Abstract

We describe the application of full-wave and semi-analytical numerical tools for the modeling of optical wire antennas, with the aim of providing novel guidelines for analysis and design. The concept of antenna impedance at optical frequencies is reviewed by means of finite-element simulations, whereas a surface-impedance integral equation is derived in order to perform an accurate and efficient calculation of the current distribution, and thereby to determine the equivalent-circuit parameters. These are introduced into simple circuits models, directly borrowed from radio frequency, which are applied in order to model the phenomena of enhanced field confinement at the feed gap and light scattering by optical antennas illuminated by plane waves.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  2. E. Ozbay, "Plasmonics: merging photonics and electronics at nanoscale dimensions," Science 311,189-193 (2006).
    [CrossRef] [PubMed]
  3. J. J. Greffet, "Nanoantennas for light emission," Science 308,1561 (2005).
    [CrossRef] [PubMed]
  4. L. Novotny, "Optical antennas tuned to pitch," Nature (London) 455,887 (2008).
    [CrossRef]
  5. P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308,1607-1608 (2005).
    [CrossRef] [PubMed]
  6. T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, "Optical antennas direct single-molecule emission," Nature Photon. 2,234-237 (2008).
    [CrossRef]
  7. P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, "Spectroscopic mode mapping of resonant plasmon nanoantennas," Phys. Rev. Lett. 101, 116805 (2008).
    [CrossRef]
  8. R. L. Olmon, P. M. Krenza, A. C. Jones, G. D. Boreman, and M. B. Raschke, "Near-field imaging of optical antenna modes in the mid infrared," Opt. Express 16,20295-20305 (2008).
    [CrossRef] [PubMed]
  9. M. Schnell, A. García-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, "Controlling the nearfield oscillations of loaded plasmonic nanoantennas," Nature Photon. 3,287-291 (2009).
    [CrossRef]
  10. L. Novotny, "Effective wavelength scaling for optical antennas," Phys. Rev. Lett. 98, 266802 (2007).
    [CrossRef]
  11. A. Alú, and N. Engheta, "Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas," Phys. Rev. Lett. 101, 043901 (2008).
    [CrossRef]
  12. A. Alú and N. Engheta, "Tuning the scattering response of optical nanoantennas with nanocircuit loads," Nature Photon. 2,307-310 (2008).
    [CrossRef]
  13. R. W. P. King, "The linear antenna - eighty years of progress," Proceedings of the IEEE 55,2-16 (1967).
    [CrossRef]
  14. C. A. Balanis, Antenna theory: analysis and design (Wiley, 2005).
  15. S. J. Orfanidis, Electromagnetic waves and antennas, http://www.ece.rutgers.edu/?orfanidi/ewa/, (2008).
  16. R. Kappeler, D. Erni, C. Xudong, and L. Novotny, "Field computations of optical antennas," Journ. of Computational and Theoretical Nanoscience 4,686-691 (2007).
  17. H. Fischer, and O. J. F. Martin, "Engineering the optical response of plasmonic nanoantennas," Opt. Express 16,9144-9154 (2008).
    [CrossRef] [PubMed]
  18. J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. Garcia de Abajo, B. K. Kelley, and T. Mallouk, "Optical properties of coupled metallic nanorods for field-enhanced spectroscopy," Phys. Rev. B 71, 235420-(1-13) (2005).
    [CrossRef]
  19. G. W. Hanson, "On the applicability of the surface impedance integral equation for optical and near infrared copper dipole antennas," IEEE Trans. Antennas Propag. 54,3677-3685 (2006).
    [CrossRef]
  20. G. W. Hanson, "Radiation efficiency of nano-radius dipole antennas in the microwave and far-infrared regimes," IEEE Antennas Propag.Magazine 50,66-77 (2008).
    [CrossRef]
  21. R. W. P. King, and T. T. Wu, "The imperfectly conducting cylindrical transmitting antenna," IEEE Trans. Antennas Propag. 14,524-534 (1966).
    [CrossRef]
  22. J. A. Stratton, Electromagnetic theory (McGraw-Hill, 1941).
  23. J. Wen, S. Romanov, and U. Peschel, "Excitation of plasmonic gap waveguides by nanoantennas," Opt. Express 17,5925-5932 (2009).
    [CrossRef] [PubMed]
  24. J. S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, "Impedance matching and emission properties of nanoantennas in an optical nanocircuit," Nano Lett. 9,1897-1902 (2009).
    [CrossRef] [PubMed]
  25. COMSOL Multiphysics 3.5, COMSOL Inc. (http://www.comsol.com).
  26. CST Microwave Studio2009, Darmstadt, Germany.
  27. R. E. Collin, "Limitations of the Thévenin and Norton equivalent circuits for a receiving antenna," IEEE Antennas Propag.Magazine 45,119-124 (2003).
    [CrossRef]

