Abstract

We present here a surface plasmon interference lithography method with double-layer planar silver lens. This kind of lithography method provides interference patterns with sufficient contrast for lithography process and simple structure for the convenience of fabrication. Rigorous coupled wave analysis method has been performed with practical parameters to testify this lithography scheme. Furthermore, some key factors influencing the pattern quality have been discussed. It is pointed out that three factors mainly determine the resolution of the interference patterns, and therefore we give a theoretical resolution limit of about 1/12 wavelength to the surface plasmon interference lithography method.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint lithography with 25-nanometer resolution,” Science 272(5258), 85–87 (1996).
    [Crossref]
  2. R. S. Dhaliwal, W. A. Enichen, S. D. Golldaday, M. S. Gordon, R. A. Kendall, J. E. Lieberman, H. C. Pfeiffer, D. J. Pinckney, C. F. Robinson, J. D. Rockrohr, W. Stickel, and E. V. Tressler, ““PREVAIL- Electron projection technology approach for next generation lithography,” IBM,” J. Res. Dev. (Srinagar) 45, 615–638 (2001).
  3. E. B. Cooper, S. R. Manalis, H. Fang, H. Dai, K. Matsumoto, S. Minne, T. Hunt, and C. F. Quate, “Terabitper-square-inch data storage with the atomic force microscope,” Appl. Phys. Lett. 75(22), 3566–3568 (1999).
    [Crossref]
  4. J. G. Goodberlet and H. Kavak, “Patterning sub-50 nm features with near-field embedded-amplitude masks,” Appl. Phys. Lett. 81(7), 1315–1317 (2002).
    [Crossref]
  5. M. Naya, I. Tsuruma, T. Tani, A. Mukai, S. Sakaguchi, and S. Yasunami, “Near-field optical photolithography for high-aspect-ratio patterning using bilayer resist,” Appl. Phys. Lett. 86(20), 201113 (2005).
    [Crossref]
  6. X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84(23), 4780–4782 (2004).
    [Crossref]
  7. Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005).
    [Crossref] [PubMed]
  8. J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguide: Towards chip-scale propagation with subwavelength scale localization,” Phys. Rev. B 73(3), 035407 (2006).
    [Crossref]
  9. X. J. Jiao, P. Wang, D. Zhang, L. Tang, J. Xie, and H. Ming, “Numerical simulation of nanolithography with the subwavelength metallic grating waveguide structure,” Opt. Express 14(11), 4850–4860 (2006).
    [Crossref] [PubMed]
  10. T. Xu, Y. Zhao, J. Ma, C. Wang, J. Cui, C. Du, and X. Luo, “Sub-diffraction-limited interference photolithography with metamaterials,” Opt. Express 16(18), 13579–13584 (2008).
    [Crossref] [PubMed]
  11. M. J. Weber, Handbook of Optical Materials, CRC, Boston, (2003).
  12. P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  13. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
    [Crossref] [PubMed]
  14. L. F. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. B 14(10), 2758 (1997).
    [Crossref]
  15. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [Crossref] [PubMed]
  16. D. S. Melville and R. J. Blaikie, “Experimental comparison of resolution and pattern fidelity in single- and double-layer planar lens lithography,” J. Opt. Soc. Am. B 23(3), 461 (2006).
    [Crossref]
  17. M. J. Madou, Fundamentals of Microfabrication, CRC, Boca Raton, (2002).
  18. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12(5), 1068 (1995).
    [Crossref]

2008 (1)

2006 (3)

2005 (3)

M. Naya, I. Tsuruma, T. Tani, A. Mukai, S. Sakaguchi, and S. Yasunami, “Near-field optical photolithography for high-aspect-ratio patterning using bilayer resist,” Appl. Phys. Lett. 86(20), 201113 (2005).
[Crossref]

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005).
[Crossref] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

2004 (1)

X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84(23), 4780–4782 (2004).
[Crossref]

2002 (1)

J. G. Goodberlet and H. Kavak, “Patterning sub-50 nm features with near-field embedded-amplitude masks,” Appl. Phys. Lett. 81(7), 1315–1317 (2002).
[Crossref]

2001 (1)

R. S. Dhaliwal, W. A. Enichen, S. D. Golldaday, M. S. Gordon, R. A. Kendall, J. E. Lieberman, H. C. Pfeiffer, D. J. Pinckney, C. F. Robinson, J. D. Rockrohr, W. Stickel, and E. V. Tressler, ““PREVAIL- Electron projection technology approach for next generation lithography,” IBM,” J. Res. Dev. (Srinagar) 45, 615–638 (2001).

