Abstract

A new magnetometry method based on electromagnetic induced transparency (EIT) with maximally polarized states is demonstrated. An EIT hyperfine resonance, comprising the mF=F state (end-state), is observed at a non-zero angle between the laser beam and the magnetic field. The method takes advantage of the process of end-state pumping, a well-known rival of simpler EIT magnetometry schemes, and therefore benefits at a high laser power. An experimental demonstration and a numerical analysis of the magnetometry method are presented. The analysis points on a clear sensitivity advantage of the end-state EIT magnetometer.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3(4), 227–234 (2007), http://dx.doi.org/10.1038/nphys566 .
    [CrossRef]
  2. D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74(4), 1153–1201 (2002), http://link.aps.org/doi/10.1103/RevModPhys.74.1153 .
    [CrossRef]
  3. D. Budker, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and M. Zolotorev, “Sensitive magnetometry based on nonlinear magneto-optical rotation,” Phys. Rev. A 62(4), 043403 (2000), http://link.aps.org/doi/10.1103/PhysRevA.62.043403 .
    [CrossRef]
  4. I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422(6932), 596–599 (2003), http://dx.doi.org/10.1038/nature01484 .
    [CrossRef] [PubMed]
  5. P. D. D. Schwindt, L. Hollberg, and J. Kitching, “Self-oscillating rubidium magnetometer using nonlinear magneto-optical rotation,” Rev. Sci. Inst. 76(12), 126103 (pages 4) (2005). http://link.aip.org/link/?RSINAK/76/126103/1 .
  6. P. D. D. Schwindt, S. Knappe, V. Shah, L. Hollberg, and J. Kitching, “Chip-scale atomic magnetometer,” App. Phys. Lett. 85(26), 6409–6411 (2004). http://link.aip.org/link/?APL/85/6409/1 .
  7. H. Lee, M. Fleischhauer, and M. O. Scully, “Sensitive detection of magnetic fields including their orientation with a magnetometer based on atomic phase coherence,” Phys. Rev. A 58(3), 2587–2595 (1998), http://link.aps.org/doi/10.1103/PhysRevA.58.2587 .
    [CrossRef]
  8. J. Belfi, G. Bevilacqua, V. Biancalana, S. Cartaleva, Y. Dancheva, and L. Moi, “Cesium coherent population trapping magnetometer for cardiosignal detection in an unshielded environment,” J. Opt. Soc. Am. B 24(9), 2357–2362 (2007), http://josab.osa.org/abstract.cfm?URI=josab-24-9-2357 .
    [CrossRef]
  9. E. Arimondo, Coherent Population Trapping in Laser Spectroscopy, Progress in Optics, vol. 35 (Elsevier, Amsterdam, 1996).
  10. Y.-Y. Jau, A. B. Post, N. N. Kuzma, A. M. Braun, M. V. Romalis, and W. Happer, “Intense, narrow atomic-clock resonances,” Phys. Rev. Lett. 92(11), 110801 (2004), http://link.aps.org/doi/10.1103/PhysRevLett.92.110801 .
    [CrossRef] [PubMed]
  11. J. Vanier, M. W. Levine, D. Janssen, and M. Delaney, “Contrast and linewidth of the coherent population trapping transmission hyperfine resonance line in 87Rb: Effect of optical pumping,” Phys. Rev. A 67(6), 065801 (pages 4) (2003). http://link.aps.org/doi/10.1103/PhysRevA.67.065801 .
  12. M. Shuker, O. Firstenberg, Y. Sagi, A. Ben-kish, N. Davidson, and A. Ron, “Ramsey-like measurement of the decoherence rate between Zeeman sublevels,” Phys. Rev. A 78(6), 063818 (pages 7) (2008). http://link.aps.org/abstract/PRA/v78/e063818 .