2009

M. Schnell, A. García-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, "Controlling the nearfield oscillations of loaded plasmonic nanoantennas," Nature Photon. 3,287-291 (2009).
[CrossRef]

J. Wen, S. Romanov, and U. Peschel, "Excitation of plasmonic gap waveguides by nanoantennas," Opt. Express 17,5925-5932 (2009).
[CrossRef] [PubMed]

J. S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, "Impedance matching and emission properties of nanoantennas in an optical nanocircuit," Nano Lett. 9,1897-1902 (2009).
[CrossRef] [PubMed]

2008

G. W. Hanson, "Radiation efficiency of nano-radius dipole antennas in the microwave and far-infrared regimes," IEEE Antennas Propag.Magazine 50,66-77 (2008).
[CrossRef]

A. Alú, and N. Engheta, "Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas," Phys. Rev. Lett. 101, 043901 (2008).
[CrossRef]

A. Alú and N. Engheta, "Tuning the scattering response of optical nanoantennas with nanocircuit loads," Nature Photon. 2,307-310 (2008).
[CrossRef]

H. Fischer, and O. J. F. Martin, "Engineering the optical response of plasmonic nanoantennas," Opt. Express 16,9144-9154 (2008).
[CrossRef] [PubMed]

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, "Optical antennas direct single-molecule emission," Nature Photon. 2,234-237 (2008).
[CrossRef]

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, "Spectroscopic mode mapping of resonant plasmon nanoantennas," Phys. Rev. Lett. 101, 116805 (2008).
[CrossRef]

R. L. Olmon, P. M. Krenza, A. C. Jones, G. D. Boreman, and M. B. Raschke, "Near-field imaging of optical antenna modes in the mid infrared," Opt. Express 16,20295-20305 (2008).
[CrossRef] [PubMed]

L. Novotny, "Optical antennas tuned to pitch," Nature (London) 455,887 (2008).
[CrossRef]

2007

L. Novotny, "Effective wavelength scaling for optical antennas," Phys. Rev. Lett. 98, 266802 (2007).
[CrossRef]

R. Kappeler, D. Erni, C. Xudong, and L. Novotny, "Field computations of optical antennas," Journ. of Computational and Theoretical Nanoscience 4,686-691 (2007).

2006

E. Ozbay, "Plasmonics: merging photonics and electronics at nanoscale dimensions," Science 311,189-193 (2006).
[CrossRef] [PubMed]

G. W. Hanson, "On the applicability of the surface impedance integral equation for optical and near infrared copper dipole antennas," IEEE Trans. Antennas Propag. 54,3677-3685 (2006).
[CrossRef]

2005

J. J. Greffet, "Nanoantennas for light emission," Science 308,1561 (2005).
[CrossRef] [PubMed]

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308,1607-1608 (2005).
[CrossRef] [PubMed]

2003

R. E. Collin, "Limitations of the Thévenin and Norton equivalent circuits for a receiving antenna," IEEE Antennas Propag.Magazine 45,119-124 (2003).
[CrossRef]

1967

R. W. P. King, "The linear antenna - eighty years of progress," Proceedings of the IEEE 55,2-16 (1967).
[CrossRef]

1966

R. W. P. King, and T. T. Wu, "The imperfectly conducting cylindrical transmitting antenna," IEEE Trans. Antennas Propag. 14,524-534 (1966).
[CrossRef]

Aizpurua, J.

