Abstract

A theoretical analysis on the angle- and thickness-dependent photonic band structure in a one-dimensional photonic crystal containing single-negative (SNG) materials is presented. The photonic crystal consists of two alternating SNG materials, including that one has a negative permittivity (ENG) and the other has a negative permeability (MNG). It is found that there are two types of SNG gaps. The first is the low-frequency gap which is very insensitive to the incident angle in the transversal electric (TE) wave. The second gap, which strongly relies on the incident angle for both TE and transversal magnetic (TM) waves, will close at the zero bandgap frequency at which the impedance match as well as the phase match in the constituent ENG and MNG layers must be simultaneously satisfied. This zero bandgap frequency is also strongly dependent on the incident angle. The band edges and the gap maps are investigated rigorously as a function of the incident angle and the ratio of thickness of the two SNG layers. The analyses are made in the lossless and lossy cases for both TE and TM waves. The inclusion of the loss enables us to further clarify two fundamentally distinct second SNG gaps which are separated by a threshold angle of incidence.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. J. Orfanidis, Electromagnetic Waves and Antennas (www.ece.rutgers.edu/~orfandid/ewa , 2008).
  2. H. T. Jiang, H. Chen, H. Q. Li, Y. W. Zhang, J. Zi, and S. Y. Zhu, “Properties of one-dimensional photonic crystals containing single-negative materials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(6), 066607 (2004).
    [CrossRef] [PubMed]
  3. H. T. Jiang, H. Chen, H. Q. Li, Y. W. Zhang, and S. Zhu, “Compact high-Q filters based on one-dimensional photonic crystals containing single-negative materials,” J. Appl. Phys. 98(1), 013101 (2005).
    [CrossRef]
  4. L.-G. Wang, H. Chen, and S.-Y. Zhu, “Omnidirectional gap and defect mode of one-dimensional photonic crystals with single-negative materials,” Phys. Rev. B 70(24), 245102 (2004).
    [CrossRef]
  5. L. W. Zhang, Y. W. Zhang, L. He, H. Q. Li, and H. Chen, “Experimental study of photonic crystals consisting of E-negative and μ-negative materials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(5), 056615 (2006).
    [CrossRef]
  6. L. Gao, C. J. Tang, and S. M. Wang, “Photonic band gap from a stack of single-negative materials,” J. Magn. Magn. Mater. 301(2), 371–377 (2006).
    [CrossRef]
  7. Y. H. Chen, “Omnidirectional and independently tunnel defect modes in fractional photonic crystals containing single-negative materials,” Appl. Phys. B 95(4), 757–761 (2009).
    [CrossRef]
  8. Y. H. Chen, J. W. Dong, and H. Z. Wang, “Omnidirectional resonance modes in photonic crystal heterostructures containing single-negative materials,” J. Opt. Soc. Am. B 23(10), 2237–2240 (2006).
    [CrossRef]
  9. D.-W. Yeh and C.-J. Wu, “Thickness-dependent photonic bandgap in a one-dimensional single-negative photonic crystal,” J. Opt. Soc. Am. B 26(8), 1506–1510 (2009).
    [CrossRef]
  10. T. B. Wang, J. W. Dong, C. P. Yin, and H. Z. Wang, “Complete evanescent tunneling gaps in one-dimensional photonic crystals,” Phys. Lett. A 373(1), 169–172 (2008).
    [CrossRef]
  11. S. Wang, C. Tang, T. Pan, and L. Gao, “Effectively negatively refractive material made of negative-permittivity and negative-permeability bilayer,” Phys. Lett. A 351(6), 391–397 (2006).
    [CrossRef]
  12. P. Han, C. T. Chan, and Z. Q. Zhang, “Wave localization in one-dimensional random structures composed of single-negative metamaterials,” Phys. Rev. B 77(11), 115332 (2008).
    [CrossRef]
  13. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
    [CrossRef] [PubMed]
  14. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
    [CrossRef]
  15. A. Alu and N. Engheta, “Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency,” IEEE Trans. Antenn. Propag. 51(10), 2558–2571 (2003).
    [CrossRef]
  16. J. R. Canto, S. A. Matos, C. R. Paiva, and A. M. Barbosa, “Effect of losses in a layered structure containing DPS and DNG media,” PIERS Online 4(5), 546–550 (2008).
    [CrossRef]
  17. P. Yeh, Optical Wave in Layered Media (John Wiley & Sons, New York, 1998).
  18. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
    [CrossRef] [PubMed]
  19. R. Ruppin, “Surface polaritons of a left-handed material slab,” J. Phys. Condens. Matter 13(9), 1811–1818 (2001).
    [CrossRef]
  20. C.-J. Wu, M.-S. Chen, and T.-J. Yang, “Photonic band structure for a superconducting-dielectric Superlattice,” Physica C 432(3-4), 133–139 (2005).
    [CrossRef]
  21. C. H. Raymond Ooi, T. C. Au Yeung, C. H. Kam, and T. K. Lim, “Photonic band gap in a superconductor-dielectric superlattic,” Phys. Rev. B 61(9), 5920–5923 (2000).
    [CrossRef]
  22. C. H. Raymond Ooi and T. C. Au Yeung, “Polariton gap in a superconductor-dielectric superlattice,” Phys. Lett. A 259(5), 413–419 (1999).

