Abstract

A new class of silicon-based light-emitting diode is demonstrated using InSb-quantum-dot-embedded Si containing the emissive {311} rod-like defects (RLDs). A narrow peak centered at 1377 nm (900 meV) characteristic of the {311} RLDs was found to develop out of an otherwise broad background electroluminescence (EL) upon the application of electric fields in the growth direction. Such electric-field-active EL was observed up to 150 K with a slight downward shift of the peak energies, accompanied by an anomaly in the thermal roll-off of the EL intensity. Spectral variations with temperature and electric field indicate a switching of dominance between the closely correlated defect states that are responsible for the EL emission.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Ng, M. A. Lourenço, R. M. Gwilliam, S. Ledain, G. Shao, and K. P. Homewood, “An efficient room-temperature silicon-based light-emitting diode,” Nature 410(6825), 192–194 (2001).
    [CrossRef] [PubMed]
  2. T. Hoang, J. Holleman, P. LeMinh, J. Schmitz, T. Mchedlidze, T. Arguirov, and M. Kittler, “Influence of Dislocation Loops on the Near-Infrared Light Emission From Silicon Diodes,” IEEE Trans. Electron. Dev. 54(8), 1860–1866 (2007).
    [CrossRef]
  3. E. Ö. Sveinbjörnsson and J. Weber, “Room temperature electroluminescence from dislocation-rich silicon,” Appl. Phys. Lett. 69(18), 2686–2688 (1996).
    [CrossRef]
  4. J. M. Shainline and J. M. Xu, “Silicon as an emissive optical medium,” Laser & Photon. Rev. 1(4), 334–348 (2007).
    [CrossRef]
  5. S. G. Cloutier, P. A. Kossyrev, and J. M. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline silicon,” Nat. Mater. 4(12), 887–891 (2005).
    [CrossRef] [PubMed]
  6. J. Bao, M. Tabbal, T. Kim, S. Charnvanichborikarn, J. S. Williams, M. J. Aziz, and F. Capasso, “Point defect engineered Si sub-bandgap light-emitting diode,” Opt. Express 15(11), 6727–6733 (2007).
    [CrossRef] [PubMed]
  7. E. Rotem, J. M. Shainline, and J. M. Xu, “Electroluminescence of nanopatterned silicon with carbon implantation and solid phase epitaxial regrowth,” Opt. Express 15(21), 14099–14106 (2007).
    [CrossRef] [PubMed]
  8. E. C. Lightowlers, L. Jeyanathan, A. N. Safonov, V. Higgs, and G. Davies, “Luminescence from rod-like defects and hydrogen related centres in silicon,” Mater. Sci. Eng. B 24(1-3), 144–151 (1994).
    [CrossRef]
  9. D. C. Schmidt, B. G. Svensson, M. Seibt, C. Jagadish, and G. Davies, “Photoluminescence, deep level transient spectroscopy and transmission electron microscopy measurements on MeV self-ion implanted and annealed n-type silicon,” J. Appl. Phys. 88(5), 2309–2317 (2000).
    [CrossRef]
  10. T. Mchedlidze, T. Arguirov, G. Jia, and M. Kittler, “Signatures of distinct structures related to rod-like defects in silicon detected by various measurement methods,” Phys. Status Solidi 204(7), 2229–2237 (2007) (a).
    [CrossRef]
  11. A. P. G. Hare, G. Davies, and A. T. Collins, “The temperature dependence of vibronic spectra in irradiated silicon,” J. Phys. C Solid State Phys. 5(11), 1265–1276 (1972).
    [CrossRef]
  12. J. Takiguchi, M. Tajima, A. Ogura, S. Ibuka, and Y. Tokumaru, “Photoluminescence Analysis of {311} Interstitial Defects in Wafers Synthesized by Separation by Implanted Oxygen,” Jpn. J. Appl. Phys. 40(Part 2, No. 6A), L567–L569 (2001).
    [CrossRef]
  13. M. Jo, N. Yasuhara, Y. Sugawara K. Kawamoto and S. Fukatsu, “Postgrowth annealing effects on photoluminescence from strained GaSb quantum dots grown on silicon-on-insulator substrate,” 2004 1st IEEE International Conference on Group IV Photonics, p.121–123 (2004).
  14. M. Jo, K. Ishida, K. Kawamoto, and S. Fukatsu, “Evolution of In-based compound semiconductor quantum dots on Si (001),” Phys. Status Solidi 0(4c), 1117–1120 (2003).
    [CrossRef]