M. Schnell, A. García-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, "Controlling the nearfield oscillations of loaded plasmonic nanoantennas," Nature Photon. 3,287-291 (2009).
[CrossRef]

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. Garcia de Abajo, B. K. Kelley, and T. Mallouk, "Optical properties of coupled metallic nanorods for field-enhanced spectroscopy," Phys. Rev. B 71, 235420-(1-13) (2005).
[CrossRef]

Alú, A.

A. Alú and N. Engheta, "Tuning the scattering response of optical nanoantennas with nanocircuit loads," Nature Photon. 2,307-310 (2008).
[CrossRef]

A. Alú, and N. Engheta, "Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas," Phys. Rev. Lett. 101, 043901 (2008).
[CrossRef]

Biagioni, P.

J. S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, "Impedance matching and emission properties of nanoantennas in an optical nanocircuit," Nano Lett. 9,1897-1902 (2009).
[CrossRef] [PubMed]

Boreman, G. D.

Bryant, G. W.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. Garcia de Abajo, B. K. Kelley, and T. Mallouk, "Optical properties of coupled metallic nanorods for field-enhanced spectroscopy," Phys. Rev. B 71, 235420-(1-13) (2005).
[CrossRef]

Cherukulappurath, S.

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, "Spectroscopic mode mapping of resonant plasmon nanoantennas," Phys. Rev. Lett. 101, 116805 (2008).
[CrossRef]

Collin, R. E.

R. E. Collin, "Limitations of the Thévenin and Norton equivalent circuits for a receiving antenna," IEEE Antennas Propag.Magazine 45,119-124 (2003).
[CrossRef]

Crozier, K.

M. Schnell, A. García-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, "Controlling the nearfield oscillations of loaded plasmonic nanoantennas," Nature Photon. 3,287-291 (2009).
[CrossRef]

Eisler, H. J.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308,1607-1608 (2005).
[CrossRef] [PubMed]

Engheta, N.

A. Alú, and N. Engheta, "Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas," Phys. Rev. Lett. 101, 043901 (2008).
[CrossRef]

A. Alú and N. Engheta, "Tuning the scattering response of optical nanoantennas with nanocircuit loads," Nature Photon. 2,307-310 (2008).
[CrossRef]

Erni, D.

R. Kappeler, D. Erni, C. Xudong, and L. Novotny, "Field computations of optical antennas," Journ. of Computational and Theoretical Nanoscience 4,686-691 (2007).

Feichtner, T.

J. S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, "Impedance matching and emission properties of nanoantennas in an optical nanocircuit," Nano Lett. 9,1897-1902 (2009).
[CrossRef] [PubMed]

Fischer, H.

Garcia de Abajo, F. J.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. Garcia de Abajo, B. K. Kelley, and T. Mallouk, "Optical properties of coupled metallic nanorods for field-enhanced spectroscopy," Phys. Rev. B 71, 235420-(1-13) (2005).
[CrossRef]

García-Etxarri, A.

M. Schnell, A. García-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, "Controlling the nearfield oscillations of loaded plasmonic nanoantennas," Nature Photon. 3,287-291 (2009).
[CrossRef]

Ghenuche, P.

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, "Spectroscopic mode mapping of resonant plasmon nanoantennas," Phys. Rev. Lett. 101, 116805 (2008).
[CrossRef]

Greffet, J. J.

J. J. Greffet, "Nanoantennas for light emission," Science 308,1561 (2005).
[CrossRef] [PubMed]

Hanson, G. W.