2007 (2)

2004 (1)

Y.-Y. Jau, A. B. Post, N. N. Kuzma, A. M. Braun, M. V. Romalis, and W. Happer, “Intense, narrow atomic-clock resonances,” Phys. Rev. Lett. 92(11), 110801 (2004), http://link.aps.org/doi/10.1103/PhysRevLett.92.110801 .
[CrossRef] [PubMed]

2003 (1)

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422(6932), 596–599 (2003), http://dx.doi.org/10.1038/nature01484 .
[CrossRef] [PubMed]

2002 (1)

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74(4), 1153–1201 (2002), http://link.aps.org/doi/10.1103/RevModPhys.74.1153 .
[CrossRef]

2000 (1)

D. Budker, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and M. Zolotorev, “Sensitive magnetometry based on nonlinear magneto-optical rotation,” Phys. Rev. A 62(4), 043403 (2000), http://link.aps.org/doi/10.1103/PhysRevA.62.043403 .
[CrossRef]

1998 (1)

H. Lee, M. Fleischhauer, and M. O. Scully, “Sensitive detection of magnetic fields including their orientation with a magnetometer based on atomic phase coherence,” Phys. Rev. A 58(3), 2587–2595 (1998), http://link.aps.org/doi/10.1103/PhysRevA.58.2587 .
[CrossRef]

Allred, J. C.

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422(6932), 596–599 (2003), http://dx.doi.org/10.1038/nature01484 .
[CrossRef] [PubMed]

Belfi, J.

Bevilacqua, G.

Biancalana, V.

Braun, A. M.

Y.-Y. Jau, A. B. Post, N. N. Kuzma, A. M. Braun, M. V. Romalis, and W. Happer, “Intense, narrow atomic-clock resonances,” Phys. Rev. Lett. 92(11), 110801 (2004), http://link.aps.org/doi/10.1103/PhysRevLett.92.110801 .
[CrossRef] [PubMed]

Budker, D.

D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3(4), 227–234 (2007), http://dx.doi.org/10.1038/nphys566 .
[CrossRef]

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74(4), 1153–1201 (2002), http://link.aps.org/doi/10.1103/RevModPhys.74.1153 .
[CrossRef]

D. Budker, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and M. Zolotorev, “Sensitive magnetometry based on nonlinear magneto-optical rotation,” Phys. Rev. A 62(4), 043403 (2000), http://link.aps.org/doi/10.1103/PhysRevA.62.043403 .
[CrossRef]

Cartaleva, S.

Dancheva, Y.

Fleischhauer, M.

H. Lee, M. Fleischhauer, and M. O. Scully, “Sensitive detection of magnetic fields including their orientation with a magnetometer based on atomic phase coherence,” Phys. Rev. A 58(3), 2587–2595 (1998), http://link.aps.org/doi/10.1103/PhysRevA.58.2587 .
[CrossRef]

Gawlik, W.

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74(4), 1153–1201 (2002), http://link.aps.org/doi/10.1103/RevModPhys.74.1153 .
[CrossRef]

Happer, W.

Y.-Y. Jau, A. B. Post, N. N. Kuzma, A. M. Braun, M. V. Romalis, and W. Happer, “Intense, narrow atomic-clock resonances,” Phys. Rev. Lett. 92(11), 110801 (2004), http://link.aps.org/doi/10.1103/PhysRevLett.92.110801 .
[CrossRef] [PubMed]

Jau, Y.-Y.

Y.-Y. Jau, A. B. Post, N. N. Kuzma, A. M. Braun, M. V. Romalis, and W. Happer, “Intense, narrow atomic-clock resonances,” Phys. Rev. Lett. 92(11), 110801 (2004), http://link.aps.org/doi/10.1103/PhysRevLett.92.110801 .
[CrossRef] [PubMed]

Kimball, D. F.

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74(4), 1153–1201 (2002), http://link.aps.org/doi/10.1103/RevModPhys.74.1153 .
[CrossRef]

D. Budker, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and M. Zolotorev, “Sensitive magnetometry based on nonlinear magneto-optical rotation,” Phys. Rev. A 62(4), 043403 (2000), http://link.aps.org/doi/10.1103/PhysRevA.62.043403 .
[CrossRef]

Kominis, I. K.

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422(6932), 596–599 (2003), http://dx.doi.org/10.1038/nature01484 .
[CrossRef] [PubMed]

Kornack, T. W.