2007 (5)

T. Hoang, J. Holleman, P. LeMinh, J. Schmitz, T. Mchedlidze, T. Arguirov, and M. Kittler, “Influence of Dislocation Loops on the Near-Infrared Light Emission From Silicon Diodes,” IEEE Trans. Electron. Dev. 54(8), 1860–1866 (2007).
[CrossRef]

J. M. Shainline and J. M. Xu, “Silicon as an emissive optical medium,” Laser & Photon. Rev. 1(4), 334–348 (2007).
[CrossRef]

T. Mchedlidze, T. Arguirov, G. Jia, and M. Kittler, “Signatures of distinct structures related to rod-like defects in silicon detected by various measurement methods,” Phys. Status Solidi 204(7), 2229–2237 (2007) (a).
[CrossRef]

J. Bao, M. Tabbal, T. Kim, S. Charnvanichborikarn, J. S. Williams, M. J. Aziz, and F. Capasso, “Point defect engineered Si sub-bandgap light-emitting diode,” Opt. Express 15(11), 6727–6733 (2007).
[CrossRef] [PubMed]

E. Rotem, J. M. Shainline, and J. M. Xu, “Electroluminescence of nanopatterned silicon with carbon implantation and solid phase epitaxial regrowth,” Opt. Express 15(21), 14099–14106 (2007).
[CrossRef] [PubMed]

2005 (1)

S. G. Cloutier, P. A. Kossyrev, and J. M. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline silicon,” Nat. Mater. 4(12), 887–891 (2005).
[CrossRef] [PubMed]

2003 (1)

M. Jo, K. Ishida, K. Kawamoto, and S. Fukatsu, “Evolution of In-based compound semiconductor quantum dots on Si (001),” Phys. Status Solidi 0(4c), 1117–1120 (2003).
[CrossRef]

2001 (2)

J. Takiguchi, M. Tajima, A. Ogura, S. Ibuka, and Y. Tokumaru, “Photoluminescence Analysis of {311} Interstitial Defects in Wafers Synthesized by Separation by Implanted Oxygen,” Jpn. J. Appl. Phys. 40(Part 2, No. 6A), L567–L569 (2001).
[CrossRef]

W. L. Ng, M. A. Lourenço, R. M. Gwilliam, S. Ledain, G. Shao, and K. P. Homewood, “An efficient room-temperature silicon-based light-emitting diode,” Nature 410(6825), 192–194 (2001).
[CrossRef] [PubMed]

2000 (1)

D. C. Schmidt, B. G. Svensson, M. Seibt, C. Jagadish, and G. Davies, “Photoluminescence, deep level transient spectroscopy and transmission electron microscopy measurements on MeV self-ion implanted and annealed n-type silicon,” J. Appl. Phys. 88(5), 2309–2317 (2000).
[CrossRef]

1996 (1)

E. Ö. Sveinbjörnsson and J. Weber, “Room temperature electroluminescence from dislocation-rich silicon,” Appl. Phys. Lett. 69(18), 2686–2688 (1996).
[CrossRef]

1994 (1)

E. C. Lightowlers, L. Jeyanathan, A. N. Safonov, V. Higgs, and G. Davies, “Luminescence from rod-like defects and hydrogen related centres in silicon,” Mater. Sci. Eng. B 24(1-3), 144–151 (1994).
[CrossRef]

1972 (1)

A. P. G. Hare, G. Davies, and A. T. Collins, “The temperature dependence of vibronic spectra in irradiated silicon,” J. Phys. C Solid State Phys. 5(11), 1265–1276 (1972).
[CrossRef]

Arguirov, T.

