Abstract

A theoretical model is presented for simulating the sampled grating distributed Bragg reflector (SGDBR) laser integrated with semiconductor optical amplifier (SOA) and Mach-Zehnder (MZ) modulator. In this model, the active and passive sections are processed separately. The active region of laser and the SOA section are modeled by time domain traveling wave (TDTW) method. While the spectral properties of the SG and the MZ modulator are firstly calculated by Transfer-Matrix Method (TMM) and Beam Propagation Method (BPM), respectively, and then transformed into time domain using digital filter approach. Furthermore, the nonuniform carrier-dependence of gain and refractive index are also incorporated via Effective Bloch Equations (EBE). Compared with the full time-domain method, our model would be more flexible and efficient. The static and modulation performances of device are successfully simulated. This indicates that it can be a powerful platform for investigating the complex Photonic Integrated Circuits (PICs).

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. P. Kaminow, “Optical integrated circuits: a personal perspective,” J. Lightwave Technol. 26(9), 994–1004 (2008).
    [CrossRef]
  2. Infinera white paper, “Photonic Integrated Circuits,” http://www.infinera.com .
  3. J. S. Barton, E. J. Skogen, M. L. Masanovic, S. P. Denbaars, and L. A. Coldren, “A widely tunable high-speed transmitter using an integrated SGDBR laser-semiconductor optical amplifier and Mach–Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1113–1117 (2003).
    [CrossRef]
  4. P. Brosson and P. Delansay, “Modeling of the static and dynamic responses of an integrated laser Mach-Zehnder modulator and comparison with an integrated laser EA modulator,” J. Lightwave Technol. 16(12), 2407–2418 (1998).
    [CrossRef]
  5. X. Li, W. P. Huang, D. M. Adams, C. Rolland, and T. Makino, “Modeling and design of a DFB laser integrated with a Mach–Zehnder modulator,” IEEE J. Quantum Electron. 34(10), 1807–1815 (1998).
    [CrossRef]
  6. J. Carroll, J. Whiteaway, and D. Plumb, Distributed Feedback Semiconductor Lasers (The Institution of Electrical Engineers, London, 1998).
  7. E. A. Avrutin, V. Nikolaev, and D. Gallagher, “Monolithic mode-locked semiconductor lasers,” NUSOD 185–215 (2004).
  8. S. F. Yu and N. Q. Ngo, “Simple model for a distributed feedback laser integrated with a Mach-Zehnder modulator,” IEEE J. Quantum Electron. 38(8), 1062–1074 (2002).
    [CrossRef]
  9. W. Li, W. Huang, and X. Li, “Digital Filter Approach for Simulation of a Complex Integrated Laser Diode Based on the Traveling-Wave Model,” IEEE J. Quantum Electron. 40(5), 473–480 (2004).
    [CrossRef]
  10. C. Z. Ning, R. A. Indik, and J. V. Moloney, “Effective bloch equations for semiconductor lasers and amplifiers,” IEEE J. Quantum Electron. 33(9), 1543–1550 (1997).
    [CrossRef]
  11. J. Park and Y. Kawakami, “Time-domain models for the performance simulation of semiconductor optical amplifiers,” Opt. Express 14(7), 2956–2968 (2006).
    [CrossRef] [PubMed]
  12. W. W. Chow, and S. W. Koch, Semiconductor-laser fundamentals (Springer-Verlag, Berlin, 1999).
  13. S. L. Chuang, “Efficient band-structure calculations of strained quantum wells,” Phys. Rev. B 43(12), 9649–9661 (1991).
    [CrossRef]
  14. L. Dong, R. K. Zhang, D. L. Wang, S. Jiang, Y. L. Yu, S. Z. Zhao, and S. H. Liu, “Modeling wavelength switching of widely tunable sampled-grating DBR lasers using traveling-wave model with digital filter approach,” IEEE Photon. Technol. Lett. 20(20), 1721–1723 (2008).
    [CrossRef]
  15. T. Makino, “Transfer-Matrix Formulation of Spontaneous Emission Noise of DFB Semiconductor Lasers,” J. Lightwave Technol. 9(1), 84–91 (1991).
    [CrossRef]
  16. J. Buus, M. C. Amann, and D. J. Blumenthal, Tunable Laser Diodes and Related Optical Sources (John Wiley & Sons, Hoboken, New Jersey, 2005).
  17. R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” IEEE J. Sel. Top. Quantum Electron. 6(1), 150–162 (2000).
    [CrossRef]
  18. OlympiOs manual, http://www.c2v.nl/ .
  19. D. Kincaid, and W. Cheney, Numerical analysis-mathematics of scientific computing (China Machine Press, Beijing, 2005).
  20. S. K. Mitra, Digital Signal Processing-A Compute-Based Approach (Publishing House of Electronics Industry, Beijing, 2006).
  21. E. J. Skogen, J. S. Barton, S. P. DenBaars, and L. A. Coldren, “Tunable sampled-grating DBR lasers using quantum-well intermixing,” IEEE Photon. Technol. Lett. 14(9), 1243–1245 (2002).
    [CrossRef]
  22. J. F. Vinchant, J. A. Cavailles, M. Erman, P. Jarry, and M. Renaud, “InP/GaInAsP guided-wave phase modulators based on carrier-induced effects: theory and experiment,” J. Lightwave Technol. 10(1), 63–70 (1992).
    [CrossRef]
  23. P. Kaczmarski and P. E. Lagasse, “Bidirectional beam propagation method,” Electron. Lett. 24(11), 675–676 (1988).
    [CrossRef]