2009 (2)

Y. H. Chen, “Omnidirectional and independently tunnel defect modes in fractional photonic crystals containing single-negative materials,” Appl. Phys. B 95(4), 757–761 (2009).
[CrossRef]

D.-W. Yeh and C.-J. Wu, “Thickness-dependent photonic bandgap in a one-dimensional single-negative photonic crystal,” J. Opt. Soc. Am. B 26(8), 1506–1510 (2009).
[CrossRef]

2008 (3)

T. B. Wang, J. W. Dong, C. P. Yin, and H. Z. Wang, “Complete evanescent tunneling gaps in one-dimensional photonic crystals,” Phys. Lett. A 373(1), 169–172 (2008).
[CrossRef]

P. Han, C. T. Chan, and Z. Q. Zhang, “Wave localization in one-dimensional random structures composed of single-negative metamaterials,” Phys. Rev. B 77(11), 115332 (2008).
[CrossRef]

J. R. Canto, S. A. Matos, C. R. Paiva, and A. M. Barbosa, “Effect of losses in a layered structure containing DPS and DNG media,” PIERS Online 4(5), 546–550 (2008).
[CrossRef]

2006 (4)

S. Wang, C. Tang, T. Pan, and L. Gao, “Effectively negatively refractive material made of negative-permittivity and negative-permeability bilayer,” Phys. Lett. A 351(6), 391–397 (2006).
[CrossRef]

Y. H. Chen, J. W. Dong, and H. Z. Wang, “Omnidirectional resonance modes in photonic crystal heterostructures containing single-negative materials,” J. Opt. Soc. Am. B 23(10), 2237–2240 (2006).
[CrossRef]

L. W. Zhang, Y. W. Zhang, L. He, H. Q. Li, and H. Chen, “Experimental study of photonic crystals consisting of E-negative and μ-negative materials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(5), 056615 (2006).
[CrossRef]

L. Gao, C. J. Tang, and S. M. Wang, “Photonic band gap from a stack of single-negative materials,” J. Magn. Magn. Mater. 301(2), 371–377 (2006).
[CrossRef]

2005 (2)

H. T. Jiang, H. Chen, H. Q. Li, Y. W. Zhang, and S. Zhu, “Compact high-Q filters based on one-dimensional photonic crystals containing single-negative materials,” J. Appl. Phys. 98(1), 013101 (2005).
[CrossRef]

C.-J. Wu, M.-S. Chen, and T.-J. Yang, “Photonic band structure for a superconducting-dielectric Superlattice,” Physica C 432(3-4), 133–139 (2005).
[CrossRef]

2004 (2)

L.-G. Wang, H. Chen, and S.-Y. Zhu, “Omnidirectional gap and defect mode of one-dimensional photonic crystals with single-negative materials,” Phys. Rev. B 70(24), 245102 (2004).
[CrossRef]

H. T. Jiang, H. Chen, H. Q. Li, Y. W. Zhang, J. Zi, and S. Y. Zhu, “Properties of one-dimensional photonic crystals containing single-negative materials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(6), 066607 (2004).
[CrossRef] [PubMed]

2003 (1)

