. Liu, “Applications of cascaded quadratic nonlinearities to femtosecond pulse generation,” J. Nonlinear Opt. Phys. Mater. 11(3), 317–338 (2002).
    [CrossRef]
  3. X. Liu, L. J. Qian, and F. Wise, “High-energy pulse compression by use of negative phase shifts produced by the cascade ?((2)):?((2)) nonlinearity,” Opt. Lett. 24(23), 1777–1779 (1999).
    [CrossRef]
  4. S. Ashihara, J. Nishina, T. Shimura, and K. Kuroda, “Soliton compression of femtosecond pulses in quadratic media,” J. Opt. Soc. Am. B 19(10), 2505–2510 (2002).
    [CrossRef]
  5. J. Moses and F. W. Wise, “Soliton compression in quadratic media: high-energy few-cycle pulses with a frequency-doubling crystal,” Opt. Lett. 31(12), 1881–1883 (2006).
    [CrossRef] [PubMed]
  6. J. Moses, E. Alhammali, J. M. Eichenholz, and F. W. Wise, “Efficient high-energy femtosecond pulse compression in quadratic media with flattop beams,” Opt. Lett. 32(17), 2469–2471 (2007).
    [CrossRef] [PubMed]
  7. M. Bache, J. Moses, and F. W. Wise, “Scaling laws for soliton pulse compression by cascaded quadratic nonlinearities,” J. Opt. Soc. Am. B 24(10), 2752–2762 (2007).
    [CrossRef]
  8. C. Menyuk, R. Schiek, and L. Torner, “Solitary waves due to ?(2):?(2) cascading,” J. Opt. Soc. Am. B 11(12), 2434–2443 (1994).
    [CrossRef]
  9. P. Di Trapani, D. Caironi, G. Valiulis, D. Danielius, and A. Piskarskas, “Observation of temporal solitons in second-harmonic generation with tilted pulses,” Phys. Rev. Lett. 81(3), 570–573 (1998).
    [CrossRef]
  10. X. Liu, L. J. Qian, and F. W. Wise, “Generation of optical spatiotemporal solitons,” Phys. Rev. Lett. 82(23), 4631–4634 (1999).
    [CrossRef]
  11. N. E. Yu, J. H. Ro, M. Cha, S. Kurimura, and T. Taira, “Broadband quasi-phase-matched second-harmonic generation in MgO-doped periodically poled LiNbO_3 at the communications band,” Opt. Lett. 27(12), 1046–1048 (2002).
    [CrossRef]
  12. S. Ashihara, T. Shimura, and K. Kuroda, “Group-velocity matched second-harmonic generation in tilted quasi-phase-matched gratings,” J. Opt. Soc. Am. B 20(5), 853–856 (2003).
    [CrossRef]
  13. S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, “Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate,” Appl. Phys. Lett. 84(7), 1055–1057 (2004).
    [CrossRef]
  14. X. L. Zeng, S. Ashihara, N. Fujioka, T. Shimura, and K. Kuroda, “Adiabatic compression of quadratic temporal solitons in aperiodic quasi-phase-matching gratings,” Opt. Express 14(20), 9358–9370 (2006).
    [CrossRef] [PubMed]
  15. X. Zeng, S. Ashihara, X. Chen, T. Shimura, and K. Kuroda, “Two-color pulse compression in aperiodically poled lithium niobate,” Opt. Commun. 281(17), 4499–4503 (2008).
    [CrossRef]
  16. L. Torner, C. Balslev Clausen, and M. M. Fejer, “Adiabatic shaping of quadratic solitons,” Opt. Lett. 23(12), 903–905 (1998).
    [CrossRef]
  17. W. E. Torruellas, Z. Wang, D. J. Hagan, E. W. VanStryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett. 74(25), 5036–5039 (1995).
    [CrossRef] [PubMed]
  18. S. Polyakov, H. Kim, L. Jankovic, G. Stegeman, and M. Katz, “Weak beam control of multiple quadratic soliton generation,” Opt. Lett. 28(16), 1451–1453 (2003).
    [CrossRef] [PubMed]
  19. S. Carrasco, L. Torner, J. P. Torres, D. Artigas, E. Lopez-Lago, V. Couderc, and A. Barthelemy, “Quadratic Solitons: Existence Versus Excitation,” IEEE J. Sel. Top. Quantum Electron. 8(3), 497–505 (2002).
    [CrossRef]
  20. P. Di Trapani, G. Valiulis, A. Piskarskas, O. Jedrkiewicz, J. Trull, C. Conti, and S. Trillo, “Spontaneously generated X-shaped light bullets,” Phys. Rev. Lett. 91(9), 093904 (2003).
    [CrossRef] [PubMed]
  21. D. Zelmon, D. Small, and D. Jundt, “Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol. magnesium oxide doped lithium niobate,” J. Opt. Soc. Am. B 14(12), 3319–3322 (1997).
    [CrossRef]
  22. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14(9), 2268–2294 (1997).
    [CrossRef]
  23. R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32(8), 1324–1333 (1996).
    [CrossRef]