2008 (2)

L. Dong, R. K. Zhang, D. L. Wang, S. Jiang, Y. L. Yu, S. Z. Zhao, and S. H. Liu, “Modeling wavelength switching of widely tunable sampled-grating DBR lasers using traveling-wave model with digital filter approach,” IEEE Photon. Technol. Lett. 20(20), 1721–1723 (2008).
[CrossRef]

I. P. Kaminow, “Optical integrated circuits: a personal perspective,” J. Lightwave Technol. 26(9), 994–1004 (2008).
[CrossRef]

2006 (1)

2004 (2)

E. A. Avrutin, V. Nikolaev, and D. Gallagher, “Monolithic mode-locked semiconductor lasers,” NUSOD 185–215 (2004).

W. Li, W. Huang, and X. Li, “Digital Filter Approach for Simulation of a Complex Integrated Laser Diode Based on the Traveling-Wave Model,” IEEE J. Quantum Electron. 40(5), 473–480 (2004).
[CrossRef]

2003 (1)

J. S. Barton, E. J. Skogen, M. L. Masanovic, S. P. Denbaars, and L. A. Coldren, “A widely tunable high-speed transmitter using an integrated SGDBR laser-semiconductor optical amplifier and Mach–Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1113–1117 (2003).
[CrossRef]

2002 (2)

E. J. Skogen, J. S. Barton, S. P. DenBaars, and L. A. Coldren, “Tunable sampled-grating DBR lasers using quantum-well intermixing,” IEEE Photon. Technol. Lett. 14(9), 1243–1245 (2002).
[CrossRef]

S. F. Yu and N. Q. Ngo, “Simple model for a distributed feedback laser integrated with a Mach-Zehnder modulator,” IEEE J. Quantum Electron. 38(8), 1062–1074 (2002).
[CrossRef]

2000 (1)

R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” IEEE J. Sel. Top. Quantum Electron. 6(1), 150–162 (2000).
[CrossRef]

1998 (2)

X. Li, W. P. Huang, D. M. Adams, C. Rolland, and T. Makino, “Modeling and design of a DFB laser integrated with a Mach–Zehnder modulator,” IEEE J. Quantum Electron. 34(10), 1807–1815 (1998).
[CrossRef]

P. Brosson and P. Delansay, “Modeling of the static and dynamic responses of an integrated laser Mach-Zehnder modulator and comparison with an integrated laser EA modulator,” J. Lightwave Technol. 16(12), 2407–2418 (1998).
[CrossRef]

1997 (1)

C. Z. Ning, R. A. Indik, and J. V. Moloney, “Effective bloch equations for semiconductor lasers and amplifiers,” IEEE J. Quantum Electron. 33(9), 1543–1550 (1997).
[CrossRef]