G. W. Hanson, "Radiation efficiency of nano-radius dipole antennas in the microwave and far-infrared regimes," IEEE Antennas Propag.Magazine 50,66-77 (2008).
[CrossRef]

G. W. Hanson, "On the applicability of the surface impedance integral equation for optical and near infrared copper dipole antennas," IEEE Trans. Antennas Propag. 54,3677-3685 (2006).
[CrossRef]

Hecht, B.

J. S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, "Impedance matching and emission properties of nanoantennas in an optical nanocircuit," Nano Lett. 9,1897-1902 (2009).
[CrossRef] [PubMed]

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308,1607-1608 (2005).
[CrossRef] [PubMed]

Hillenbrand, R.

M. Schnell, A. García-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, "Controlling the nearfield oscillations of loaded plasmonic nanoantennas," Nature Photon. 3,287-291 (2009).
[CrossRef]

Huang, J. S.

J. S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, "Impedance matching and emission properties of nanoantennas in an optical nanocircuit," Nano Lett. 9,1897-1902 (2009).
[CrossRef] [PubMed]

Huber, A. J.

M. Schnell, A. García-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, "Controlling the nearfield oscillations of loaded plasmonic nanoantennas," Nature Photon. 3,287-291 (2009).
[CrossRef]

Jones, A. C.

Kappeler, R.

R. Kappeler, D. Erni, C. Xudong, and L. Novotny, "Field computations of optical antennas," Journ. of Computational and Theoretical Nanoscience 4,686-691 (2007).

Kelley, B. K.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. Garcia de Abajo, B. K. Kelley, and T. Mallouk, "Optical properties of coupled metallic nanorods for field-enhanced spectroscopy," Phys. Rev. B 71, 235420-(1-13) (2005).
[CrossRef]

King, R. W. P.

R. W. P. King, "The linear antenna - eighty years of progress," Proceedings of the IEEE 55,2-16 (1967).
[CrossRef]

R. W. P. King, and T. T. Wu, "The imperfectly conducting cylindrical transmitting antenna," IEEE Trans. Antennas Propag. 14,524-534 (1966).
[CrossRef]

Krenza, P. M.

Mallouk, T.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. Garcia de Abajo, B. K. Kelley, and T. Mallouk, "Optical properties of coupled metallic nanorods for field-enhanced spectroscopy," Phys. Rev. B 71, 235420-(1-13) (2005).
[CrossRef]

Martin, O. J. F.

H. Fischer, and O. J. F. Martin, "Engineering the optical response of plasmonic nanoantennas," Opt. Express 16,9144-9154 (2008).
[CrossRef] [PubMed]

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308,1607-1608 (2005).
[CrossRef] [PubMed]

Mühlschlegel, P.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308,1607-1608 (2005).
[CrossRef] [PubMed]

Novotny, L.

L. Novotny, "Optical antennas tuned to pitch," Nature (London) 455,887 (2008).
[CrossRef]

L. Novotny, "Effective wavelength scaling for optical antennas," Phys. Rev. Lett. 98, 266802 (2007).
[CrossRef]

R. Kappeler, D. Erni, C. Xudong, and L. Novotny, "Field computations of optical antennas," Journ. of Computational and Theoretical Nanoscience 4,686-691 (2007).

Olmon, R. L.

Ozbay, E.

E. Ozbay, "Plasmonics: merging photonics and electronics at nanoscale dimensions," Science 311,189-193 (2006).
[CrossRef] [PubMed]

Peschel, U.

Pohl, D. W.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308,1607-1608 (2005).
[CrossRef] [PubMed]

Quidant, R.

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, "Spectroscopic mode mapping of resonant plasmon nanoantennas," Phys. Rev. Lett. 101, 116805 (2008).
[CrossRef]

Raschke, M. B.

Richter, L. J.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. Garcia de Abajo, B. K. Kelley, and T. Mallouk, "Optical properties of coupled metallic nanorods for field-enhanced spectroscopy," Phys. Rev. B 71, 235420-(1-13) (2005).
[CrossRef]

Romanov, S.

Schnell, M.