T. Mchedlidze, T. Arguirov, G. Jia, and M. Kittler, “Signatures of distinct structures related to rod-like defects in silicon detected by various measurement methods,” Phys. Status Solidi 204(7), 2229–2237 (2007) (a).
[CrossRef]

T. Hoang, J. Holleman, P. LeMinh, J. Schmitz, T. Mchedlidze, T. Arguirov, and M. Kittler, “Influence of Dislocation Loops on the Near-Infrared Light Emission From Silicon Diodes,” IEEE Trans. Electron. Dev. 54(8), 1860–1866 (2007).
[CrossRef]

Aziz, M. J.

Bao, J.

Capasso, F.

Charnvanichborikarn, S.

Cloutier, S. G.

S. G. Cloutier, P. A. Kossyrev, and J. M. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline silicon,” Nat. Mater. 4(12), 887–891 (2005).
[CrossRef] [PubMed]

Collins, A. T.

A. P. G. Hare, G. Davies, and A. T. Collins, “The temperature dependence of vibronic spectra in irradiated silicon,” J. Phys. C Solid State Phys. 5(11), 1265–1276 (1972).
[CrossRef]

Davies, G.

D. C. Schmidt, B. G. Svensson, M. Seibt, C. Jagadish, and G. Davies, “Photoluminescence, deep level transient spectroscopy and transmission electron microscopy measurements on MeV self-ion implanted and annealed n-type silicon,” J. Appl. Phys. 88(5), 2309–2317 (2000).
[CrossRef]

E. C. Lightowlers, L. Jeyanathan, A. N. Safonov, V. Higgs, and G. Davies, “Luminescence from rod-like defects and hydrogen related centres in silicon,” Mater. Sci. Eng. B 24(1-3), 144–151 (1994).
[CrossRef]

A. P. G. Hare, G. Davies, and A. T. Collins, “The temperature dependence of vibronic spectra in irradiated silicon,” J. Phys. C Solid State Phys. 5(11), 1265–1276 (1972).
[CrossRef]

Fukatsu, S.

M. Jo, K. Ishida, K. Kawamoto, and S. Fukatsu, “Evolution of In-based compound semiconductor quantum dots on Si (001),” Phys. Status Solidi 0(4c), 1117–1120 (2003).
[CrossRef]

Gwilliam, R. M.

W. L. Ng, M. A. Lourenço, R. M. Gwilliam, S. Ledain, G. Shao, and K. P. Homewood, “An efficient room-temperature silicon-based light-emitting diode,” Nature 410(6825), 192–194 (2001).
[CrossRef] [PubMed]

Hare, A. P. G.

A. P. G. Hare, G. Davies, and A. T. Collins, “The temperature dependence of vibronic spectra in irradiated silicon,” J. Phys. C Solid State Phys. 5(11), 1265–1276 (1972).
[CrossRef]

Higgs, V.

E. C. Lightowlers, L. Jeyanathan, A. N. Safonov, V. Higgs, and G. Davies, “Luminescence from rod-like defects and hydrogen related centres in silicon,” Mater. Sci. Eng. B 24(1-3), 144–151 (1994).
[CrossRef]

Hoang, T.

T. Hoang, J. Holleman, P. LeMinh, J. Schmitz, T. Mchedlidze, T. Arguirov, and M. Kittler, “Influence of Dislocation Loops on the Near-Infrared Light Emission From Silicon Diodes,” IEEE Trans. Electron. Dev. 54(8), 1860–1866 (2007).
[CrossRef]

Holleman, J.