1992 (1)

J. F. Vinchant, J. A. Cavailles, M. Erman, P. Jarry, and M. Renaud, “InP/GaInAsP guided-wave phase modulators based on carrier-induced effects: theory and experiment,” J. Lightwave Technol. 10(1), 63–70 (1992).
[CrossRef]

1991 (2)

S. L. Chuang, “Efficient band-structure calculations of strained quantum wells,” Phys. Rev. B 43(12), 9649–9661 (1991).
[CrossRef]

T. Makino, “Transfer-Matrix Formulation of Spontaneous Emission Noise of DFB Semiconductor Lasers,” J. Lightwave Technol. 9(1), 84–91 (1991).
[CrossRef]

1988 (1)

P. Kaczmarski and P. E. Lagasse, “Bidirectional beam propagation method,” Electron. Lett. 24(11), 675–676 (1988).
[CrossRef]

Adams, D. M.

X. Li, W. P. Huang, D. M. Adams, C. Rolland, and T. Makino, “Modeling and design of a DFB laser integrated with a Mach–Zehnder modulator,” IEEE J. Quantum Electron. 34(10), 1807–1815 (1998).
[CrossRef]

Avrutin, E. A.

E. A. Avrutin, V. Nikolaev, and D. Gallagher, “Monolithic mode-locked semiconductor lasers,” NUSOD 185–215 (2004).

Barton, J. S.

J. S. Barton, E. J. Skogen, M. L. Masanovic, S. P. Denbaars, and L. A. Coldren, “A widely tunable high-speed transmitter using an integrated SGDBR laser-semiconductor optical amplifier and Mach–Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1113–1117 (2003).
[CrossRef]

E. J. Skogen, J. S. Barton, S. P. DenBaars, and L. A. Coldren, “Tunable sampled-grating DBR lasers using quantum-well intermixing,” IEEE Photon. Technol. Lett. 14(9), 1243–1245 (2002).
[CrossRef]

Brosson, P.

Cavailles, J. A.

J. F. Vinchant, J. A. Cavailles, M. Erman, P. Jarry, and M. Renaud, “InP/GaInAsP guided-wave phase modulators based on carrier-induced effects: theory and experiment,” J. Lightwave Technol. 10(1), 63–70 (1992).
[CrossRef]

Chuang, S. L.

S. L. Chuang, “Efficient band-structure calculations of strained quantum wells,” Phys. Rev. B 43(12), 9649–9661 (1991).
[CrossRef]

Coldren, L. A.

J. S. Barton, E. J. Skogen, M. L. Masanovic, S. P. Denbaars, and L. A. Coldren, “A widely tunable high-speed transmitter using an integrated SGDBR laser-semiconductor optical amplifier and Mach–Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1113–1117 (2003).
[CrossRef]

E. J. Skogen, J. S. Barton, S. P. DenBaars, and L. A. Coldren, “Tunable sampled-grating DBR lasers using quantum-well intermixing,” IEEE Photon. Technol. Lett. 14(9), 1243–1245 (2002).
[CrossRef]

Delansay, P.

Denbaars, S. P.

J. S. Barton, E. J. Skogen, M. L. Masanovic, S. P. Denbaars, and L. A. Coldren, “A widely tunable high-speed transmitter using an integrated SGDBR laser-semiconductor optical amplifier and Mach–Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1113–1117 (2003).
[CrossRef]

E. J. Skogen, J. S. Barton, S. P. DenBaars, and L. A. Coldren, “Tunable sampled-grating DBR lasers using quantum-well intermixing,” IEEE Photon. Technol. Lett. 14(9), 1243–1245 (2002).
[CrossRef]

Dong, L.

L. Dong, R. K. Zhang, D. L. Wang, S. Jiang, Y. L. Yu, S. Z. Zhao, and S. H. Liu, “Modeling wavelength switching of widely tunable sampled-grating DBR lasers using traveling-wave model with digital filter approach,” IEEE Photon. Technol. Lett. 20(20), 1721–1723 (2008).
[CrossRef]

Erman, M.