A. Alu and N. Engheta, “Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency,” IEEE Trans. Antenn. Propag. 51(10), 2558–2571 (2003).
[CrossRef]

2001 (1)

R. Ruppin, “Surface polaritons of a left-handed material slab,” J. Phys. Condens. Matter 13(9), 1811–1818 (2001).
[CrossRef]

2000 (2)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

C. H. Raymond Ooi, T. C. Au Yeung, C. H. Kam, and T. K. Lim, “Photonic band gap in a superconductor-dielectric superlattic,” Phys. Rev. B 61(9), 5920–5923 (2000).
[CrossRef]

1999 (2)

C. H. Raymond Ooi and T. C. Au Yeung, “Polariton gap in a superconductor-dielectric superlattice,” Phys. Lett. A 259(5), 413–419 (1999).

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

1996 (1)

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

Alu, A.

A. Alu and N. Engheta, “Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency,” IEEE Trans. Antenn. Propag. 51(10), 2558–2571 (2003).
[CrossRef]

Au Yeung, T. C.

C. H. Raymond Ooi, T. C. Au Yeung, C. H. Kam, and T. K. Lim, “Photonic band gap in a superconductor-dielectric superlattic,” Phys. Rev. B 61(9), 5920–5923 (2000).
[CrossRef]

C. H. Raymond Ooi and T. C. Au Yeung, “Polariton gap in a superconductor-dielectric superlattice,” Phys. Lett. A 259(5), 413–419 (1999).

Barbosa, A. M.

J. R. Canto, S. A. Matos, C. R. Paiva, and A. M. Barbosa, “Effect of losses in a layered structure containing DPS and DNG media,” PIERS Online 4(5), 546–550 (2008).
[CrossRef]

Canto, J. R.

J. R. Canto, S. A. Matos, C. R. Paiva, and A. M. Barbosa, “Effect of losses in a layered structure containing DPS and DNG media,” PIERS Online 4(5), 546–550 (2008).
[CrossRef]

Chan, C. T.

P. Han, C. T. Chan, and Z. Q. Zhang, “Wave localization in one-dimensional random structures composed of single-negative metamaterials,” Phys. Rev. B 77(11), 115332 (2008).
[CrossRef]

Chen, H.

L. W. Zhang, Y. W. Zhang, L. He, H. Q. Li, and H. Chen, “Experimental study of photonic crystals consisting of E-negative and μ-negative materials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(5), 056615 (2006).
[CrossRef]

H. T. Jiang, H. Chen, H. Q. Li, Y. W. Zhang, and S. Zhu, “Compact high-Q filters based on one-dimensional photonic crystals containing single-negative materials,” J. Appl. Phys. 98(1), 013101 (2005).
[CrossRef]

H. T. Jiang, H. Chen, H. Q. Li, Y. W. Zhang, J. Zi, and S. Y. Zhu, “Properties of one-dimensional photonic crystals containing single-negative materials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(6), 066607 (2004).
[CrossRef] [PubMed]

L.-G. Wang, H. Chen, and S.-Y. Zhu, “Omnidirectional gap and defect mode of one-dimensional photonic crystals with single-negative materials,” Phys. Rev. B 70(24), 245102 (2004).
[CrossRef]

Chen, M.-S.

C.-J. Wu, M.-S. Chen, and T.-J. Yang, “Photonic band structure for a superconducting-dielectric Superlattice,” Physica C 432(3-4), 133–139 (2005).
[CrossRef]

Chen, Y. H.

Y. H. Chen, “Omnidirectional and independently tunnel defect modes in fractional photonic crystals containing single-negative materials,” Appl. Phys. B 95(4), 757–761 (2009).
[CrossRef]

Y. H. Chen, J. W. Dong, and H. Z. Wang, “Omnidirectional resonance modes in photonic crystal heterostructures containing single-negative materials,” J. Opt. Soc. Am. B 23(10), 2237–2240 (2006).
[CrossRef]

Dong, J. W.

T. B. Wang, J. W. Dong, C. P. Yin, and H. Z. Wang, “Complete evanescent tunneling gaps in one-dimensional photonic crystals,” Phys. Lett. A 373(1), 169–172 (2008).
[CrossRef]

Y. H. Chen, J. W. Dong, and H. Z. Wang, “Omnidirectional resonance modes in photonic crystal heterostructures containing single-negative materials,” J. Opt. Soc. Am. B 23(10), 2237–2240 (2006).
[CrossRef]

Engheta, N.

