Abstract

We propose an all-fiber band-rejection filter with a tunable bandwidth, which is realized by putting a normal long-period fiber grating in series with a rotary long-period fiber grating written in a twisted single-mode fiber by CO2 laser pulses. Bandwidth tuning is achieved by applying torsion to the composite grating. Our experimental filter shows a bandwidth tuning of ~16.3 nm at a rejection level of ~15 dB and a polarization-dependent loss lower than ~0.9 dB.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
    [CrossRef]
  2. P. Steinvurzel, E. D. Moore, E. C. Mägi, and B. J. Eggleton, “Tuning properties of long period gratings in photonic bandgap fibers,” Opt. Lett. 31(14), 2103–2105 (2006).
    [CrossRef] [PubMed]
  3. K. R. Sohn and K. T. Kim, “Thermo-optically tunable band-rejection filters using mechanically formed long-period fiber gratings,” Opt. Lett. 30(20), 2688–2690 (2005).
    [CrossRef] [PubMed]
  4. J. H. Lim, K. S. Lee, J. C. Kim, and B. H. Lee, “Tunable fiber gratings fabricated in photonic crystal fiber by use of mechanical pressure,” Opt. Lett. 29(4), 331–333 (2004).
    [CrossRef] [PubMed]
  5. W. Shin, B. A. Yu, Y. C. Noh, J. Lee, D. K. Ko, and K. Oh, “Bandwidth-tunable band-rejection filter based on helicoidal fiber grating pair of opposite helicities,” Opt. Lett. 32(10), 1214–1216 (2007).
    [CrossRef] [PubMed]
  6. A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windler, and T. A. Strasser, “Electrically Tunable Efficient Broad-Band Fiber Filter,” IEEE Photon. Technol. Lett. 11(4), 445–447 (1999).
    [CrossRef]
  7. Y. J. Rao, T. Zhu, Z. L. Ran, Y. P. Wang, J. Jiang, and A. Z. Hu, “Novel long-period fiber gratings written by high-frequency CO2 laser pulses and applications in optical fiber communication,” Opt. Commun. 229(1-6), 209–221 (2004).
    [CrossRef]
  8. T. Zhu, Y. J. Rao, and Q. J. Mo, “Simultaneous measurement of refractive index and temperature using a single ultra-long-period fiber grating,” IEEE Photon. Technol. Lett. 17(12), 2700–2702 (2005).
    [CrossRef]
  9. D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser beams,” Electron. Lett. 34(3), 302–303 (1998).
    [CrossRef]
  10. T. Zhu, Y. J. Rao, J. L. Wang, and Y. Song, “Strain sensor without temperature compensation based on a LPFG with strongly rotary refractive index modulation,” Electron. Lett. 43(21), 1132–1133 (2007).
    [CrossRef]
  11. T. Zhu, Y. J. Rao, Y. Song, K. S. Chiang, and M. Liu, “Highly sensitive temperature-independent strain sensor based on a long-period fiber grating with a CO2-laser engraved rotary structure,” IEEE Photon. Technol. Lett. 21(8), 543–545 (2009).
    [CrossRef]
  12. Y. Liu and K. S. Chiang, “CO(2) laser writing of long-period fiber gratings in optical fibers under tension,” Opt. Lett. 33(17), 1933–1935 (2008).
    [CrossRef] [PubMed]
  13. T. Zhu, K. S. Chiang, Y. J. Rao, C. H. Shi, and M. Liu, “Characterization of long-period fiber gratings written by CO2 laser in twisted single-mode fibers,” J. Lightwave Technol. (to be published).