2008 (1)

X. Zeng, S. Ashihara, X. Chen, T. Shimura, and K. Kuroda, “Two-color pulse compression in aperiodically poled lithium niobate,” Opt. Commun. 281(17), 4499–4503 (2008).
[CrossRef]

2007 (2)

2006 (2)

2004 (1)

S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, “Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate,” Appl. Phys. Lett. 84(7), 1055–1057 (2004).
[CrossRef]

2003 (3)

2002 (4)

S. Carrasco, L. Torner, J. P. Torres, D. Artigas, E. Lopez-Lago, V. Couderc, and A. Barthelemy, “Quadratic Solitons: Existence Versus Excitation,” IEEE J. Sel. Top. Quantum Electron. 8(3), 497–505 (2002).
[CrossRef]

N. E. Yu, J. H. Ro, M. Cha, S. Kurimura, and T. Taira, “Broadband quasi-phase-matched second-harmonic generation in MgO-doped periodically poled LiNbO_3 at the communications band,” Opt. Lett. 27(12), 1046–1048 (2002).
[CrossRef]

F. W. Wise, L. Qian, and X. Liu, “Applications of cascaded quadratic nonlinearities to femtosecond pulse generation,” J. Nonlinear Opt. Phys. Mater. 11(3), 317–338 (2002).
[CrossRef]

S. Ashihara, J. Nishina, T. Shimura, and K. Kuroda, “Soliton compression of femtosecond pulses in quadratic media,” J. Opt. Soc. Am. B 19(10), 2505–2510 (2002).
[CrossRef]

1999 (2)

1998 (2)

L. Torner, C. Balslev Clausen, and M. M. Fejer, “Adiabatic shaping of quadratic solitons,” Opt. Lett. 23(12), 903–905 (1998).
[CrossRef]

P. Di Trapani, D. Caironi, G. Valiulis, D. Danielius, and A. Piskarskas, “Observation of temporal solitons in second-harmonic generation with tilted pulses,” Phys. Rev. Lett. 81(3), 570–573 (1998).
[CrossRef]

1997 (2)

1996 (2)

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32(8), 1324–1333 (1996).
[CrossRef]

G. I. Stegeman, D. J. Hagan, and L. Torner, “? (2) Cascading Phenomena and Their Applications to All-Optical Signal Processing, Mode-Locking, Pulse Compression and Solitons,” J. Opt. Quant. Electron. 28(12), 1691–1740 (1996).
[CrossRef]

1995 (1)

W. E. Torruellas, Z. Wang, D. J. Hagan, E. W. VanStryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett. 74(25), 5036–5039 (1995).
[CrossRef] [PubMed]

1994 (1)

Yu, N. E.

S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, “Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate,” Appl. Phys. Lett. 84(7), 1055–1057 (2004).
[CrossRef]

Alhammali, E.

Artigas, D.

S. Carrasco, L. Torner, J. P. Torres, D. Artigas, E. Lopez-Lago, V. Couderc, and A. Barthelemy, “Quadratic Solitons: Existence Versus Excitation,” IEEE J. Sel. Top. Quantum Electron. 8(3), 497–505 (2002).
[CrossRef]

Ashihara, S.