A. Alu and N. Engheta, “Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency,” IEEE Trans. Antenn. Propag. 51(10), 2558–2571 (2003).
[CrossRef]

Gao, L.

S. Wang, C. Tang, T. Pan, and L. Gao, “Effectively negatively refractive material made of negative-permittivity and negative-permeability bilayer,” Phys. Lett. A 351(6), 391–397 (2006).
[CrossRef]

L. Gao, C. J. Tang, and S. M. Wang, “Photonic band gap from a stack of single-negative materials,” J. Magn. Magn. Mater. 301(2), 371–377 (2006).
[CrossRef]

Han, P.

P. Han, C. T. Chan, and Z. Q. Zhang, “Wave localization in one-dimensional random structures composed of single-negative metamaterials,” Phys. Rev. B 77(11), 115332 (2008).
[CrossRef]

He, L.

L. W. Zhang, Y. W. Zhang, L. He, H. Q. Li, and H. Chen, “Experimental study of photonic crystals consisting of E-negative and μ-negative materials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(5), 056615 (2006).
[CrossRef]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

Jiang, H. T.

H. T. Jiang, H. Chen, H. Q. Li, Y. W. Zhang, and S. Zhu, “Compact high-Q filters based on one-dimensional photonic crystals containing single-negative materials,” J. Appl. Phys. 98(1), 013101 (2005).
[CrossRef]

H. T. Jiang, H. Chen, H. Q. Li, Y. W. Zhang, J. Zi, and S. Y. Zhu, “Properties of one-dimensional photonic crystals containing single-negative materials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(6), 066607 (2004).
[CrossRef] [PubMed]

Kam, C. H.

C. H. Raymond Ooi, T. C. Au Yeung, C. H. Kam, and T. K. Lim, “Photonic band gap in a superconductor-dielectric superlattic,” Phys. Rev. B 61(9), 5920–5923 (2000).
[CrossRef]

Li, H. Q.

L. W. Zhang, Y. W. Zhang, L. He, H. Q. Li, and H. Chen, “Experimental study of photonic crystals consisting of E-negative and μ-negative materials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(5), 056615 (2006).
[CrossRef]

H. T. Jiang, H. Chen, H. Q. Li, Y. W. Zhang, and S. Zhu, “Compact high-Q filters based on one-dimensional photonic crystals containing single-negative materials,” J. Appl. Phys. 98(1), 013101 (2005).
[CrossRef]

H. T. Jiang, H. Chen, H. Q. Li, Y. W. Zhang, J. Zi, and S. Y. Zhu, “Properties of one-dimensional photonic crystals containing single-negative materials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(6), 066607 (2004).
[CrossRef] [PubMed]

Lim, T. K.

C. H. Raymond Ooi, T. C. Au Yeung, C. H. Kam, and T. K. Lim, “Photonic band gap in a superconductor-dielectric superlattic,” Phys. Rev. B 61(9), 5920–5923 (2000).
[CrossRef]

Matos, S. A.

J. R. Canto, S. A. Matos, C. R. Paiva, and A. M. Barbosa, “Effect of losses in a layered structure containing DPS and DNG media,” PIERS Online 4(5), 546–550 (2008).
[CrossRef]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Padilla, W. J.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Paiva, C. R.

J. R. Canto, S. A. Matos, C. R. Paiva, and A. M. Barbosa, “Effect of losses in a layered structure containing DPS and DNG media,” PIERS Online 4(5), 546–550 (2008).
[CrossRef]

Pan, T.

S. Wang, C. Tang, T. Pan, and L. Gao, “Effectively negatively refractive material made of negative-permittivity and negative-permeability bilayer,” Phys. Lett. A 351(6), 391–397 (2006).
[CrossRef]

Pendry, J. B.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

Raymond Ooi, C. H.

C. H. Raymond Ooi, T. C. Au Yeung, C. H. Kam, and T. K. Lim, “Photonic band gap in a superconductor-dielectric superlattic,” Phys. Rev. B 61(9), 5920–5923 (2000).
[CrossRef]

C. H. Raymond Ooi and T. C. Au Yeung, “Polariton gap in a superconductor-dielectric superlattice,” Phys. Lett. A 259(5), 413–419 (1999).