2009 (1)

T. Zhu, Y. J. Rao, Y. Song, K. S. Chiang, and M. Liu, “Highly sensitive temperature-independent strain sensor based on a long-period fiber grating with a CO2-laser engraved rotary structure,” IEEE Photon. Technol. Lett. 21(8), 543–545 (2009).
[CrossRef]

2008 (1)

2007 (2)

T. Zhu, Y. J. Rao, J. L. Wang, and Y. Song, “Strain sensor without temperature compensation based on a LPFG with strongly rotary refractive index modulation,” Electron. Lett. 43(21), 1132–1133 (2007).
[CrossRef]

W. Shin, B. A. Yu, Y. C. Noh, J. Lee, D. K. Ko, and K. Oh, “Bandwidth-tunable band-rejection filter based on helicoidal fiber grating pair of opposite helicities,” Opt. Lett. 32(10), 1214–1216 (2007).
[CrossRef] [PubMed]

2006 (1)

2005 (2)

K. R. Sohn and K. T. Kim, “Thermo-optically tunable band-rejection filters using mechanically formed long-period fiber gratings,” Opt. Lett. 30(20), 2688–2690 (2005).
[CrossRef] [PubMed]

T. Zhu, Y. J. Rao, and Q. J. Mo, “Simultaneous measurement of refractive index and temperature using a single ultra-long-period fiber grating,” IEEE Photon. Technol. Lett. 17(12), 2700–2702 (2005).
[CrossRef]

2004 (2)

Y. J. Rao, T. Zhu, Z. L. Ran, Y. P. Wang, J. Jiang, and A. Z. Hu, “Novel long-period fiber gratings written by high-frequency CO2 laser pulses and applications in optical fiber communication,” Opt. Commun. 229(1-6), 209–221 (2004).
[CrossRef]

J. H. Lim, K. S. Lee, J. C. Kim, and B. H. Lee, “Tunable fiber gratings fabricated in photonic crystal fiber by use of mechanical pressure,” Opt. Lett. 29(4), 331–333 (2004).
[CrossRef] [PubMed]

1999 (1)

A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windler, and T. A. Strasser, “Electrically Tunable Efficient Broad-Band Fiber Filter,” IEEE Photon. Technol. Lett. 11(4), 445–447 (1999).
[CrossRef]

1998 (1)

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser beams,” Electron. Lett. 34(3), 302–303 (1998).
[CrossRef]

1996 (1)

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[CrossRef]

Abramov, A. A.

A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windler, and T. A. Strasser, “Electrically Tunable Efficient Broad-Band Fiber Filter,” IEEE Photon. Technol. Lett. 11(4), 445–447 (1999).
[CrossRef]

Bhatia, V.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[CrossRef]

Chiang, K. S.

T. Zhu, Y. J. Rao, Y. Song, K. S. Chiang, and M. Liu, “Highly sensitive temperature-independent strain sensor based on a long-period fiber grating with a CO2-laser engraved rotary structure,” IEEE Photon. Technol. Lett. 21(8), 543–545 (2009).
[CrossRef]

Y. Liu and K. S. Chiang, “CO(2) laser writing of long-period fiber gratings in optical fibers under tension,” Opt. Lett. 33(17), 1933–1935 (2008).
[CrossRef] [PubMed]

T. Zhu, K. S. Chiang, Y. J. Rao, C. H. Shi, and M. Liu, “Characterization of long-period fiber gratings written by CO2 laser in twisted single-mode fibers,” J. Lightwave Technol. (to be published).

Davis, D. D.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser beams,” Electron. Lett. 34(3), 302–303 (1998).
[CrossRef]

Eggleton, B. J.

P. Steinvurzel, E. D. Moore, E. C. Mägi, and B. J. Eggleton, “Tuning properties of long period gratings in photonic bandgap fibers,” Opt. Lett. 31(14), 2103–2105 (2006).
[CrossRef] [PubMed]

A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windler, and T. A. Strasser, “Electrically Tunable Efficient Broad-Band Fiber Filter,” IEEE Photon. Technol. Lett. 11(4), 445–447 (1999).
[CrossRef]

Erdogan, T.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[CrossRef]

Espindola, R. P.