X. Zeng, S. Ashihara, X. Chen, T. Shimura, and K. Kuroda, “Two-color pulse compression in aperiodically poled lithium niobate,” Opt. Commun. 281(17), 4499–4503 (2008).
[CrossRef]

X. L. Zeng, S. Ashihara, N. Fujioka, T. Shimura, and K. Kuroda, “Adiabatic compression of quadratic temporal solitons in aperiodic quasi-phase-matching gratings,” Opt. Express 14(20), 9358–9370 (2006).
[CrossRef] [PubMed]

S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, “Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate,” Appl. Phys. Lett. 84(7), 1055–1057 (2004).
[CrossRef]

S. Ashihara, T. Shimura, and K. Kuroda, “Group-velocity matched second-harmonic generation in tilted quasi-phase-matched gratings,” J. Opt. Soc. Am. B 20(5), 853–856 (2003).
[CrossRef]

S. Ashihara, J. Nishina, T. Shimura, and K. Kuroda, “Soliton compression of femtosecond pulses in quadratic media,” J. Opt. Soc. Am. B 19(10), 2505–2510 (2002).
[CrossRef]

Bache, M.

Balslev Clausen, C.

Barthelemy, A.

S. Carrasco, L. Torner, J. P. Torres, D. Artigas, E. Lopez-Lago, V. Couderc, and A. Barthelemy, “Quadratic Solitons: Existence Versus Excitation,” IEEE J. Sel. Top. Quantum Electron. 8(3), 497–505 (2002).
[CrossRef]

Caironi, D.

P. Di Trapani, D. Caironi, G. Valiulis, D. Danielius, and A. Piskarskas, “Observation of temporal solitons in second-harmonic generation with tilted pulses,” Phys. Rev. Lett. 81(3), 570–573 (1998).
[CrossRef]

Carrasco, S.

S. Carrasco, L. Torner, J. P. Torres, D. Artigas, E. Lopez-Lago, V. Couderc, and A. Barthelemy, “Quadratic Solitons: Existence Versus Excitation,” IEEE J. Sel. Top. Quantum Electron. 8(3), 497–505 (2002).
[CrossRef]

Cha, M.

S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, “Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate,” Appl. Phys. Lett. 84(7), 1055–1057 (2004).
[CrossRef]

N. E. Yu, J. H. Ro, M. Cha, S. Kurimura, and T. Taira, “Broadband quasi-phase-matched second-harmonic generation in MgO-doped periodically poled LiNbO_3 at the communications band,” Opt. Lett. 27(12), 1046–1048 (2002).
[CrossRef]

Chen, X.

X. Zeng, S. Ashihara, X. Chen, T. Shimura, and K. Kuroda, “Two-color pulse compression in aperiodically poled lithium niobate,” Opt. Commun. 281(17), 4499–4503 (2008).
[CrossRef]

Conti, C.

P. Di Trapani, G. Valiulis, A. Piskarskas, O. Jedrkiewicz, J. Trull, C. Conti, and S. Trillo, “Spontaneously generated X-shaped light bullets,” Phys. Rev. Lett. 91(9), 093904 (2003).
[CrossRef] [PubMed]

Couderc, V.

S. Carrasco, L. Torner, J. P. Torres, D. Artigas, E. Lopez-Lago, V. Couderc, and A. Barthelemy, “Quadratic Solitons: Existence Versus Excitation,” IEEE J. Sel. Top. Quantum Electron. 8(3), 497–505 (2002).
[CrossRef]

Danielius, D.

P. Di Trapani, D. Caironi, G. Valiulis, D. Danielius, and A. Piskarskas, “Observation of temporal solitons in second-harmonic generation with tilted pulses,” Phys. Rev. Lett. 81(3), 570–573 (1998).
[CrossRef]

DeSalvo, R.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32(8), 1324–1333 (1996).
[CrossRef]

Di Trapani, P.