T. Hoang, J. Holleman, P. LeMinh, J. Schmitz, T. Mchedlidze, T. Arguirov, and M. Kittler, “Influence of Dislocation Loops on the Near-Infrared Light Emission From Silicon Diodes,” IEEE Trans. Electron. Dev. 54(8), 1860–1866 (2007).
[CrossRef]

Homewood, K. P.

W. L. Ng, M. A. Lourenço, R. M. Gwilliam, S. Ledain, G. Shao, and K. P. Homewood, “An efficient room-temperature silicon-based light-emitting diode,” Nature 410(6825), 192–194 (2001).
[CrossRef] [PubMed]

Ibuka, S.

J. Takiguchi, M. Tajima, A. Ogura, S. Ibuka, and Y. Tokumaru, “Photoluminescence Analysis of {311} Interstitial Defects in Wafers Synthesized by Separation by Implanted Oxygen,” Jpn. J. Appl. Phys. 40(Part 2, No. 6A), L567–L569 (2001).
[CrossRef]

Ishida, K.

M. Jo, K. Ishida, K. Kawamoto, and S. Fukatsu, “Evolution of In-based compound semiconductor quantum dots on Si (001),” Phys. Status Solidi 0(4c), 1117–1120 (2003).
[CrossRef]

Jagadish, C.

D. C. Schmidt, B. G. Svensson, M. Seibt, C. Jagadish, and G. Davies, “Photoluminescence, deep level transient spectroscopy and transmission electron microscopy measurements on MeV self-ion implanted and annealed n-type silicon,” J. Appl. Phys. 88(5), 2309–2317 (2000).
[CrossRef]

Jeyanathan, L.

E. C. Lightowlers, L. Jeyanathan, A. N. Safonov, V. Higgs, and G. Davies, “Luminescence from rod-like defects and hydrogen related centres in silicon,” Mater. Sci. Eng. B 24(1-3), 144–151 (1994).
[CrossRef]

Jia, G.

T. Mchedlidze, T. Arguirov, G. Jia, and M. Kittler, “Signatures of distinct structures related to rod-like defects in silicon detected by various measurement methods,” Phys. Status Solidi 204(7), 2229–2237 (2007) (a).
[CrossRef]

Jo, M.

M. Jo, K. Ishida, K. Kawamoto, and S. Fukatsu, “Evolution of In-based compound semiconductor quantum dots on Si (001),” Phys. Status Solidi 0(4c), 1117–1120 (2003).
[CrossRef]

Kawamoto, K.

M. Jo, K. Ishida, K. Kawamoto, and S. Fukatsu, “Evolution of In-based compound semiconductor quantum dots on Si (001),” Phys. Status Solidi 0(4c), 1117–1120 (2003).
[CrossRef]

Kim, T.

Kittler, M.

T. Mchedlidze, T. Arguirov, G. Jia, and M. Kittler, “Signatures of distinct structures related to rod-like defects in silicon detected by various measurement methods,” Phys. Status Solidi 204(7), 2229–2237 (2007) (a).
[CrossRef]

T. Hoang, J. Holleman, P. LeMinh, J. Schmitz, T. Mchedlidze, T. Arguirov, and M. Kittler, “Influence of Dislocation Loops on the Near-Infrared Light Emission From Silicon Diodes,” IEEE Trans. Electron. Dev. 54(8), 1860–1866 (2007).
[CrossRef]

Kossyrev, P. A.

S. G. Cloutier, P. A. Kossyrev, and J. M. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline silicon,” Nat. Mater. 4(12), 887–891 (2005).
[CrossRef] [PubMed]

Ledain, S.

W. L. Ng, M. A. Lourenço, R. M. Gwilliam, S. Ledain, G. Shao, and K. P. Homewood, “An efficient room-temperature silicon-based light-emitting diode,” Nature 410(6825), 192–194 (2001).
[CrossRef] [PubMed]

LeMinh, P.