J. F. Vinchant, J. A. Cavailles, M. Erman, P. Jarry, and M. Renaud, “InP/GaInAsP guided-wave phase modulators based on carrier-induced effects: theory and experiment,” J. Lightwave Technol. 10(1), 63–70 (1992).
[CrossRef]

Gallagher, D.

E. A. Avrutin, V. Nikolaev, and D. Gallagher, “Monolithic mode-locked semiconductor lasers,” NUSOD 185–215 (2004).

Gopinath, A.

R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” IEEE J. Sel. Top. Quantum Electron. 6(1), 150–162 (2000).
[CrossRef]

Helfert, S.

R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” IEEE J. Sel. Top. Quantum Electron. 6(1), 150–162 (2000).
[CrossRef]

Huang, W.

W. Li, W. Huang, and X. Li, “Digital Filter Approach for Simulation of a Complex Integrated Laser Diode Based on the Traveling-Wave Model,” IEEE J. Quantum Electron. 40(5), 473–480 (2004).
[CrossRef]

Huang, W. P.

X. Li, W. P. Huang, D. M. Adams, C. Rolland, and T. Makino, “Modeling and design of a DFB laser integrated with a Mach–Zehnder modulator,” IEEE J. Quantum Electron. 34(10), 1807–1815 (1998).
[CrossRef]

Indik, R. A.

C. Z. Ning, R. A. Indik, and J. V. Moloney, “Effective bloch equations for semiconductor lasers and amplifiers,” IEEE J. Quantum Electron. 33(9), 1543–1550 (1997).
[CrossRef]

Jarry, P.

J. F. Vinchant, J. A. Cavailles, M. Erman, P. Jarry, and M. Renaud, “InP/GaInAsP guided-wave phase modulators based on carrier-induced effects: theory and experiment,” J. Lightwave Technol. 10(1), 63–70 (1992).
[CrossRef]

Jiang, S.

L. Dong, R. K. Zhang, D. L. Wang, S. Jiang, Y. L. Yu, S. Z. Zhao, and S. H. Liu, “Modeling wavelength switching of widely tunable sampled-grating DBR lasers using traveling-wave model with digital filter approach,” IEEE Photon. Technol. Lett. 20(20), 1721–1723 (2008).
[CrossRef]

Kaczmarski, P.

P. Kaczmarski and P. E. Lagasse, “Bidirectional beam propagation method,” Electron. Lett. 24(11), 675–676 (1988).
[CrossRef]

Kaminow, I. P.

Kawakami, Y.

Lagasse, P. E.

P. Kaczmarski and P. E. Lagasse, “Bidirectional beam propagation method,” Electron. Lett. 24(11), 675–676 (1988).
[CrossRef]

Li, W.

W. Li, W. Huang, and X. Li, “Digital Filter Approach for Simulation of a Complex Integrated Laser Diode Based on the Traveling-Wave Model,” IEEE J. Quantum Electron. 40(5), 473–480 (2004).
[CrossRef]

Li, X.

W. Li, W. Huang, and X. Li, “Digital Filter Approach for Simulation of a Complex Integrated Laser Diode Based on the Traveling-Wave Model,” IEEE J. Quantum Electron. 40(5), 473–480 (2004).
[CrossRef]

X. Li, W. P. Huang, D. M. Adams, C. Rolland, and T. Makino, “Modeling and design of a DFB laser integrated with a Mach–Zehnder modulator,” IEEE J. Quantum Electron. 34(10), 1807–1815 (1998).
[CrossRef]

Liu, S. H.

L. Dong, R. K. Zhang, D. L. Wang, S. Jiang, Y. L. Yu, S. Z. Zhao, and S. H. Liu, “Modeling wavelength switching of widely tunable sampled-grating DBR lasers using traveling-wave model with digital filter approach,” IEEE Photon. Technol. Lett. 20(20), 1721–1723 (2008).
[CrossRef]

Makino, T.

X. Li, W. P. Huang, D. M. Adams, C. Rolland, and T. Makino, “Modeling and design of a DFB laser integrated with a Mach–Zehnder modulator,” IEEE J. Quantum Electron. 34(10), 1807–1815 (1998).
[CrossRef]

Makino,, T.