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

1999 (1)

E. B. Cooper, S. R. Manalis, H. Fang, H. Dai, K. Matsumoto, S. Minne, T. Hunt, and C. F. Quate, “Terabitper-square-inch data storage with the atomic force microscope,” Appl. Phys. Lett. 75(22), 3566–3568 (1999).
[Crossref]

1997 (1)

L. F. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. B 14(10), 2758 (1997).
[Crossref]

1996 (1)

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint lithography with 25-nanometer resolution,” Science 272(5258), 85–87 (1996).
[Crossref]

1995 (1)

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Atwater, H. A.

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguide: Towards chip-scale propagation with subwavelength scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[Crossref]

Blaikie, R. J.

Chou, S. Y.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint lithography with 25-nanometer resolution,” Science 272(5258), 85–87 (1996).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Cooper, E. B.

E. B. Cooper, S. R. Manalis, H. Fang, H. Dai, K. Matsumoto, S. Minne, T. Hunt, and C. F. Quate, “Terabitper-square-inch data storage with the atomic force microscope,” Appl. Phys. Lett. 75(22), 3566–3568 (1999).
[Crossref]

Cui, J.

Dai, H.

E. B. Cooper, S. R. Manalis, H. Fang, H. Dai, K. Matsumoto, S. Minne, T. Hunt, and C. F. Quate, “Terabitper-square-inch data storage with the atomic force microscope,” Appl. Phys. Lett. 75(22), 3566–3568 (1999).
[Crossref]

Dhaliwal, R. S.

R. S. Dhaliwal, W. A. Enichen, S. D. Golldaday, M. S. Gordon, R. A. Kendall, J. E. Lieberman, H. C. Pfeiffer, D. J. Pinckney, C. F. Robinson, J. D. Rockrohr, W. Stickel, and E. V. Tressler, ““PREVAIL- Electron projection technology approach for next generation lithography,” IBM,” J. Res. Dev. (Srinagar) 45, 615–638 (2001).

Dionne, J. A.

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguide: Towards chip-scale propagation with subwavelength scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[Crossref]

Du, C.

Enichen, W. A.

R. S. Dhaliwal, W. A. Enichen, S. D. Golldaday, M. S. Gordon, R. A. Kendall, J. E. Lieberman, H. C. Pfeiffer, D. J. Pinckney, C. F. Robinson, J. D. Rockrohr, W. Stickel, and E. V. Tressler, ““PREVAIL- Electron projection technology approach for next generation lithography,” IBM,” J. Res. Dev. (Srinagar) 45, 615–638 (2001).

Fang, H.

E. B. Cooper, S. R. Manalis, H. Fang, H. Dai, K. Matsumoto, S. Minne, T. Hunt, and C. F. Quate, “Terabitper-square-inch data storage with the atomic force microscope,” Appl. Phys. Lett. 75(22), 3566–3568 (1999).
[Crossref]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Gaylord, T. K.

Golldaday, S. D.

R. S. Dhaliwal, W. A. Enichen, S. D. Golldaday, M. S. Gordon, R. A. Kendall, J. E. Lieberman, H. C. Pfeiffer, D. J. Pinckney, C. F. Robinson, J. D. Rockrohr, W. Stickel, and E. V. Tressler, ““PREVAIL- Electron projection technology approach for next generation lithography,” IBM,” J. Res. Dev. (Srinagar) 45, 615–638 (2001).

Goodberlet, J. G.

J. G. Goodberlet and H. Kavak, “Patterning sub-50 nm features with near-field embedded-amplitude masks,” Appl. Phys. Lett. 81(7), 1315–1317 (2002).
[Crossref]

Gordon, M. S.

R. S. Dhaliwal, W. A. Enichen, S. D. Golldaday, M. S. Gordon, R. A. Kendall, J. E. Lieberman, H. C. Pfeiffer, D. J. Pinckney, C. F. Robinson, J. D. Rockrohr, W. Stickel, and E. V. Tressler, ““PREVAIL- Electron projection technology approach for next generation lithography,” IBM,” J. Res. Dev. (Srinagar) 45, 615–638 (2001).