P. Di Trapani, G. Valiulis, A. Piskarskas, O. Jedrkiewicz, J. Trull, C. Conti, and S. Trillo, “Spontaneously generated X-shaped light bullets,” Phys. Rev. Lett. 91(9), 093904 (2003).
[CrossRef] [PubMed]

P. Di Trapani, D. Caironi, G. Valiulis, D. Danielius, and A. Piskarskas, “Observation of temporal solitons in second-harmonic generation with tilted pulses,” Phys. Rev. Lett. 81(3), 570–573 (1998).
[CrossRef]

Eichenholz, J. M.

Fejer, M. M.

Fujioka, N.

Hagan, D. J.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32(8), 1324–1333 (1996).
[CrossRef]

G. I. Stegeman, D. J. Hagan, and L. Torner, “? (2) Cascading Phenomena and Their Applications to All-Optical Signal Processing, Mode-Locking, Pulse Compression and Solitons,” J. Opt. Quant. Electron. 28(12), 1691–1740 (1996).
[CrossRef]

W. E. Torruellas, Z. Wang, D. J. Hagan, E. W. VanStryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett. 74(25), 5036–5039 (1995).
[CrossRef] [PubMed]

Ito, R.

Jankovic, L.

Jedrkiewicz, O.

P. Di Trapani, G. Valiulis, A. Piskarskas, O. Jedrkiewicz, J. Trull, C. Conti, and S. Trillo, “Spontaneously generated X-shaped light bullets,” Phys. Rev. Lett. 91(9), 093904 (2003).
[CrossRef] [PubMed]

Jundt, D.

Katz, M.

Kim, H.

Kitamoto, A.

Kitamura, K.

S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, “Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate,” Appl. Phys. Lett. 84(7), 1055–1057 (2004).
[CrossRef]

Kondo, T.

Kurimura, S.

S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, “Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate,” Appl. Phys. Lett. 84(7), 1055–1057 (2004).
[CrossRef]

N. E. Yu, J. H. Ro, M. Cha, S. Kurimura, and T. Taira, “Broadband quasi-phase-matched second-harmonic generation in MgO-doped periodically poled LiNbO_3 at the communications band,” Opt. Lett. 27(12), 1046–1048 (2002).
[CrossRef]

Kuroda, K.

X. Zeng, S. Ashihara, X. Chen, T. Shimura, and K. Kuroda, “Two-color pulse compression in aperiodically poled lithium niobate,” Opt. Commun. 281(17), 4499–4503 (2008).
[CrossRef]

X. L. Zeng, S. Ashihara, N. Fujioka, T. Shimura, and K. Kuroda, “Adiabatic compression of quadratic temporal solitons in aperiodic quasi-phase-matching gratings,” Opt. Express 14(20), 9358–9370 (2006).
[CrossRef] [PubMed]

S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, “Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate,” Appl. Phys. Lett. 84(7), 1055–1057 (2004).
[CrossRef]

S. Ashihara, T. Shimura, and K. Kuroda, “Group-velocity matched second-harmonic generation in tilted quasi-phase-matched gratings,” J. Opt. Soc. Am. B 20(5), 853–856 (2003).
[CrossRef]

S. Ashihara, J. Nishina, T. Shimura, and K. Kuroda, “Soliton compression of femtosecond pulses in quadratic media,” J. Opt. Soc. Am. B 19(10), 2505–2510 (2002).
[CrossRef]

Liu, X.

F. W. Wise, L. Qian, and X. Liu, “Applications of cascaded quadratic nonlinearities to femtosecond pulse generation,” J. Nonlinear Opt. Phys. Mater. 11(3), 317–338 (2002).
[CrossRef]

X. Liu, L. J. Qian, and F. W. Wise, “Generation of optical spatiotemporal solitons,” Phys. Rev. Lett. 82(23), 4631–4634 (1999).
[CrossRef]

X. Liu, L. J. Qian, and F. Wise, “High-energy pulse compression by use of negative phase shifts produced by the cascade ?((2)):?((2)) nonlinearity,” Opt. Lett. 24(23), 1777–1779 (1999).
[CrossRef]

Lopez-Lago, E.