T. Hoang, J. Holleman, P. LeMinh, J. Schmitz, T. Mchedlidze, T. Arguirov, and M. Kittler, “Influence of Dislocation Loops on the Near-Infrared Light Emission From Silicon Diodes,” IEEE Trans. Electron. Dev. 54(8), 1860–1866 (2007).
[CrossRef]

Lightowlers, E. C.

E. C. Lightowlers, L. Jeyanathan, A. N. Safonov, V. Higgs, and G. Davies, “Luminescence from rod-like defects and hydrogen related centres in silicon,” Mater. Sci. Eng. B 24(1-3), 144–151 (1994).
[CrossRef]

Lourenço, M. A.

W. L. Ng, M. A. Lourenço, R. M. Gwilliam, S. Ledain, G. Shao, and K. P. Homewood, “An efficient room-temperature silicon-based light-emitting diode,” Nature 410(6825), 192–194 (2001).
[CrossRef] [PubMed]

Mchedlidze, T.

T. Hoang, J. Holleman, P. LeMinh, J. Schmitz, T. Mchedlidze, T. Arguirov, and M. Kittler, “Influence of Dislocation Loops on the Near-Infrared Light Emission From Silicon Diodes,” IEEE Trans. Electron. Dev. 54(8), 1860–1866 (2007).
[CrossRef]

T. Mchedlidze, T. Arguirov, G. Jia, and M. Kittler, “Signatures of distinct structures related to rod-like defects in silicon detected by various measurement methods,” Phys. Status Solidi 204(7), 2229–2237 (2007) (a).
[CrossRef]

Ng, W. L.

W. L. Ng, M. A. Lourenço, R. M. Gwilliam, S. Ledain, G. Shao, and K. P. Homewood, “An efficient room-temperature silicon-based light-emitting diode,” Nature 410(6825), 192–194 (2001).
[CrossRef] [PubMed]

Ogura, A.

J. Takiguchi, M. Tajima, A. Ogura, S. Ibuka, and Y. Tokumaru, “Photoluminescence Analysis of {311} Interstitial Defects in Wafers Synthesized by Separation by Implanted Oxygen,” Jpn. J. Appl. Phys. 40(Part 2, No. 6A), L567–L569 (2001).
[CrossRef]

Rotem, E.

Safonov, A. N.

E. C. Lightowlers, L. Jeyanathan, A. N. Safonov, V. Higgs, and G. Davies, “Luminescence from rod-like defects and hydrogen related centres in silicon,” Mater. Sci. Eng. B 24(1-3), 144–151 (1994).
[CrossRef]

Schmidt, D. C.

D. C. Schmidt, B. G. Svensson, M. Seibt, C. Jagadish, and G. Davies, “Photoluminescence, deep level transient spectroscopy and transmission electron microscopy measurements on MeV self-ion implanted and annealed n-type silicon,” J. Appl. Phys. 88(5), 2309–2317 (2000).
[CrossRef]

Schmitz, J.

T. Hoang, J. Holleman, P. LeMinh, J. Schmitz, T. Mchedlidze, T. Arguirov, and M. Kittler, “Influence of Dislocation Loops on the Near-Infrared Light Emission From Silicon Diodes,” IEEE Trans. Electron. Dev. 54(8), 1860–1866 (2007).
[CrossRef]

Seibt, M.

D. C. Schmidt, B. G. Svensson, M. Seibt, C. Jagadish, and G. Davies, “Photoluminescence, deep level transient spectroscopy and transmission electron microscopy measurements on MeV self-ion implanted and annealed n-type silicon,” J. Appl. Phys. 88(5), 2309–2317 (2000).
[CrossRef]

Shainline, J. M.

Shao, G.