Grann, E. B.

Hunt, T.

E. B. Cooper, S. R. Manalis, H. Fang, H. Dai, K. Matsumoto, S. Minne, T. Hunt, and C. F. Quate, “Terabitper-square-inch data storage with the atomic force microscope,” Appl. Phys. Lett. 75(22), 3566–3568 (1999).
[Crossref]

Ishihara, T.

X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84(23), 4780–4782 (2004).
[Crossref]

Jiao, X. J.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kavak, H.

J. G. Goodberlet and H. Kavak, “Patterning sub-50 nm features with near-field embedded-amplitude masks,” Appl. Phys. Lett. 81(7), 1315–1317 (2002).
[Crossref]

Kendall, R. A.

R. S. Dhaliwal, W. A. Enichen, S. D. Golldaday, M. S. Gordon, R. A. Kendall, J. E. Lieberman, H. C. Pfeiffer, D. J. Pinckney, C. F. Robinson, J. D. Rockrohr, W. Stickel, and E. V. Tressler, ““PREVAIL- Electron projection technology approach for next generation lithography,” IBM,” J. Res. Dev. (Srinagar) 45, 615–638 (2001).

Krauss, P. R.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint lithography with 25-nanometer resolution,” Science 272(5258), 85–87 (1996).
[Crossref]

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Li, L. F.

L. F. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. B 14(10), 2758 (1997).
[Crossref]

Lieberman, J. E.

R. S. Dhaliwal, W. A. Enichen, S. D. Golldaday, M. S. Gordon, R. A. Kendall, J. E. Lieberman, H. C. Pfeiffer, D. J. Pinckney, C. F. Robinson, J. D. Rockrohr, W. Stickel, and E. V. Tressler, ““PREVAIL- Electron projection technology approach for next generation lithography,” IBM,” J. Res. Dev. (Srinagar) 45, 615–638 (2001).

Liu, Z. W.

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005).
[Crossref] [PubMed]

Luo, X.

T. Xu, Y. Zhao, J. Ma, C. Wang, J. Cui, C. Du, and X. Luo, “Sub-diffraction-limited interference photolithography with metamaterials,” Opt. Express 16(18), 13579–13584 (2008).
[Crossref] [PubMed]

X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84(23), 4780–4782 (2004).
[Crossref]

Ma, J.

Manalis, S. R.

E. B. Cooper, S. R. Manalis, H. Fang, H. Dai, K. Matsumoto, S. Minne, T. Hunt, and C. F. Quate, “Terabitper-square-inch data storage with the atomic force microscope,” Appl. Phys. Lett. 75(22), 3566–3568 (1999).
[Crossref]

Matsumoto, K.

E. B. Cooper, S. R. Manalis, H. Fang, H. Dai, K. Matsumoto, S. Minne, T. Hunt, and C. F. Quate, “Terabitper-square-inch data storage with the atomic force microscope,” Appl. Phys. Lett. 75(22), 3566–3568 (1999).
[Crossref]

Melville, D. S.

Ming, H.

Minne, S.

E. B. Cooper, S. R. Manalis, H. Fang, H. Dai, K. Matsumoto, S. Minne, T. Hunt, and C. F. Quate, “Terabitper-square-inch data storage with the atomic force microscope,” Appl. Phys. Lett. 75(22), 3566–3568 (1999).
[Crossref]

Moharam, M. G.

Mukai, A.

M. Naya, I. Tsuruma, T. Tani, A. Mukai, S. Sakaguchi, and S. Yasunami, “Near-field optical photolithography for high-aspect-ratio patterning using bilayer resist,” Appl. Phys. Lett. 86(20), 201113 (2005).
[Crossref]

Naya, M.

M. Naya, I. Tsuruma, T. Tani, A. Mukai, S. Sakaguchi, and S. Yasunami, “Near-field optical photolithography for high-aspect-ratio patterning using bilayer resist,” Appl. Phys. Lett. 86(20), 201113 (2005).
[Crossref]

Pendry, J. B.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Pfeiffer, H. C.