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

Ruppin, R.

R. Ruppin, “Surface polaritons of a left-handed material slab,” J. Phys. Condens. Matter 13(9), 1811–1818 (2001).
[CrossRef]

Schultz, S.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Smith, D. R.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

Tang, C.

S. Wang, C. Tang, T. Pan, and L. Gao, “Effectively negatively refractive material made of negative-permittivity and negative-permeability bilayer,” Phys. Lett. A 351(6), 391–397 (2006).
[CrossRef]

Tang, C. J.

L. Gao, C. J. Tang, and S. M. Wang, “Photonic band gap from a stack of single-negative materials,” J. Magn. Magn. Mater. 301(2), 371–377 (2006).
[CrossRef]

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Wang, H. Z.

T. B. Wang, J. W. Dong, C. P. Yin, and H. Z. Wang, “Complete evanescent tunneling gaps in one-dimensional photonic crystals,” Phys. Lett. A 373(1), 169–172 (2008).
[CrossRef]

Y. H. Chen, J. W. Dong, and H. Z. Wang, “Omnidirectional resonance modes in photonic crystal heterostructures containing single-negative materials,” J. Opt. Soc. Am. B 23(10), 2237–2240 (2006).
[CrossRef]

Wang, L.-G.

L.-G. Wang, H. Chen, and S.-Y. Zhu, “Omnidirectional gap and defect mode of one-dimensional photonic crystals with single-negative materials,” Phys. Rev. B 70(24), 245102 (2004).
[CrossRef]

Wang, S.

S. Wang, C. Tang, T. Pan, and L. Gao, “Effectively negatively refractive material made of negative-permittivity and negative-permeability bilayer,” Phys. Lett. A 351(6), 391–397 (2006).
[CrossRef]

Wang, S. M.

L. Gao, C. J. Tang, and S. M. Wang, “Photonic band gap from a stack of single-negative materials,” J. Magn. Magn. Mater. 301(2), 371–377 (2006).
[CrossRef]

Wang, T. B.

T. B. Wang, J. W. Dong, C. P. Yin, and H. Z. Wang, “Complete evanescent tunneling gaps in one-dimensional photonic crystals,” Phys. Lett. A 373(1), 169–172 (2008).
[CrossRef]

Wu, C.-J.

D.-W. Yeh and C.-J. Wu, “Thickness-dependent photonic bandgap in a one-dimensional single-negative photonic crystal,” J. Opt. Soc. Am. B 26(8), 1506–1510 (2009).
[CrossRef]

C.-J. Wu, M.-S. Chen, and T.-J. Yang, “Photonic band structure for a superconducting-dielectric Superlattice,” Physica C 432(3-4), 133–139 (2005).
[CrossRef]

Yang, T.-J.

C.-J. Wu, M.-S. Chen, and T.-J. Yang, “Photonic band structure for a superconducting-dielectric Superlattice,” Physica C 432(3-4), 133–139 (2005).
[CrossRef]

Yeh, D.-W.

Yin, C. P.

T. B. Wang, J. W. Dong, C. P. Yin, and H. Z. Wang, “Complete evanescent tunneling gaps in one-dimensional photonic crystals,” Phys. Lett. A 373(1), 169–172 (2008).
[CrossRef]

Youngs, I.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

Zhang, L. W.

L. W. Zhang, Y. W. Zhang, L. He, H. Q. Li, and H. Chen, “Experimental study of photonic crystals consisting of E-negative and μ-negative materials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(5), 056615 (2006).
[CrossRef]

Zhang, Y. W.

L. W. Zhang, Y. W. Zhang, L. He, H. Q. Li, and H. Chen, “Experimental study of photonic crystals consisting of E-negative and μ-negative materials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(5), 056615 (2006).
[CrossRef]

H. T. Jiang, H. Chen, H. Q. Li, Y. W. Zhang, and S. Zhu, “Compact high-Q filters based on one-dimensional photonic crystals containing single-negative materials,” J. Appl. Phys. 98(1), 013101 (2005).
[CrossRef]

H. T. Jiang, H. Chen, H. Q. Li, Y. W. Zhang, J. Zi, and S. Y. Zhu, “Properties of one-dimensional photonic crystals containing single-negative materials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(6), 066607 (2004).
[CrossRef] [PubMed]

Zhang, Z. Q.