T. Makino, “Transfer-Matrix Formulation of Spontaneous Emission Noise of DFB Semiconductor Lasers,” J. Lightwave Technol. 9(1), 84–91 (1991).
[CrossRef]

Masanovic, M. L.

J. S. Barton, E. J. Skogen, M. L. Masanovic, S. P. Denbaars, and L. A. Coldren, “A widely tunable high-speed transmitter using an integrated SGDBR laser-semiconductor optical amplifier and Mach–Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1113–1117 (2003).
[CrossRef]

Moloney, J. V.

C. Z. Ning, R. A. Indik, and J. V. Moloney, “Effective bloch equations for semiconductor lasers and amplifiers,” IEEE J. Quantum Electron. 33(9), 1543–1550 (1997).
[CrossRef]

Ngo, N. Q.

S. F. Yu and N. Q. Ngo, “Simple model for a distributed feedback laser integrated with a Mach-Zehnder modulator,” IEEE J. Quantum Electron. 38(8), 1062–1074 (2002).
[CrossRef]

Nikolaev, V.

E. A. Avrutin, V. Nikolaev, and D. Gallagher, “Monolithic mode-locked semiconductor lasers,” NUSOD 185–215 (2004).

Ning, C. Z.

C. Z. Ning, R. A. Indik, and J. V. Moloney, “Effective bloch equations for semiconductor lasers and amplifiers,” IEEE J. Quantum Electron. 33(9), 1543–1550 (1997).
[CrossRef]

Park, J.

Pregla, R.

R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” IEEE J. Sel. Top. Quantum Electron. 6(1), 150–162 (2000).
[CrossRef]

Renaud, M.

J. F. Vinchant, J. A. Cavailles, M. Erman, P. Jarry, and M. Renaud, “InP/GaInAsP guided-wave phase modulators based on carrier-induced effects: theory and experiment,” J. Lightwave Technol. 10(1), 63–70 (1992).
[CrossRef]

Rolland, C.

X. Li, W. P. Huang, D. M. Adams, C. Rolland, and T. Makino, “Modeling and design of a DFB laser integrated with a Mach–Zehnder modulator,” IEEE J. Quantum Electron. 34(10), 1807–1815 (1998).
[CrossRef]

Scarmozzino, R.

R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” IEEE J. Sel. Top. Quantum Electron. 6(1), 150–162 (2000).
[CrossRef]

Skogen, E. J.

J. S. Barton, E. J. Skogen, M. L. Masanovic, S. P. Denbaars, and L. A. Coldren, “A widely tunable high-speed transmitter using an integrated SGDBR laser-semiconductor optical amplifier and Mach–Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1113–1117 (2003).
[CrossRef]

E. J. Skogen, J. S. Barton, S. P. DenBaars, and L. A. Coldren, “Tunable sampled-grating DBR lasers using quantum-well intermixing,” IEEE Photon. Technol. Lett. 14(9), 1243–1245 (2002).
[CrossRef]

Vinchant, J. F.

J. F. Vinchant, J. A. Cavailles, M. Erman, P. Jarry, and M. Renaud, “InP/GaInAsP guided-wave phase modulators based on carrier-induced effects: theory and experiment,” J. Lightwave Technol. 10(1), 63–70 (1992).
[CrossRef]

Wang, D. L.

L. Dong, R. K. Zhang, D. L. Wang, S. Jiang, Y. L. Yu, S. Z. Zhao, and S. H. Liu, “Modeling wavelength switching of widely tunable sampled-grating DBR lasers using traveling-wave model with digital filter approach,” IEEE Photon. Technol. Lett. 20(20), 1721–1723 (2008).
[CrossRef]

Yu, S. F.

S. F. Yu and N. Q. Ngo, “Simple model for a distributed feedback laser integrated with a Mach-Zehnder modulator,” IEEE J. Quantum Electron. 38(8), 1062–1074 (2002).
[CrossRef]

Yu, Y. L.