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422(6932), 596–599 (2003), http://dx.doi.org/10.1038/nature01484 .
[CrossRef] [PubMed]

Kuzma, N. N.

Y.-Y. Jau, A. B. Post, N. N. Kuzma, A. M. Braun, M. V. Romalis, and W. Happer, “Intense, narrow atomic-clock resonances,” Phys. Rev. Lett. 92(11), 110801 (2004), http://link.aps.org/doi/10.1103/PhysRevLett.92.110801 .
[CrossRef] [PubMed]

Lee, H.

H. Lee, M. Fleischhauer, and M. O. Scully, “Sensitive detection of magnetic fields including their orientation with a magnetometer based on atomic phase coherence,” Phys. Rev. A 58(3), 2587–2595 (1998), http://link.aps.org/doi/10.1103/PhysRevA.58.2587 .
[CrossRef]

Moi, L.

Post, A. B.

Y.-Y. Jau, A. B. Post, N. N. Kuzma, A. M. Braun, M. V. Romalis, and W. Happer, “Intense, narrow atomic-clock resonances,” Phys. Rev. Lett. 92(11), 110801 (2004), http://link.aps.org/doi/10.1103/PhysRevLett.92.110801 .
[CrossRef] [PubMed]

Rochester, S. M.

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74(4), 1153–1201 (2002), http://link.aps.org/doi/10.1103/RevModPhys.74.1153 .
[CrossRef]

D. Budker, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and M. Zolotorev, “Sensitive magnetometry based on nonlinear magneto-optical rotation,” Phys. Rev. A 62(4), 043403 (2000), http://link.aps.org/doi/10.1103/PhysRevA.62.043403 .
[CrossRef]

Romalis, M.

D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3(4), 227–234 (2007), http://dx.doi.org/10.1038/nphys566 .
[CrossRef]

Romalis, M. V.

Y.-Y. Jau, A. B. Post, N. N. Kuzma, A. M. Braun, M. V. Romalis, and W. Happer, “Intense, narrow atomic-clock resonances,” Phys. Rev. Lett. 92(11), 110801 (2004), http://link.aps.org/doi/10.1103/PhysRevLett.92.110801 .
[CrossRef] [PubMed]

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422(6932), 596–599 (2003), http://dx.doi.org/10.1038/nature01484 .
[CrossRef] [PubMed]

Scully, M. O.

H. Lee, M. Fleischhauer, and M. O. Scully, “Sensitive detection of magnetic fields including their orientation with a magnetometer based on atomic phase coherence,” Phys. Rev. A 58(3), 2587–2595 (1998), http://link.aps.org/doi/10.1103/PhysRevA.58.2587 .
[CrossRef]

Weis, A.

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74(4), 1153–1201 (2002), http://link.aps.org/doi/10.1103/RevModPhys.74.1153 .
[CrossRef]

Yashchuk, V. V.

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74(4), 1153–1201 (2002), http://link.aps.org/doi/10.1103/RevModPhys.74.1153 .
[CrossRef]

D. Budker, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and M. Zolotorev, “Sensitive magnetometry based on nonlinear magneto-optical rotation,” Phys. Rev. A 62(4), 043403 (2000), http://link.aps.org/doi/10.1103/PhysRevA.62.043403 .
[CrossRef]

Zolotorev, M.

D. Budker, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and M. Zolotorev, “Sensitive magnetometry based on nonlinear magneto-optical rotation,” Phys. Rev. A 62(4), 043403 (2000), http://link.aps.org/doi/10.1103/PhysRevA.62.043403 .
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Phys. (1)

D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3(4), 227–234 (2007), http://dx.doi.org/10.1038/nphys566 .
[CrossRef]

Nature (1)

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422(6932), 596–599 (2003), http://dx.doi.org/10.1038/nature01484 .
[CrossRef] [PubMed]

Phys. Rev. A (2)

H. Lee, M. Fleischhauer, and M. O. Scully, “Sensitive detection of magnetic fields including their orientation with a magnetometer based on atomic phase coherence,” Phys. Rev. A 58(3), 2587–2595 (1998), http://link.aps.org/doi/10.1103/PhysRevA.58.2587 .
[CrossRef]