P. Han, C. T. Chan, and Z. Q. Zhang, “Wave localization in one-dimensional random structures composed of single-negative metamaterials,” Phys. Rev. B 77(11), 115332 (2008).
[CrossRef]

Zhu, S.

H. T. Jiang, H. Chen, H. Q. Li, Y. W. Zhang, and S. Zhu, “Compact high-Q filters based on one-dimensional photonic crystals containing single-negative materials,” J. Appl. Phys. 98(1), 013101 (2005).
[CrossRef]

Zhu, S. Y.

H. T. Jiang, H. Chen, H. Q. Li, Y. W. Zhang, J. Zi, and S. Y. Zhu, “Properties of one-dimensional photonic crystals containing single-negative materials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(6), 066607 (2004).
[CrossRef] [PubMed]

Zhu, S.-Y.

L.-G. Wang, H. Chen, and S.-Y. Zhu, “Omnidirectional gap and defect mode of one-dimensional photonic crystals with single-negative materials,” Phys. Rev. B 70(24), 245102 (2004).
[CrossRef]

Zi, J.

H. T. Jiang, H. Chen, H. Q. Li, Y. W. Zhang, J. Zi, and S. Y. Zhu, “Properties of one-dimensional photonic crystals containing single-negative materials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(6), 066607 (2004).
[CrossRef] [PubMed]

Appl. Phys. B (1)

Y. H. Chen, “Omnidirectional and independently tunnel defect modes in fractional photonic crystals containing single-negative materials,” Appl. Phys. B 95(4), 757–761 (2009).
[CrossRef]

IEEE Trans. Antenn. Propag. (1)

A. Alu and N. Engheta, “Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency,” IEEE Trans. Antenn. Propag. 51(10), 2558–2571 (2003).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

J. Appl. Phys. (1)

H. T. Jiang, H. Chen, H. Q. Li, Y. W. Zhang, and S. Zhu, “Compact high-Q filters based on one-dimensional photonic crystals containing single-negative materials,” J. Appl. Phys. 98(1), 013101 (2005).
[CrossRef]

J. Magn. Magn. Mater. (1)

L. Gao, C. J. Tang, and S. M. Wang, “Photonic band gap from a stack of single-negative materials,” J. Magn. Magn. Mater. 301(2), 371–377 (2006).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. Condens. Matter (1)

R. Ruppin, “Surface polaritons of a left-handed material slab,” J. Phys. Condens. Matter 13(9), 1811–1818 (2001).
[CrossRef]

Phys. Lett. A (3)

T. B. Wang, J. W. Dong, C. P. Yin, and H. Z. Wang, “Complete evanescent tunneling gaps in one-dimensional photonic crystals,” Phys. Lett. A 373(1), 169–172 (2008).
[CrossRef]

S. Wang, C. Tang, T. Pan, and L. Gao, “Effectively negatively refractive material made of negative-permittivity and negative-permeability bilayer,” Phys. Lett. A 351(6), 391–397 (2006).
[CrossRef]

C. H. Raymond Ooi and T. C. Au Yeung, “Polariton gap in a superconductor-dielectric superlattice,” Phys. Lett. A 259(5), 413–419 (1999).

Phys. Rev. B (3)

P. Han, C. T. Chan, and Z. Q. Zhang, “Wave localization in one-dimensional random structures composed of single-negative metamaterials,” Phys. Rev. B 77(11), 115332 (2008).
[CrossRef]

L.-G. Wang, H. Chen, and S.-Y. Zhu, “Omnidirectional gap and defect mode of one-dimensional photonic crystals with single-negative materials,” Phys. Rev. B 70(24), 245102 (2004).
[CrossRef]

C. H. Raymond Ooi, T. C. Au Yeung, C. H. Kam, and T. K. Lim, “Photonic band gap in a superconductor-dielectric superlattic,” Phys. Rev. B 61(9), 5920–5923 (2000).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (2)