M. Schnell, A. García-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, "Controlling the nearfield oscillations of loaded plasmonic nanoantennas," Nature Photon. 3,287-291 (2009).
[CrossRef]

Segerink, F. B.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, "Optical antennas direct single-molecule emission," Nature Photon. 2,234-237 (2008).
[CrossRef]

Stefani, F. D.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, "Optical antennas direct single-molecule emission," Nature Photon. 2,234-237 (2008).
[CrossRef]

Taminiau, T. H.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, "Optical antennas direct single-molecule emission," Nature Photon. 2,234-237 (2008).
[CrossRef]

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, "Spectroscopic mode mapping of resonant plasmon nanoantennas," Phys. Rev. Lett. 101, 116805 (2008).
[CrossRef]

van Hulst, N. F.

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, "Spectroscopic mode mapping of resonant plasmon nanoantennas," Phys. Rev. Lett. 101, 116805 (2008).
[CrossRef]

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, "Optical antennas direct single-molecule emission," Nature Photon. 2,234-237 (2008).
[CrossRef]

Wen, J.

Wu, T. T.

R. W. P. King, and T. T. Wu, "The imperfectly conducting cylindrical transmitting antenna," IEEE Trans. Antennas Propag. 14,524-534 (1966).
[CrossRef]

Xudong, C.

R. Kappeler, D. Erni, C. Xudong, and L. Novotny, "Field computations of optical antennas," Journ. of Computational and Theoretical Nanoscience 4,686-691 (2007).

IEEE Trans. Antennas Propag.

G. W. Hanson, "On the applicability of the surface impedance integral equation for optical and near infrared copper dipole antennas," IEEE Trans. Antennas Propag. 54,3677-3685 (2006).
[CrossRef]

R. W. P. King, and T. T. Wu, "The imperfectly conducting cylindrical transmitting antenna," IEEE Trans. Antennas Propag. 14,524-534 (1966).
[CrossRef]

Journ. of Computational and Theoretical Nanoscience

R. Kappeler, D. Erni, C. Xudong, and L. Novotny, "Field computations of optical antennas," Journ. of Computational and Theoretical Nanoscience 4,686-691 (2007).

Magazine

G. W. Hanson, "Radiation efficiency of nano-radius dipole antennas in the microwave and far-infrared regimes," IEEE Antennas Propag.Magazine 50,66-77 (2008).
[CrossRef]

R. E. Collin, "Limitations of the Thévenin and Norton equivalent circuits for a receiving antenna," IEEE Antennas Propag.Magazine 45,119-124 (2003).
[CrossRef]

Nano Lett.

J. S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, "Impedance matching and emission properties of nanoantennas in an optical nanocircuit," Nano Lett. 9,1897-1902 (2009).
[CrossRef] [PubMed]

Nature (London)

L. Novotny, "Optical antennas tuned to pitch," Nature (London) 455,887 (2008).
[CrossRef]

Nature Photon.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, "Optical antennas direct single-molecule emission," Nature Photon. 2,234-237 (2008).
[CrossRef]

M. Schnell, A. García-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, "Controlling the nearfield oscillations of loaded plasmonic nanoantennas," Nature Photon. 3,287-291 (2009).
[CrossRef]

A. Alú and N. Engheta, "Tuning the scattering response of optical nanoantennas with nanocircuit loads," Nature Photon. 2,307-310 (2008).
[CrossRef]

Opt. Express

Phys. Rev. Lett.