W. L. Ng, M. A. Lourenço, R. M. Gwilliam, S. Ledain, G. Shao, and K. P. Homewood, “An efficient room-temperature silicon-based light-emitting diode,” Nature 410(6825), 192–194 (2001).
[CrossRef] [PubMed]

Sveinbjörnsson, E. Ö.

E. Ö. Sveinbjörnsson and J. Weber, “Room temperature electroluminescence from dislocation-rich silicon,” Appl. Phys. Lett. 69(18), 2686–2688 (1996).
[CrossRef]

Svensson, B. G.

D. C. Schmidt, B. G. Svensson, M. Seibt, C. Jagadish, and G. Davies, “Photoluminescence, deep level transient spectroscopy and transmission electron microscopy measurements on MeV self-ion implanted and annealed n-type silicon,” J. Appl. Phys. 88(5), 2309–2317 (2000).
[CrossRef]

Tabbal, M.

Tajima, M.

J. Takiguchi, M. Tajima, A. Ogura, S. Ibuka, and Y. Tokumaru, “Photoluminescence Analysis of {311} Interstitial Defects in Wafers Synthesized by Separation by Implanted Oxygen,” Jpn. J. Appl. Phys. 40(Part 2, No. 6A), L567–L569 (2001).
[CrossRef]

Takiguchi, J.

J. Takiguchi, M. Tajima, A. Ogura, S. Ibuka, and Y. Tokumaru, “Photoluminescence Analysis of {311} Interstitial Defects in Wafers Synthesized by Separation by Implanted Oxygen,” Jpn. J. Appl. Phys. 40(Part 2, No. 6A), L567–L569 (2001).
[CrossRef]

Tokumaru, Y.

J. Takiguchi, M. Tajima, A. Ogura, S. Ibuka, and Y. Tokumaru, “Photoluminescence Analysis of {311} Interstitial Defects in Wafers Synthesized by Separation by Implanted Oxygen,” Jpn. J. Appl. Phys. 40(Part 2, No. 6A), L567–L569 (2001).
[CrossRef]

Weber, J.

E. Ö. Sveinbjörnsson and J. Weber, “Room temperature electroluminescence from dislocation-rich silicon,” Appl. Phys. Lett. 69(18), 2686–2688 (1996).
[CrossRef]

Williams, J. S.

Xu, J. M.

J. M. Shainline and J. M. Xu, “Silicon as an emissive optical medium,” Laser & Photon. Rev. 1(4), 334–348 (2007).
[CrossRef]

E. Rotem, J. M. Shainline, and J. M. Xu, “Electroluminescence of nanopatterned silicon with carbon implantation and solid phase epitaxial regrowth,” Opt. Express 15(21), 14099–14106 (2007).
[CrossRef] [PubMed]

S. G. Cloutier, P. A. Kossyrev, and J. M. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline silicon,” Nat. Mater. 4(12), 887–891 (2005).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

E. Ö. Sveinbjörnsson and J. Weber, “Room temperature electroluminescence from dislocation-rich silicon,” Appl. Phys. Lett. 69(18), 2686–2688 (1996).
[CrossRef]

IEEE Trans. Electron. Dev. (1)

T. Hoang, J. Holleman, P. LeMinh, J. Schmitz, T. Mchedlidze, T. Arguirov, and M. Kittler, “Influence of Dislocation Loops on the Near-Infrared Light Emission From Silicon Diodes,” IEEE Trans. Electron. Dev. 54(8), 1860–1866 (2007).
[CrossRef]

J. Appl. Phys. (1)

D. C. Schmidt, B. G. Svensson, M. Seibt, C. Jagadish, and G. Davies, “Photoluminescence, deep level transient spectroscopy and transmission electron microscopy measurements on MeV self-ion implanted and annealed n-type silicon,” J. Appl. Phys. 88(5), 2309–2317 (2000).
[CrossRef]