L. W. Zhang, Y. W. Zhang, L. He, H. Q. Li, and H. Chen, “Experimental study of photonic crystals consisting of E-negative and μ-negative materials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(5), 056615 (2006).
[CrossRef]

H. T. Jiang, H. Chen, H. Q. Li, Y. W. Zhang, J. Zi, and S. Y. Zhu, “Properties of one-dimensional photonic crystals containing single-negative materials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(6), 066607 (2004).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Physica C (1)

C.-J. Wu, M.-S. Chen, and T.-J. Yang, “Photonic band structure for a superconducting-dielectric Superlattice,” Physica C 432(3-4), 133–139 (2005).
[CrossRef]

PIERS Online (1)

J. R. Canto, S. A. Matos, C. R. Paiva, and A. M. Barbosa, “Effect of losses in a layered structure containing DPS and DNG media,” PIERS Online 4(5), 546–550 (2008).
[CrossRef]

Other (2)

P. Yeh, Optical Wave in Layered Media (John Wiley & Sons, New York, 1998).

S. J. Orfanidis, Electromagnetic Waves and Antennas (www.ece.rutgers.edu/~orfandid/ewa , 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

An N-period SNG multilayer structure to model a one-dimensional photonic crystal, in which layer 1 is an ENG material, layer 2 is an MNG material, and the spatial periodicity is Λ = d 1 + d 2.

Fig. 2
Fig. 2

The calculated frequency-dependent ε 1 for ENG material and μ 2 for MNG material, respectively. The effective frequency range for both ENG and MNG is 4.2-6.0 GHz.

Fig. 3
Fig. 3

The calculated (a) transmittance spectra at different numbers of periods N = 1, 2, and 20, respectively, and (b) band structure, K versus frequency. Here d 1 = 10 mm and d 2 = 20 mm are used.

Fig. 4
Fig. 4

The calculated reflectance spectrum and band structure at the conditions of impedance match and phase match, i.e., d 1 / d 2 = k 2 / k 1 = 10 /27.

Fig. 5
Fig. 5

The calculated impedance match frequency ω 0 as a function of the incident angle for both TE and TM waves.

Fig. 6
Fig. 6

The wave number ratio k 2 / k 1 at ω 0 for both TE and TM waves.

Fig. 7
Fig. 7

The band diagrams at different incident angles when the zero-effective-phase gaps band gap vanishes.

Fig. 8
Fig. 8

The case-I gap map for TE (a) and TM (b) waves.

Fig. 9
Fig. 9

he case-II gap map for TE (a) and TM (b) waves.

Fig. 10
Fig. 10

The case-III gap map for TE (a) and TM (b) waves.

Fig. 11
Fig. 11

The angle-dependent center frequency of second SNG gap for the three considered cases and the impedance match frequency.

Fig. 12
Fig. 12

The TE- and TM-reflectance spectra due to the loss in MNG layer when the zero-effective-phase gaps band gap vanishes at θ = 30°.

Fig. 13
Fig. 13

The TE-wave reflectance spectra due to the loss in MNG layer when the zero-effective-phase gaps band gap opens at θ = 0° and 20°, respectively.

Fig. 14
Fig. 14

The TE-wave reflectance spectra due to the loss in MNG layer when the zero-effective-phase gaps band gap opens at θ = 40° and 50°, respectively.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

ε1=1ωp2ω2, μ1=1,
μ2=1Fω2ω2ω02+iωΓ, ε2=1,
M[M11M12M21M22]=D01[D1P1D11D2P2D21]ND0,
DjTE=[11njμjcosθjnjμjcosθj],
DjTM=[cosθjcosθjnjμjnjμj],
n0sinθ0=n1sinθ1=n2sinθ2,
Pj=[exp(ikjdj)00exp(ikjdj)],
T=|1M11|2,R=|M21M11|2,
cos(KΛ)=cos(k1d1)cos(k2d2)12(k1μ1μ2k2+k2μ2μ1k1)sin(k1d1)sin(k2d2),
η1=η2,
k1μ2=k2μ1,
cos(KΛ)=cos(k1d1k2d2).
k1d1=k2d2,or d1/d2=k2/k1.
kj=k0njcosθj,j=1,2,
η1cosθ1=η2cosθ2,
η1cosθ1=η2cosθ2,

Metrics