L. Dong, R. K. Zhang, D. L. Wang, S. Jiang, Y. L. Yu, S. Z. Zhao, and S. H. Liu, “Modeling wavelength switching of widely tunable sampled-grating DBR lasers using traveling-wave model with digital filter approach,” IEEE Photon. Technol. Lett. 20(20), 1721–1723 (2008).
[CrossRef]

Zhang, R. K.

L. Dong, R. K. Zhang, D. L. Wang, S. Jiang, Y. L. Yu, S. Z. Zhao, and S. H. Liu, “Modeling wavelength switching of widely tunable sampled-grating DBR lasers using traveling-wave model with digital filter approach,” IEEE Photon. Technol. Lett. 20(20), 1721–1723 (2008).
[CrossRef]

Zhao, S. Z.

L. Dong, R. K. Zhang, D. L. Wang, S. Jiang, Y. L. Yu, S. Z. Zhao, and S. H. Liu, “Modeling wavelength switching of widely tunable sampled-grating DBR lasers using traveling-wave model with digital filter approach,” IEEE Photon. Technol. Lett. 20(20), 1721–1723 (2008).
[CrossRef]

Electron. Lett. (1)

P. Kaczmarski and P. E. Lagasse, “Bidirectional beam propagation method,” Electron. Lett. 24(11), 675–676 (1988).
[CrossRef]

IEEE J. Quantum Electron. (4)

X. Li, W. P. Huang, D. M. Adams, C. Rolland, and T. Makino, “Modeling and design of a DFB laser integrated with a Mach–Zehnder modulator,” IEEE J. Quantum Electron. 34(10), 1807–1815 (1998).
[CrossRef]

S. F. Yu and N. Q. Ngo, “Simple model for a distributed feedback laser integrated with a Mach-Zehnder modulator,” IEEE J. Quantum Electron. 38(8), 1062–1074 (2002).
[CrossRef]

W. Li, W. Huang, and X. Li, “Digital Filter Approach for Simulation of a Complex Integrated Laser Diode Based on the Traveling-Wave Model,” IEEE J. Quantum Electron. 40(5), 473–480 (2004).
[CrossRef]

C. Z. Ning, R. A. Indik, and J. V. Moloney, “Effective bloch equations for semiconductor lasers and amplifiers,” IEEE J. Quantum Electron. 33(9), 1543–1550 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” IEEE J. Sel. Top. Quantum Electron. 6(1), 150–162 (2000).
[CrossRef]

J. S. Barton, E. J. Skogen, M. L. Masanovic, S. P. Denbaars, and L. A. Coldren, “A widely tunable high-speed transmitter using an integrated SGDBR laser-semiconductor optical amplifier and Mach–Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1113–1117 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

L. Dong, R. K. Zhang, D. L. Wang, S. Jiang, Y. L. Yu, S. Z. Zhao, and S. H. Liu, “Modeling wavelength switching of widely tunable sampled-grating DBR lasers using traveling-wave model with digital filter approach,” IEEE Photon. Technol. Lett. 20(20), 1721–1723 (2008).
[CrossRef]

E. J. Skogen, J. S. Barton, S. P. DenBaars, and L. A. Coldren, “Tunable sampled-grating DBR lasers using quantum-well intermixing,” IEEE Photon. Technol. Lett. 14(9), 1243–1245 (2002).
[CrossRef]

J. Lightwave Technol. (4)

J. F. Vinchant, J. A. Cavailles, M. Erman, P. Jarry, and M. Renaud, “InP/GaInAsP guided-wave phase modulators based on carrier-induced effects: theory and experiment,” J. Lightwave Technol. 10(1), 63–70 (1992).
[CrossRef]

T. Makino, “Transfer-Matrix Formulation of Spontaneous Emission Noise of DFB Semiconductor Lasers,” J. Lightwave Technol. 9(1), 84–91 (1991).
[CrossRef]

P. Brosson and P. Delansay, “Modeling of the static and dynamic responses of an integrated laser Mach-Zehnder modulator and comparison with an integrated laser EA modulator,” J. Lightwave Technol. 16(12), 2407–2418 (1998).
[CrossRef]

