Abstract

We describe a micro-spectrometer that exploits out-of-plane radiation at mode cutoff in a tapered leaky waveguide clad by omnidirectional Bragg reflectors. The device can be viewed as a side-coupled, tapered Fabry-Perot cavity. An effective-index transfer-matrix model reveals that optimal resolution is dependent on the reduction or mitigation of back-reflection and standing waves leading up to the cutoff point. We address this by insertion of low numerical aperture optics between the taper and the detector, and demonstrate an experimental resolution as small as ~1 nm and operating bandwidth >100 nm in the 1550 nm range, from a tapered waveguide with footprint ~50 μm x 500 μm. The device combines the small size of a Fabry-Perot instrument with the detector array compatibility and fixed optics of a grating-based instrument.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. “Diverse applications drive growth in spectroscopy market,” Nat. Photonics 2, 544 (2008).
  2. G. A. Neece, “Microspectrometers – an industry & instrumentation overview,” Proc. of SPIE 7086, 708602–1-8, (2008).
  3. G. M. Yee, N. I. Maluf, P. A. Hing, M. Abin, and G. T. A. Kovacs, “Miniature spectrometers for biochemical analysis,” Sen. Act. A 58(1), 61–66 (1997).
    [CrossRef]
  4. O. Schmidt, M. Bassler, P. Kiesel, C. Knollenberg, and N. Johnson, “Fluorescence spectrometer-on-a-fluidic-chip,” Lab Chip 7(5), 626–629 (2007).
    [CrossRef] [PubMed]
  5. X. Chen, J. N. McMullin, C. J. Haugen, and R. G. DeCorby, “Integrated diffraction grating for lab-on-a-chip microspectrometers,” Proc. SPIE 5699, 511–516 (2005).
    [CrossRef]
  6. R. F. Wolfenbuttel, “State-of-the-art in integrated optical microspectrometers,” IEEE Trans. Instrum. Meas. 53(1), 197–202 (2004).
    [CrossRef]
  7. S. Grabarnik, A. Emadi, E. Sokolova, G. Vdovin, and R. F. Wolffenbuttel, “Optimal implementation of a microspectrometer based on a single flat diffraction grating,” Appl. Opt. 47(12), 2082–2090 (2008).
    [CrossRef] [PubMed]
  8. S. Grabarnik, R. Wolffenbuttel, A. Emadi, M. Loktev, E. Sokolova, and G. Vdovin, “Planar double-grating microspectrometer,” Opt. Express 15(6), 3581–3588 (2007).
    [CrossRef] [PubMed]
  9. D. S. Goldman, P. L. White, and N. C. Anheier, “Miniaturized spectrometer employing planar waveguides and grating couplers for chemical analysis,” Appl. Opt. 29(31), 4583–4589 (1990).
    [CrossRef] [PubMed]
  10. K. Chaganti, I. Salakhutdinov, I. Avrutsky, and G. W. Auner, “A simple miniature optical spectrometer with a planar waveguide grating coupler in combination with a plano-convex lens,” Opt. Express 14(9), 4064–4072 (2006).
    [CrossRef] [PubMed]
  11. E. J. Eklund and A. M. Shkel, “Factors affecting the performance of micromachined sensors based on Fabry-Perot interferometry,” J. Micromech. Microeng. 15(9), 1770–1776 (2005).
    [CrossRef]
  12. P. Tayebati, P. Wang, M. Azimi, L. Maflah, and D. Vakhshoori, “Microelectromechanical tunable filter with stable half symmetric cavity,” Electron. Lett. 34(20), 1967–1968 (1998).
    [CrossRef]
  13. R. A. Crocombe, D. C. Flanders, and W. Atia, “Micro-optical instrumentation for process spectroscopy,” Proc. SPIE 5591, 11–25 (2004).
    [CrossRef]
  14. S.-W. Wang, C. Xia, X. Chen, W. Lu, M. Li, H. Wang, W. Zheng, and T. Zhang, “Concept of a high-resolution miniature spectrometer using an integrated filter array,” Opt. Lett. 32(6), 632–634 (2007).
    [CrossRef] [PubMed]
  15. O. Schmidt, P. Kiesel, and M. Bassler, “Performance of chip-size wavelength detectors,” Opt. Express 15(15), 9701–9706 (2007).
    [CrossRef] [PubMed]
  16. N. Ponnampalam and R. G. DeCorby, “Out-of-plane coupling at mode cutoff in tapered hollow waveguides with omnidirectional reflector claddings,” Opt. Express 16(5), 2894–2908 (2008).
    [CrossRef] [PubMed]
  17. N. Ponnampalam and R. G. Decorby, “Self-assembled hollow waveguides with hybrid metal-dielectric Bragg claddings,” Opt. Express 15(20), 12595–12604 (2007).
    [CrossRef] [PubMed]
  18. C. H. Tang, “Delay equalization by tapered cutoff waveguides,” IEEE Trans. Microw. Theory Tech. 12(6), 608–615 (1964).
    [CrossRef]
  19. T. Miura, Y. Yokota, and F. Koyama, “Proposal of tunable demultiplexer based on tapered hollow waveguides with highly reflective multilayer mirrors,” Proc. of LEOS 2005, 272–273 (2005).
  20. A. Imamura, N. Kitabayashi, and F. Koyama, “Modeling and experiment on tapered hollow waveguide multiplexer for multi-wavelength VCSEL array,” IEICE Electron. Express 5(12), 451–456 (2008).
    [CrossRef]
  21. M. L. Povinelli, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, “Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide,” Appl. Phys. Lett. 85(9), 1466–1468 (2004).
    [CrossRef]
  22. S. Weidong, L. Xiangdong, H. Biqin, Z. Yong, L. Xu, and G. Peifu, “Analysis on the tunable optical properties of MOEMS filter based on Fabry-Perot cavity,” Opt. Commun. 239(1-3), 153–160 (2004).
    [CrossRef]
  23. E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lerondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1(8), 473–478 (2007).
    [CrossRef]
  24. M. Florja?czyk, P. Cheben, S. Janz, A. Scott, B. Solheim, and D.-X. Xu, “Multiaperture planar waveguide spectrometer formed by arrayed Mach-Zehnder interferometers,” Opt. Express 15(26), 18176–18189 (2007).
    [CrossRef] [PubMed]
  25. P. Bermel, J. D. Joannopoulos, Y. Fink, P. A. Lane, and C. Tapalian, “Properties of radiating pointlike sources in cylindrical omnidirectionally reflecting waveguides,” Phys. Rev. B 69(3), 035316 (2004).
    [CrossRef]
  26. M. Xiang, Y. M. Cai, Y. M. Wu, J. Y. Yang, and Y. L. Wang, “Experimental study of the free spectral range (FSR) in FPI with a small plate gap,” Opt. Express 11(23), 3147–3152 (2003).
    [CrossRef] [PubMed]
  27. N. Ponnampalam and R. G. DeCorby, “Analysis and fabrication of hybrid metal-dielectric omnidirectional Bragg reflectors,” Appl. Opt. 47(1), 30–37 (2008).
    [CrossRef]
  28. M. A. Muriel, A. Carballar, and J. Azana, “Field distributions inside fiber gratings,” IEEE J. Quantum Electron. 35(4), 548–558 (1999).
    [CrossRef]
  29. A. Yariv, and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed., Oxford University Press, New York (2007).
  30. R. Z. Morawski, “Spectrophotometric applications of digital signal processing,” Meas. Sci. Technol. 17(9), R117–R144 (2006).
    [CrossRef]
  31. B. Pezeshki, F. F. Tong, J. A. Kash, and D. W. Kisker, “Vertical cavity devices as wavelength selective waveguides,” J. Lightwave Technol. 12(10), 1791–1801 (1994).
    [CrossRef]
  32. C. K. Madsen, J. Wagener, T. A. Strasser, D. Muehlner, M. A. Milbrodt, E. J. Laskowski, and J. DeMarco, “Planar waveguide optical spectrum analyzer using a UV-induced grating,” IEEE J. Sel. Top. Quantum Electron. 4(6), 925–929 (1998).
    [CrossRef]
  33. F. Vasefi, B. Kaminska, G. H. Chapman, and J. J. L. Carson, “Image contrast enhancement in angular domain optical imaging of turbid media,” Opt. Express 16(26), 21492–21504 (2008).
    [CrossRef] [PubMed]
  34. T. Yamada, and T. Kobayashi, “Collimator and spectrophotometer,” United States Patent 7,114,232 (2006).
  35. T. Niemi, L. H. Frandsen, K. K. Hede, A. Harpoth, P. I. Borel, and M. Kristensen, “Wavelength-division demultiplexing using photonic crystal waveguides,” IEEE Photon. Technol. Lett. 18(1), 226–228 (2006).
    [CrossRef]