D. Budker, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and M. Zolotorev, “Sensitive magnetometry based on nonlinear magneto-optical rotation,” Phys. Rev. A 62(4), 043403 (2000), http://link.aps.org/doi/10.1103/PhysRevA.62.043403 .
[CrossRef]

Phys. Rev. Lett. (1)

Y.-Y. Jau, A. B. Post, N. N. Kuzma, A. M. Braun, M. V. Romalis, and W. Happer, “Intense, narrow atomic-clock resonances,” Phys. Rev. Lett. 92(11), 110801 (2004), http://link.aps.org/doi/10.1103/PhysRevLett.92.110801 .
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74(4), 1153–1201 (2002), http://link.aps.org/doi/10.1103/RevModPhys.74.1153 .
[CrossRef]

Other (5)

P. D. D. Schwindt, L. Hollberg, and J. Kitching, “Self-oscillating rubidium magnetometer using nonlinear magneto-optical rotation,” Rev. Sci. Inst. 76(12), 126103 (pages 4) (2005). http://link.aip.org/link/?RSINAK/76/126103/1 .

P. D. D. Schwindt, S. Knappe, V. Shah, L. Hollberg, and J. Kitching, “Chip-scale atomic magnetometer,” App. Phys. Lett. 85(26), 6409–6411 (2004). http://link.aip.org/link/?APL/85/6409/1 .

J. Vanier, M. W. Levine, D. Janssen, and M. Delaney, “Contrast and linewidth of the coherent population trapping transmission hyperfine resonance line in 87Rb: Effect of optical pumping,” Phys. Rev. A 67(6), 065801 (pages 4) (2003). http://link.aps.org/doi/10.1103/PhysRevA.67.065801 .

M. Shuker, O. Firstenberg, Y. Sagi, A. Ben-kish, N. Davidson, and A. Ron, “Ramsey-like measurement of the decoherence rate between Zeeman sublevels,” Phys. Rev. A 78(6), 063818 (pages 7) (2008). http://link.aps.org/abstract/PRA/v78/e063818 .

E. Arimondo, Coherent Population Trapping in Laser Spectroscopy, Progress in Optics, vol. 35 (Elsevier, Amsterdam, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Level scheme of the D1 transition in 87Rb. The blue arrows represent the (0,0) resonance (the so-called clock resonance), the dashed arrows represent the ( + 1, + 1) resonance, and the red arrows represent the ( + 1, + 2) resonance. (b) The experimental system (see description in text).

Fig. 2
Fig. 2

Frequency scan of the RF modulation in 6 experiments (full lines) and the corresponding simulations (dashed lines). f0 is the frequency of the clock transition. The EIT lines, from left to right, are the (0,0) clock line, (0, + 1) line, ( + 1, + 1) line, and ( + 1, + 2) line. The angle between the magnetic field and beam is 0 (blue), 5, 15, 25, 34 and 40 (brown) degrees. Inset: The ratio between the frequency of the EIT lines and ωZeeman(+1,+1) .

Fig. 3
Fig. 3

(a) and (b), calculated FOM versus the logarithmic scale of laser power (in terms of power broadening in KHZ units) and the angular deviation of the magnetic field for (a) the ( + 1, + 1) resonance and (b) the ( + 1, + 2) resonance. The ratio between the maximal values is about 2. (c) The ratio between the ( + 1, + 2) FOM and the ( + 1, + 1) FOM versus the angular deviation at the experimental conditions. Note that the measurements were done at a laser power slightly higher than the optimal for the ( + 1, + 1) scheme, thus the maximum of 3.5 instead of 2.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E=E(isinθ2π^+1+cosθ2σ++1+cosθ2σ),
σ^+=x^iy^2       ;       σ^=x^+iy^2     ;     π^=iz^.
ddtρ=ih[H,ρ]+Lρ,
FOM=δf[KHz/mG]ContrastFWHM[KHz].
FOM=δf[d(Imχ)dΔ]|Δ=0.

Metrics