R. S. Dhaliwal, W. A. Enichen, S. D. Golldaday, M. S. Gordon, R. A. Kendall, J. E. Lieberman, H. C. Pfeiffer, D. J. Pinckney, C. F. Robinson, J. D. Rockrohr, W. Stickel, and E. V. Tressler, ““PREVAIL- Electron projection technology approach for next generation lithography,” IBM,” J. Res. Dev. (Srinagar) 45, 615–638 (2001).

Pinckney, D. J.

R. S. Dhaliwal, W. A. Enichen, S. D. Golldaday, M. S. Gordon, R. A. Kendall, J. E. Lieberman, H. C. Pfeiffer, D. J. Pinckney, C. F. Robinson, J. D. Rockrohr, W. Stickel, and E. V. Tressler, ““PREVAIL- Electron projection technology approach for next generation lithography,” IBM,” J. Res. Dev. (Srinagar) 45, 615–638 (2001).

Pommet, D. A.

Quate, C. F.

E. B. Cooper, S. R. Manalis, H. Fang, H. Dai, K. Matsumoto, S. Minne, T. Hunt, and C. F. Quate, “Terabitper-square-inch data storage with the atomic force microscope,” Appl. Phys. Lett. 75(22), 3566–3568 (1999).
[Crossref]

Renstrom, P. J.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint lithography with 25-nanometer resolution,” Science 272(5258), 85–87 (1996).
[Crossref]

Robinson, C. F.

R. S. Dhaliwal, W. A. Enichen, S. D. Golldaday, M. S. Gordon, R. A. Kendall, J. E. Lieberman, H. C. Pfeiffer, D. J. Pinckney, C. F. Robinson, J. D. Rockrohr, W. Stickel, and E. V. Tressler, ““PREVAIL- Electron projection technology approach for next generation lithography,” IBM,” J. Res. Dev. (Srinagar) 45, 615–638 (2001).

Rockrohr, J. D.

R. S. Dhaliwal, W. A. Enichen, S. D. Golldaday, M. S. Gordon, R. A. Kendall, J. E. Lieberman, H. C. Pfeiffer, D. J. Pinckney, C. F. Robinson, J. D. Rockrohr, W. Stickel, and E. V. Tressler, ““PREVAIL- Electron projection technology approach for next generation lithography,” IBM,” J. Res. Dev. (Srinagar) 45, 615–638 (2001).

Sakaguchi, S.

M. Naya, I. Tsuruma, T. Tani, A. Mukai, S. Sakaguchi, and S. Yasunami, “Near-field optical photolithography for high-aspect-ratio patterning using bilayer resist,” Appl. Phys. Lett. 86(20), 201113 (2005).
[Crossref]

Stickel, W.

R. S. Dhaliwal, W. A. Enichen, S. D. Golldaday, M. S. Gordon, R. A. Kendall, J. E. Lieberman, H. C. Pfeiffer, D. J. Pinckney, C. F. Robinson, J. D. Rockrohr, W. Stickel, and E. V. Tressler, ““PREVAIL- Electron projection technology approach for next generation lithography,” IBM,” J. Res. Dev. (Srinagar) 45, 615–638 (2001).

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguide: Towards chip-scale propagation with subwavelength scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[Crossref]

Tang, L.

Tani, T.

M. Naya, I. Tsuruma, T. Tani, A. Mukai, S. Sakaguchi, and S. Yasunami, “Near-field optical photolithography for high-aspect-ratio patterning using bilayer resist,” Appl. Phys. Lett. 86(20), 201113 (2005).
[Crossref]

Tressler, E. V.

R. S. Dhaliwal, W. A. Enichen, S. D. Golldaday, M. S. Gordon, R. A. Kendall, J. E. Lieberman, H. C. Pfeiffer, D. J. Pinckney, C. F. Robinson, J. D. Rockrohr, W. Stickel, and E. V. Tressler, ““PREVAIL- Electron projection technology approach for next generation lithography,” IBM,” J. Res. Dev. (Srinagar) 45, 615–638 (2001).

Tsuruma, I.

M. Naya, I. Tsuruma, T. Tani, A. Mukai, S. Sakaguchi, and S. Yasunami, “Near-field optical photolithography for high-aspect-ratio patterning using bilayer resist,” Appl. Phys. Lett. 86(20), 201113 (2005).
[Crossref]

Wang, C.

Wang, P.

Wei, Q. H.

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005).
[Crossref] [PubMed]

Xie, J.

Xu, T.

Yasunami, S.