A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windler, and T. A. Strasser, “Electrically Tunable Efficient Broad-Band Fiber Filter,” IEEE Photon. Technol. Lett. 11(4), 445–447 (1999).
[CrossRef]

Gaylord, T. K.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser beams,” Electron. Lett. 34(3), 302–303 (1998).
[CrossRef]

Glytsis, E. N.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser beams,” Electron. Lett. 34(3), 302–303 (1998).
[CrossRef]

Hale, A.

A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windler, and T. A. Strasser, “Electrically Tunable Efficient Broad-Band Fiber Filter,” IEEE Photon. Technol. Lett. 11(4), 445–447 (1999).
[CrossRef]

Hu, A. Z.

Y. J. Rao, T. Zhu, Z. L. Ran, Y. P. Wang, J. Jiang, and A. Z. Hu, “Novel long-period fiber gratings written by high-frequency CO2 laser pulses and applications in optical fiber communication,” Opt. Commun. 229(1-6), 209–221 (2004).
[CrossRef]

Jiang, J.

Y. J. Rao, T. Zhu, Z. L. Ran, Y. P. Wang, J. Jiang, and A. Z. Hu, “Novel long-period fiber gratings written by high-frequency CO2 laser pulses and applications in optical fiber communication,” Opt. Commun. 229(1-6), 209–221 (2004).
[CrossRef]

Judkins, J. B.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[CrossRef]

Kim, J. C.

Kim, K. T.

Ko, D. K.

Kosinski, S. G.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser beams,” Electron. Lett. 34(3), 302–303 (1998).
[CrossRef]

Lee, B. H.

Lee, J.

Lee, K. S.

Lemaire, P. J.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[CrossRef]

Lim, J. H.

Liu, M.

T. Zhu, Y. J. Rao, Y. Song, K. S. Chiang, and M. Liu, “Highly sensitive temperature-independent strain sensor based on a long-period fiber grating with a CO2-laser engraved rotary structure,” IEEE Photon. Technol. Lett. 21(8), 543–545 (2009).
[CrossRef]

T. Zhu, K. S. Chiang, Y. J. Rao, C. H. Shi, and M. Liu, “Characterization of long-period fiber gratings written by CO2 laser in twisted single-mode fibers,” J. Lightwave Technol. (to be published).

Liu, Y.

Mägi, E. C.

Mettler, S. C.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser beams,” Electron. Lett. 34(3), 302–303 (1998).
[CrossRef]

Mo, Q. J.

T. Zhu, Y. J. Rao, and Q. J. Mo, “Simultaneous measurement of refractive index and temperature using a single ultra-long-period fiber grating,” IEEE Photon. Technol. Lett. 17(12), 2700–2702 (2005).
[CrossRef]

Moore, E. D.

Noh, Y. C.

Oh, K.

Ran, Z. L.

Y. J. Rao, T. Zhu, Z. L. Ran, Y. P. Wang, J. Jiang, and A. Z. Hu, “Novel long-period fiber gratings written by high-frequency CO2 laser pulses and applications in optical fiber communication,” Opt. Commun. 229(1-6), 209–221 (2004).
[CrossRef]

Rao, Y. J.

T. Zhu, Y. J. Rao, Y. Song, K. S. Chiang, and M. Liu, “Highly sensitive temperature-independent strain sensor based on a long-period fiber grating with a CO2-laser engraved rotary structure,” IEEE Photon. Technol. Lett. 21(8), 543–545 (2009).
[CrossRef]

T. Zhu, Y. J. Rao, J. L. Wang, and Y. Song, “Strain sensor without temperature compensation based on a LPFG with strongly rotary refractive index modulation,” Electron. Lett. 43(21), 1132–1133 (2007).
[CrossRef]

T. Zhu, Y. J. Rao, and Q. J. Mo, “Simultaneous measurement of refractive index and temperature using a single ultra-long-period fiber grating,” IEEE Photon. Technol. Lett. 17(12), 2700–2702 (2005).
[CrossRef]