L. Novotny, "Effective wavelength scaling for optical antennas," Phys. Rev. Lett. 98, 266802 (2007).
[CrossRef]

A. Alú, and N. Engheta, "Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas," Phys. Rev. Lett. 101, 043901 (2008).
[CrossRef]

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, "Spectroscopic mode mapping of resonant plasmon nanoantennas," Phys. Rev. Lett. 101, 116805 (2008).
[CrossRef]

Proceedings of the IEEE

R. W. P. King, "The linear antenna - eighty years of progress," Proceedings of the IEEE 55,2-16 (1967).
[CrossRef]

Science

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308,1607-1608 (2005).
[CrossRef] [PubMed]

E. Ozbay, "Plasmonics: merging photonics and electronics at nanoscale dimensions," Science 311,189-193 (2006).
[CrossRef] [PubMed]

J. J. Greffet, "Nanoantennas for light emission," Science 308,1561 (2005).
[CrossRef] [PubMed]

Other

C. A. Balanis, Antenna theory: analysis and design (Wiley, 2005).

S. J. Orfanidis, Electromagnetic waves and antennas, http://www.ece.rutgers.edu/?orfanidi/ewa/, (2008).

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. Garcia de Abajo, B. K. Kelley, and T. Mallouk, "Optical properties of coupled metallic nanorods for field-enhanced spectroscopy," Phys. Rev. B 71, 235420-(1-13) (2005).
[CrossRef]

COMSOL Multiphysics 3.5, COMSOL Inc. (http://www.comsol.com).

CST Microwave Studio2009, Darmstadt, Germany.

J. A. Stratton, Electromagnetic theory (McGraw-Hill, 1941).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic view of a cylindrical dipole antenna (not in scale) fed at its center. (a) 3D view with reference frame; notice that the origin is in the middle of the gap region. L: length of the dipole; g: gap thickness; a: radius of the rod. (b) View of the 2D computational domain used for the full-wave simulations: the red line (G) indicates the delta-gap surface, the blue line (P) denotes the region with the probe for the azimuthal component of the magnetic field, S is the semi-spherical boundary (radius 300 nm).

Fig. 2.
Fig. 2.

a) Antenna impedance Zin seen at the gap terminals. b) Thévenin equivalent circuit in the receiving mode. Rrad : radiation resistance; Rloss : loss resistance; Xant : antenna reactance; Cgap : gap capacitance; Voc : open-circuit voltage.

Fig. 3.
Fig. 3.

a) Rdip calculated from FEM simulations (dashed-dotted blue line); Rin evaluated from the parallel combination of Zdip and the gap reactance (solid red line), and from Pocklington’s equation (dashed black line). b) Rrad (dashed-dotted red line), Rloss (dashed black line), and Rrad +Rloss (solid blue line, overlapped with the Rdip curve) obtained from FEM simulations. c) Xdip calculated from FEM simulations (dashed-dotted blue line); Xin evaluated from the parallel combination of Zdip and the gap reactance (solid red line), and from Pocklington’s equation (dashed black line).

Fig. 4.
Fig. 4.

a) Open-circuit voltage |Voc | (divided by the gap thickness g) calculated from FEM simulations (dashed-dotted blue line); field enhancement evaluated from the circuit model in Fig. 2(b) (dotted green line), from Pocklingtons equation (dashed black line), and from FEM simulations with plane-wave excitation (solid red line). b) Scattered power calculated from FEM simulations with plane-wave excitation (solid red line), from the circuit model in Fig 2(b) (dashed-dotted black line), and from the Norton equivalent circuit (dashed blue line).

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Ez,tot(z,ρ=a)=I(z)Zs,zL2 .
Ez(z,ρ=a)=I(z)ZsEz,in(z,ρ=a) .
Zs=γJ0(γa)2πaσJ1(γa) ,
γ=(1j) ωμ0σ2 ,
J=Js(z)δ(ρa)=ẑ I (z) δ (ρa) 12πa ,
Az(z,ρ)=μ4π L2L2I(z)K(zz,ρ)dz,
K(zz,ρ)=12π 02πexp(ik0R)R d ϕ ,
R=(xx)2+(yy)2+(zz)2=(zz)2+ρ2+a22ρacos(ϕ) ,
(z2+k02)Az=iωμεEz .
(z2+k02)μ4πL2L2I(z)K(zz,ρ=a)dz=iωμε(I(z)ZsEz,in(z,ρ=a)) ,
Leff=1I0 L2L2I(z)dz ,

Metrics