M. Naya, I. Tsuruma, T. Tani, A. Mukai, S. Sakaguchi, and S. Yasunami, “Near-field optical photolithography for high-aspect-ratio patterning using bilayer resist,” Appl. Phys. Lett. 86(20), 201113 (2005).
[Crossref]

Zhang, D.

Zhang, X.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005).
[Crossref] [PubMed]

Zhao, Y.

Appl. Phys. Lett. (4)

E. B. Cooper, S. R. Manalis, H. Fang, H. Dai, K. Matsumoto, S. Minne, T. Hunt, and C. F. Quate, “Terabitper-square-inch data storage with the atomic force microscope,” Appl. Phys. Lett. 75(22), 3566–3568 (1999).
[Crossref]

J. G. Goodberlet and H. Kavak, “Patterning sub-50 nm features with near-field embedded-amplitude masks,” Appl. Phys. Lett. 81(7), 1315–1317 (2002).
[Crossref]

M. Naya, I. Tsuruma, T. Tani, A. Mukai, S. Sakaguchi, and S. Yasunami, “Near-field optical photolithography for high-aspect-ratio patterning using bilayer resist,” Appl. Phys. Lett. 86(20), 201113 (2005).
[Crossref]

X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84(23), 4780–4782 (2004).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

J. Res. Dev. (Srinagar) (1)

R. S. Dhaliwal, W. A. Enichen, S. D. Golldaday, M. S. Gordon, R. A. Kendall, J. E. Lieberman, H. C. Pfeiffer, D. J. Pinckney, C. F. Robinson, J. D. Rockrohr, W. Stickel, and E. V. Tressler, ““PREVAIL- Electron projection technology approach for next generation lithography,” IBM,” J. Res. Dev. (Srinagar) 45, 615–638 (2001).

Nano Lett. (1)

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005).
[Crossref] [PubMed]

Opt. Express (2)

Phys. Rev. B (2)

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguide: Towards chip-scale propagation with subwavelength scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Science (2)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint lithography with 25-nanometer resolution,” Science 272(5258), 85–87 (1996).
[Crossref]

Other (2)

M. J. Weber, Handbook of Optical Materials, CRC, Boston, (2003).

M. J. Madou, Fundamentals of Microfabrication, CRC, Boca Raton, (2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic drawing of the proposed double-layer planar silver lens (DLSL) structure. The thicknesses of the PMMA , Ag and Al2O3 layers are all equal to 30nm.

Fig. 2
Fig. 2

(a)(b) Calculated distribution of total electrical field intensity for the proposed DSDL structure. The geometrical parameters are the same as those mentioned above.

Fig. 3
Fig. 3

(a) H-field transmission factor shown as a function of wavelength and transverse wave number through the proposed DLSL structure. The dashed red line represents SPPs resonant wavelength 365nm, and the solid red line denotes the operating wavelength 442nm. (b) Intensity contrast (visibility) of interference patterns at different cross sections beneath the output surface of the DLSL structure, d denotes the distance between the output surface and the cross section. The inset depicts the different interference intensities distributions at different distances (d) beneath the output surface of the DLSL structure. The periodicity of the chromium grating mask is set to be 164nm. Other parameters are the same as those mentioned above.

Fig. 3
Fig. 3

Optical transfer function (OTF) for the proposed DLSL structure as a function of the transverse wave number and (a) silver thickness when the thickness of the dielectric is fixed at 30nm; (b) dielectric thickness when the thickness of the silver is fixed at 30nm. Here the wavelength of the TM-polarized incident light is fixed at 442nm and other parameters are the same as those mentioned before.

Fig. 4
Fig. 4

Feature size versus the mask periodicity and the intensity contrast (visibility). The inset depicts interference intensity distributions with different mask periodicities. The wavelength and the thickness of the silver and Al2O3 layer are fixed at 442nm, 30nm, and 30nm, respectively.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ε1kz2+ε2kz1tanh(ikz1d2)=0,for antisymmetric mode
ε1kz2+ε2kz1coth(ikz1d2)=0,for symmetric mode
kz1,22=ε1,2(ωc)2kx2
kx=k0sinθ+2mπ/Λ
Visibility=(ImaxImin)/(Imax+Imin)=(Ez2Ex2)/(Ex2+Ez2)=εprk02/(2kx2εprk02)

Metrics