Y. J. Rao, T. Zhu, Z. L. Ran, Y. P. Wang, J. Jiang, and A. Z. Hu, “Novel long-period fiber gratings written by high-frequency CO2 laser pulses and applications in optical fiber communication,” Opt. Commun. 229(1-6), 209–221 (2004).
[CrossRef]

T. Zhu, K. S. Chiang, Y. J. Rao, C. H. Shi, and M. Liu, “Characterization of long-period fiber gratings written by CO2 laser in twisted single-mode fibers,” J. Lightwave Technol. (to be published).

Rogers, J. A.

A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windler, and T. A. Strasser, “Electrically Tunable Efficient Broad-Band Fiber Filter,” IEEE Photon. Technol. Lett. 11(4), 445–447 (1999).
[CrossRef]

Shi, C. H.

T. Zhu, K. S. Chiang, Y. J. Rao, C. H. Shi, and M. Liu, “Characterization of long-period fiber gratings written by CO2 laser in twisted single-mode fibers,” J. Lightwave Technol. (to be published).

Shin, W.

Sipe, J. E.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[CrossRef]

Sohn, K. R.

Song, Y.

T. Zhu, Y. J. Rao, Y. Song, K. S. Chiang, and M. Liu, “Highly sensitive temperature-independent strain sensor based on a long-period fiber grating with a CO2-laser engraved rotary structure,” IEEE Photon. Technol. Lett. 21(8), 543–545 (2009).
[CrossRef]

T. Zhu, Y. J. Rao, J. L. Wang, and Y. Song, “Strain sensor without temperature compensation based on a LPFG with strongly rotary refractive index modulation,” Electron. Lett. 43(21), 1132–1133 (2007).
[CrossRef]

Steinvurzel, P.

Strasser, T. A.

A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windler, and T. A. Strasser, “Electrically Tunable Efficient Broad-Band Fiber Filter,” IEEE Photon. Technol. Lett. 11(4), 445–447 (1999).
[CrossRef]

Vengsarkar, A. M.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser beams,” Electron. Lett. 34(3), 302–303 (1998).
[CrossRef]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[CrossRef]

Wang, J. L.

T. Zhu, Y. J. Rao, J. L. Wang, and Y. Song, “Strain sensor without temperature compensation based on a LPFG with strongly rotary refractive index modulation,” Electron. Lett. 43(21), 1132–1133 (2007).
[CrossRef]

Wang, Y. P.

Y. J. Rao, T. Zhu, Z. L. Ran, Y. P. Wang, J. Jiang, and A. Z. Hu, “Novel long-period fiber gratings written by high-frequency CO2 laser pulses and applications in optical fiber communication,” Opt. Commun. 229(1-6), 209–221 (2004).
[CrossRef]

Windler, R. S.

A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windler, and T. A. Strasser, “Electrically Tunable Efficient Broad-Band Fiber Filter,” IEEE Photon. Technol. Lett. 11(4), 445–447 (1999).
[CrossRef]

Yu, B. A.

Zhu, T.

T. Zhu, Y. J. Rao, Y. Song, K. S. Chiang, and M. Liu, “Highly sensitive temperature-independent strain sensor based on a long-period fiber grating with a CO2-laser engraved rotary structure,” IEEE Photon. Technol. Lett. 21(8), 543–545 (2009).
[CrossRef]

T. Zhu, Y. J. Rao, J. L. Wang, and Y. Song, “Strain sensor without temperature compensation based on a LPFG with strongly rotary refractive index modulation,” Electron. Lett. 43(21), 1132–1133 (2007).
[CrossRef]

T. Zhu, Y. J. Rao, and Q. J. Mo, “Simultaneous measurement of refractive index and temperature using a single ultra-long-period fiber grating,” IEEE Photon. Technol. Lett. 17(12), 2700–2702 (2005).
[CrossRef]

Y. J. Rao, T. Zhu, Z. L. Ran, Y. P. Wang, J. Jiang, and A. Z. Hu, “Novel long-period fiber gratings written by high-frequency CO2 laser pulses and applications in optical fiber communication,” Opt. Commun. 229(1-6), 209–221 (2004).
[CrossRef]

T. Zhu, K. S. Chiang, Y. J. Rao, C. H. Shi, and M. Liu, “Characterization of long-period fiber gratings written by CO2 laser in twisted single-mode fibers,” J. Lightwave Technol. (to be published).