S. Carrasco, L. Torner, J. P. Torres, D. Artigas, E. Lopez-Lago, V. Couderc, and A. Barthelemy, “Quadratic Solitons: Existence Versus Excitation,” IEEE J. Sel. Top. Quantum Electron. 8(3), 497–505 (2002).
[CrossRef]

Menyuk, C.

Menyuk, C. R.

W. E. Torruellas, Z. Wang, D. J. Hagan, E. W. VanStryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett. 74(25), 5036–5039 (1995).
[CrossRef] [PubMed]

Moses, J.

Nishina, J.

Piskarskas, A.

P. Di Trapani, G. Valiulis, A. Piskarskas, O. Jedrkiewicz, J. Trull, C. Conti, and S. Trillo, “Spontaneously generated X-shaped light bullets,” Phys. Rev. Lett. 91(9), 093904 (2003).
[CrossRef] [PubMed]

P. Di Trapani, D. Caironi, G. Valiulis, D. Danielius, and A. Piskarskas, “Observation of temporal solitons in second-harmonic generation with tilted pulses,” Phys. Rev. Lett. 81(3), 570–573 (1998).
[CrossRef]

Polyakov, S.

Qian, L.

F. W. Wise, L. Qian, and X. Liu, “Applications of cascaded quadratic nonlinearities to femtosecond pulse generation,” J. Nonlinear Opt. Phys. Mater. 11(3), 317–338 (2002).
[CrossRef]

Qian, L. J.

Ro, J. H.

Said, A. A.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32(8), 1324–1333 (1996).
[CrossRef]

Schiek, R.

Sheik-Bahae, M.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32(8), 1324–1333 (1996).
[CrossRef]

Shimura, T.

X. Zeng, S. Ashihara, X. Chen, T. Shimura, and K. Kuroda, “Two-color pulse compression in aperiodically poled lithium niobate,” Opt. Commun. 281(17), 4499–4503 (2008).
[CrossRef]

X. L. Zeng, S. Ashihara, N. Fujioka, T. Shimura, and K. Kuroda, “Adiabatic compression of quadratic temporal solitons in aperiodic quasi-phase-matching gratings,” Opt. Express 14(20), 9358–9370 (2006).
[CrossRef] [PubMed]

S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, “Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate,” Appl. Phys. Lett. 84(7), 1055–1057 (2004).
[CrossRef]

S. Ashihara, T. Shimura, and K. Kuroda, “Group-velocity matched second-harmonic generation in tilted quasi-phase-matched gratings,” J. Opt. Soc. Am. B 20(5), 853–856 (2003).
[CrossRef]

S. Ashihara, J. Nishina, T. Shimura, and K. Kuroda, “Soliton compression of femtosecond pulses in quadratic media,” J. Opt. Soc. Am. B 19(10), 2505–2510 (2002).
[CrossRef]

Shirane, M.

Shoji, I.

Small, D.

Stegeman, G.

Stegeman, G. I.

G. I. Stegeman, D. J. Hagan, and L. Torner, “? (2) Cascading Phenomena and Their Applications to All-Optical Signal Processing, Mode-Locking, Pulse Compression and Solitons,” J. Opt. Quant. Electron. 28(12), 1691–1740 (1996).
[CrossRef]

W. E. Torruellas, Z. Wang, D. J. Hagan, E. W. VanStryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett. 74(25), 5036–5039 (1995).
[CrossRef] [PubMed]

Stryland, E. W.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32(8), 1324–1333 (1996).
[CrossRef]

Taira, T.

S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, “Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate,” Appl. Phys. Lett. 84(7), 1055–1057 (2004).
[CrossRef]

N. E. Yu, J. H. Ro, M. Cha, S. Kurimura, and T. Taira, “Broadband quasi-phase-matched second-harmonic generation in MgO-doped periodically poled LiNbO_3 at the communications band,” Opt. Lett. 27(12), 1046–1048 (2002).
[CrossRef]

Torner, L.