J. Phys. C Solid State Phys. (1)

A. P. G. Hare, G. Davies, and A. T. Collins, “The temperature dependence of vibronic spectra in irradiated silicon,” J. Phys. C Solid State Phys. 5(11), 1265–1276 (1972).
[CrossRef]

Jpn. J. Appl. Phys. (1)

J. Takiguchi, M. Tajima, A. Ogura, S. Ibuka, and Y. Tokumaru, “Photoluminescence Analysis of {311} Interstitial Defects in Wafers Synthesized by Separation by Implanted Oxygen,” Jpn. J. Appl. Phys. 40(Part 2, No. 6A), L567–L569 (2001).
[CrossRef]

Laser & Photon. Rev. (1)

J. M. Shainline and J. M. Xu, “Silicon as an emissive optical medium,” Laser & Photon. Rev. 1(4), 334–348 (2007).
[CrossRef]

Mater. Sci. Eng. B (1)

E. C. Lightowlers, L. Jeyanathan, A. N. Safonov, V. Higgs, and G. Davies, “Luminescence from rod-like defects and hydrogen related centres in silicon,” Mater. Sci. Eng. B 24(1-3), 144–151 (1994).
[CrossRef]

Nat. Mater. (1)

S. G. Cloutier, P. A. Kossyrev, and J. M. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline silicon,” Nat. Mater. 4(12), 887–891 (2005).
[CrossRef] [PubMed]

Nature (1)

W. L. Ng, M. A. Lourenço, R. M. Gwilliam, S. Ledain, G. Shao, and K. P. Homewood, “An efficient room-temperature silicon-based light-emitting diode,” Nature 410(6825), 192–194 (2001).
[CrossRef] [PubMed]

Opt. Express (2)

Phys. Status Solidi (2)

M. Jo, K. Ishida, K. Kawamoto, and S. Fukatsu, “Evolution of In-based compound semiconductor quantum dots on Si (001),” Phys. Status Solidi 0(4c), 1117–1120 (2003).
[CrossRef]

T. Mchedlidze, T. Arguirov, G. Jia, and M. Kittler, “Signatures of distinct structures related to rod-like defects in silicon detected by various measurement methods,” Phys. Status Solidi 204(7), 2229–2237 (2007) (a).
[CrossRef]

Other (1)

M. Jo, N. Yasuhara, Y. Sugawara K. Kawamoto and S. Fukatsu, “Postgrowth annealing effects on photoluminescence from strained GaSb quantum dots grown on silicon-on-insulator substrate,” 2004 1st IEEE International Conference on Group IV Photonics, p.121–123 (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a). Schematic LED sample structure. The active region contains an MBE-grown InSb-QDs-embedded-Si. {311} RLDs were introduced ex situ by post-growth annealing. (b) Typical I-V characteristics of LED at 9-K and room temperature.

Fig. 2
Fig. 2

Normalized 9-K PL spectra of InSb-QDs-embedded-Si LED: (a) as-grown, (b) after receiving post-growth annealing 600 °C for 30 min. Arrow indicates the developing E-line due to {311} RLDs. The spectra have been shifted vertically for clarity.

Fig. 3
Fig. 3

(a). Comparison of PL and EL spectra taken at 9 K from InSb-QDs-embedded-Si LED containing {311} RLDs. A broad background visible for PL is quenched in the case of EL with only the sharp E-line dominating at 10 mA. (b) Synopsis of EL spectra as a function of forward injection current. Note the spectral changes including a monotonic shift of the peaks with increasing current. (c) E-line intensity versus injected current at 9-K, and the ratio of the intensities of the E-line and the broadband emission due to InSb QDs. (d) EL peak energies as a function of current. The peak energies have been determined by Lorentzian fitting.

Fig. 4
Fig. 4

Temperature dependent EL spectra of InSb-QDs-embedded-Si LED containing {311} RLDs at a constant forward bias current of 20 mA. Inset shows the integrated EL intensity versus reciprocal temperature. Solid lines are to guide the eye.

Metrics