Electron. Lett. (2)

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser beams,” Electron. Lett. 34(3), 302–303 (1998).
[CrossRef]

T. Zhu, Y. J. Rao, J. L. Wang, and Y. Song, “Strain sensor without temperature compensation based on a LPFG with strongly rotary refractive index modulation,” Electron. Lett. 43(21), 1132–1133 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

T. Zhu, Y. J. Rao, Y. Song, K. S. Chiang, and M. Liu, “Highly sensitive temperature-independent strain sensor based on a long-period fiber grating with a CO2-laser engraved rotary structure,” IEEE Photon. Technol. Lett. 21(8), 543–545 (2009).
[CrossRef]

A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windler, and T. A. Strasser, “Electrically Tunable Efficient Broad-Band Fiber Filter,” IEEE Photon. Technol. Lett. 11(4), 445–447 (1999).
[CrossRef]

T. Zhu, Y. J. Rao, and Q. J. Mo, “Simultaneous measurement of refractive index and temperature using a single ultra-long-period fiber grating,” IEEE Photon. Technol. Lett. 17(12), 2700–2702 (2005).
[CrossRef]

J. Lightwave Technol. (2)

T. Zhu, K. S. Chiang, Y. J. Rao, C. H. Shi, and M. Liu, “Characterization of long-period fiber gratings written by CO2 laser in twisted single-mode fibers,” J. Lightwave Technol. (to be published).

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[CrossRef]

Opt. Commun. (1)

Y. J. Rao, T. Zhu, Z. L. Ran, Y. P. Wang, J. Jiang, and A. Z. Hu, “Novel long-period fiber gratings written by high-frequency CO2 laser pulses and applications in optical fiber communication,” Opt. Commun. 229(1-6), 209–221 (2004).
[CrossRef]

Opt. Lett. (5)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagrams of (a) a normal LPFG and (b) an R-LPFG.

Fig. 2
Fig. 2

Setup for the fabrication of the composite LPFG.

Fig. 3
Fig. 3

Transmission spectra of R-LPFGs with different values of Λ T .

Fig. 4
Fig. 4

Wavelength split as a function of the twist period for (a) λ 0 = 1431 nm and (b) λ 0 = 1547 nm.

Fig. 5
Fig. 5

Torsion characteristics of a 50-period R-LPFG with ΛG = 0.57 mm and ΛT = 37.5 mm: (a) calculated and experimental wavelength separations and (b) measured transmission spectra.

Fig. 6
Fig. 6

Measured torsion characteristics of a 50-period normal LPFG with Λ G = 0.57 mm: (a) resonance wavelengths and (b) transmission spectra.

Fig. 7
Fig. 7

Torsion characteristics of the composite grating for bandwidth tuning: (a) transmission spectra showing the bandwidths 25.0 nm and 41.3 nm at the torsion rates −1.5 °/mm and 1.5 °/mm, respectively, for a rejection level of ~15 dB, (b) bandwidth and PDL.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

λ0=(nco,effncl,eff)ΛG=δneffΛG
n(z)~sin(2πΛTz)sin(2πΛGz)
1Λ±=1ΛG1ΛT
λ±=λ0Λ±ΛG
Δλ0=(nco,effncl,eff)(Λ+Λ)2ΛGΛTλ0
Δλ0=2ΛGλ0(1ΛTη360)=2ΛG(360NLη)360Lλ0

Metrics