S. Carrasco, L. Torner, J. P. Torres, D. Artigas, E. Lopez-Lago, V. Couderc, and A. Barthelemy, “Quadratic Solitons: Existence Versus Excitation,” IEEE J. Sel. Top. Quantum Electron. 8(3), 497–505 (2002).
[CrossRef]

L. Torner, C. Balslev Clausen, and M. M. Fejer, “Adiabatic shaping of quadratic solitons,” Opt. Lett. 23(12), 903–905 (1998).
[CrossRef]

G. I. Stegeman, D. J. Hagan, and L. Torner, “? (2) Cascading Phenomena and Their Applications to All-Optical Signal Processing, Mode-Locking, Pulse Compression and Solitons,” J. Opt. Quant. Electron. 28(12), 1691–1740 (1996).
[CrossRef]

W. E. Torruellas, Z. Wang, D. J. Hagan, E. W. VanStryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett. 74(25), 5036–5039 (1995).
[CrossRef] [PubMed]

C. Menyuk, R. Schiek, and L. Torner, “Solitary waves due to ?(2):?(2) cascading,” J. Opt. Soc. Am. B 11(12), 2434–2443 (1994).
[CrossRef]

Torres, J. P.

S. Carrasco, L. Torner, J. P. Torres, D. Artigas, E. Lopez-Lago, V. Couderc, and A. Barthelemy, “Quadratic Solitons: Existence Versus Excitation,” IEEE J. Sel. Top. Quantum Electron. 8(3), 497–505 (2002).
[CrossRef]

Torruellas, W. E.

W. E. Torruellas, Z. Wang, D. J. Hagan, E. W. VanStryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett. 74(25), 5036–5039 (1995).
[CrossRef] [PubMed]

Trillo, S.

P. Di Trapani, G. Valiulis, A. Piskarskas, O. Jedrkiewicz, J. Trull, C. Conti, and S. Trillo, “Spontaneously generated X-shaped light bullets,” Phys. Rev. Lett. 91(9), 093904 (2003).
[CrossRef] [PubMed]

Trull, J.

P. Di Trapani, G. Valiulis, A. Piskarskas, O. Jedrkiewicz, J. Trull, C. Conti, and S. Trillo, “Spontaneously generated X-shaped light bullets,” Phys. Rev. Lett. 91(9), 093904 (2003).
[CrossRef] [PubMed]

Valiulis, G.

P. Di Trapani, G. Valiulis, A. Piskarskas, O. Jedrkiewicz, J. Trull, C. Conti, and S. Trillo, “Spontaneously generated X-shaped light bullets,” Phys. Rev. Lett. 91(9), 093904 (2003).
[CrossRef] [PubMed]

P. Di Trapani, D. Caironi, G. Valiulis, D. Danielius, and A. Piskarskas, “Observation of temporal solitons in second-harmonic generation with tilted pulses,” Phys. Rev. Lett. 81(3), 570–573 (1998).
[CrossRef]

VanStryland, E. W.

W. E. Torruellas, Z. Wang, D. J. Hagan, E. W. VanStryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett. 74(25), 5036–5039 (1995).
[CrossRef] [PubMed]

Wang, Z.

W. E. Torruellas, Z. Wang, D. J. Hagan, E. W. VanStryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett. 74(25), 5036–5039 (1995).
[CrossRef] [PubMed]

Wise, F.

Wise, F. W.

Yu, N. E.

Zelmon, D.

Zeng, X.

X. Zeng, S. Ashihara, X. Chen, T. Shimura, and K. Kuroda, “Two-color pulse compression in aperiodically poled lithium niobate,” Opt. Commun. 281(17), 4499–4503 (2008).
[CrossRef]

Zeng, X. L.