I. P. Kaminow, “Optical integrated circuits: a personal perspective,” J. Lightwave Technol. 26(9), 994–1004 (2008).
[CrossRef]

NUSOD (1)

E. A. Avrutin, V. Nikolaev, and D. Gallagher, “Monolithic mode-locked semiconductor lasers,” NUSOD 185–215 (2004).

Opt. Express (1)

Phys. Rev. B (1)

S. L. Chuang, “Efficient band-structure calculations of strained quantum wells,” Phys. Rev. B 43(12), 9649–9661 (1991).
[CrossRef]

Other (7)

W. W. Chow, and S. W. Koch, Semiconductor-laser fundamentals (Springer-Verlag, Berlin, 1999).

J. Buus, M. C. Amann, and D. J. Blumenthal, Tunable Laser Diodes and Related Optical Sources (John Wiley & Sons, Hoboken, New Jersey, 2005).

OlympiOs manual, http://www.c2v.nl/ .

D. Kincaid, and W. Cheney, Numerical analysis-mathematics of scientific computing (China Machine Press, Beijing, 2005).

S. K. Mitra, Digital Signal Processing-A Compute-Based Approach (Publishing House of Electronics Industry, Beijing, 2006).

J. Carroll, J. Whiteaway, and D. Plumb, Distributed Feedback Semiconductor Lasers (The Institution of Electrical Engineers, London, 1998).

Infinera white paper, “Photonic Integrated Circuits,” http://www.infinera.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic configuration of a SGDBR integrated with SOA and MZ modulator with 2 × 2 MMI output coupler.

Fig. 2
Fig. 2

Active/passive offset-quantum well structure. This figure is referred from Ref [3].

Fig. 3
Fig. 3

(a) Gain and (b) refractive index change with respect to different carrier density for active and SOA sections. The solid lines are the results from the microscopic theory, while the dash lines are the fitting results.

Fig. 4
Fig. 4

(a) Reflection spectrum of the F/RSG without current injection. (b) Tuning characteristics of SGDBR laser, the maximum tuning current injected in the F/RSG are 30 mA. (c) Superimposed of tuning spectra of ten different wavelengths. (d) SOA gain as a function of SOA length.

Fig. 5
Fig. 5

BPM simulation result of MZ modulator section using OlympIOs software.

Fig. 6
Fig. 6

(a) Transmission curves for MZ modulator at 1.57 μm. The solid line is for the lumped electrode, while the dash-dot line is for the push-pull configuration. (b) Characteristic spectrums of MZ modulator under different voltage in the upper branch for the push-pull configuration.

Fig. 7
Fig. 7

Large-signal modulation response of the device. (a) Driven signal in the upper branch (solid line) and the lower branch (dash line) (b) output power (c) output spectrum from the upper end and (d) time resolved chirp performance from the upper end of the 2 × 2 MMI.

Tables (1)

Tables Icon

Table 1 Simulation Parameters

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

χ(N,ω)2εrδn(N,ω)j1βg(N,ω)=χ0+i=1TAi(N)ω+ω0ωp(N)δi(N)+jΓi(N)
(1vgt±z)EF/R=[Γg0α+jk0ΓΔn0]EF/R+jβ2ε0i=1TΔpiF/R(z,t)+S
S(z,t)S*(z',t')=γK(BN2L)vgδ(zz')δ(tt')
tΔpiF/R=[jωp(z)+jδi(z)+Γi(z)]ΔpiF/R+jε0Ai(z)EF/R
dNdt=ηIewdNτBN2CN3g04ω0β(|EF|2+|ER|2)+j4ω0ε0(Δp1F*EFΔp1FEF*+Δp1R*ERΔp1RER*)
dNdt=ηIewdpNτpBN2CpN3
x(t)=1Mk=0M1X(f)e2πjkfΔt
Y=k=0Mxk(t)ynk
ΔnPockels=12n3r41(V/dp),ΔnKerr=12n3RKerr(V/dp)2
r41=1.4×1010cm/V,Rkerr=1.5×1010exp(8.85ΔE)cm2/V2
V(t)=Vstart+(VstopVstart)(1exp(t2/τRC2))

Metrics