Appl. Phys. Lett. (1)

S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, “Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate,” Appl. Phys. Lett. 84(7), 1055–1057 (2004).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32(8), 1324–1333 (1996).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Carrasco, L. Torner, J. P. Torres, D. Artigas, E. Lopez-Lago, V. Couderc, and A. Barthelemy, “Quadratic Solitons: Existence Versus Excitation,” IEEE J. Sel. Top. Quantum Electron. 8(3), 497–505 (2002).
[CrossRef]

J. Nonlinear Opt. Phys. Mater. (1)

F. W. Wise, L. Qian, and X. Liu, “Applications of cascaded quadratic nonlinearities to femtosecond pulse generation,” J. Nonlinear Opt. Phys. Mater. 11(3), 317–338 (2002).
[CrossRef]

J. Opt. Quant. Electron. (1)

G. I. Stegeman, D. J. Hagan, and L. Torner, “? (2) Cascading Phenomena and Their Applications to All-Optical Signal Processing, Mode-Locking, Pulse Compression and Solitons,” J. Opt. Quant. Electron. 28(12), 1691–1740 (1996).
[CrossRef]

J. Opt. Soc. Am. B (6)

Opt. Commun. (1)

X. Zeng, S. Ashihara, X. Chen, T. Shimura, and K. Kuroda, “Two-color pulse compression in aperiodically poled lithium niobate,” Opt. Commun. 281(17), 4499–4503 (2008).
[CrossRef]

Opt. Express (1)

Opt. Lett. (6)

Phys. Rev. Lett. (4)

P. Di Trapani, D. Caironi, G. Valiulis, D. Danielius, and A. Piskarskas, “Observation of temporal solitons in second-harmonic generation with tilted pulses,” Phys. Rev. Lett. 81(3), 570–573 (1998).
[CrossRef]

X. Liu, L. J. Qian, and F. W. Wise, “Generation of optical spatiotemporal solitons,” Phys. Rev. Lett. 82(23), 4631–4634 (1999).
[CrossRef]

W. E. Torruellas, Z. Wang, D. J. Hagan, E. W. VanStryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett. 74(25), 5036–5039 (1995).
[CrossRef] [PubMed]

P. Di Trapani, G. Valiulis, A. Piskarskas, O. Jedrkiewicz, J. Trull, C. Conti, and S. Trillo, “Spontaneously generated X-shaped light bullets,” Phys. Rev. Lett. 91(9), 093904 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(color online) A schematic of the two-colored soliton excitation in a segmented QPM structure.

Fig. 2
Fig. 2

(color online) (a) Normalized energy ratio and (b) pulse duration of FF (red solid and dash lines) and SH (blue solid and dash lines) pulses along propagation. The segmented QPM grating: La = 0.7 mm (Δk 1 = 0) and Lb = 9.3 mm (Δk 2 = 0); periodic QPM grating L = 10 mm (Δk 2 = 0.35 mm−1); Input FF: transform-limited pulse of 100 fs duration and 20 GW/cm2 peak intensity with the center wavelength of 1560 nm.

Fig. 3
Fig. 3

(color online) Evolutions of the temporal intensity profiles of FF and SH pulses in (a) periodic and (b) segmented QPM gratings.

Fig. 4
Fig. 4

(color online) Intensity profiles of the compressed (a) FF and (b) SH pulses in the segmented and periodic QPM grating.

Fig. 5
Fig. 5

(color online) (a) Quality factors for the segmented (green filled markers) and periodic (black open markers) QPM gratings, (b) normalized energy ratio and (c) pulse duration of FF (red filled) and SH (blue open) as a function of Δk 2 for the segmented QPM grating (or Δk for the periodic QPM grating).

Fig. 6
Fig. 6

(color online) Dependence of the output pulse durations (FF: red and SH: blue) on the input FF intensity for the segmented (filled) and periodic (open) gratings under the condition of (a) Δk (Δk 2) = 0 mm−1 and (b) 0.35 mm−1; the quality factor for the segmented (green markers) and periodic (black markers) gratings as a function of input intensity for Δk (Δk 2) = 0 mm−1 and 0.35 mm−1.

Fig. 7
Fig. 7

(color online) 3D slices of the compressed wave packets of (a) FF and (b) SH pulses in periodic QPM grating and (c) FF and (d) SH pulses in segmented QPM grating.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

[zi(1/2k0)2+i(kω''/2)tt2]E1=iρ1(z)E1*E2eiΔk0z+iσ1[|E1|2E1+2|E2|2E1][zi(1/2k0)2+i(k2ω''/2)tt2]E2=iρ2(z)E12eiΔk0z+iσ2[|E2|2E2+2|E1|2E2]

Metrics