2008 (6)

2007 (7)

2006 (3)

R. Z. Morawski, “Spectrophotometric applications of digital signal processing,” Meas. Sci. Technol. 17(9), R117–R144 (2006).
[CrossRef]

T. Niemi, L. H. Frandsen, K. K. Hede, A. Harpoth, P. I. Borel, and M. Kristensen, “Wavelength-division demultiplexing using photonic crystal waveguides,” IEEE Photon. Technol. Lett. 18(1), 226–228 (2006).
[CrossRef]

K. Chaganti, I. Salakhutdinov, I. Avrutsky, and G. W. Auner, “A simple miniature optical spectrometer with a planar waveguide grating coupler in combination with a plano-convex lens,” Opt. Express 14(9), 4064–4072 (2006).
[CrossRef] [PubMed]

2005 (2)

X. Chen, J. N. McMullin, C. J. Haugen, and R. G. DeCorby, “Integrated diffraction grating for lab-on-a-chip microspectrometers,” Proc. SPIE 5699, 511–516 (2005).
[CrossRef]

E. J. Eklund and A. M. Shkel, “Factors affecting the performance of micromachined sensors based on Fabry-Perot interferometry,” J. Micromech. Microeng. 15(9), 1770–1776 (2005).
[CrossRef]

2004 (5)

R. A. Crocombe, D. C. Flanders, and W. Atia, “Micro-optical instrumentation for process spectroscopy,” Proc. SPIE 5591, 11–25 (2004).
[CrossRef]

R. F. Wolfenbuttel, “State-of-the-art in integrated optical microspectrometers,” IEEE Trans. Instrum. Meas. 53(1), 197–202 (2004).
[CrossRef]

P. Bermel, J. D. Joannopoulos, Y. Fink, P. A. Lane, and C. Tapalian, “Properties of radiating pointlike sources in cylindrical omnidirectionally reflecting waveguides,” Phys. Rev. B 69(3), 035316 (2004).
[CrossRef]

M. L. Povinelli, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, “Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide,” Appl. Phys. Lett. 85(9), 1466–1468 (2004).
[CrossRef]

S. Weidong, L. Xiangdong, H. Biqin, Z. Yong, L. Xu, and G. Peifu, “Analysis on the tunable optical properties of MOEMS filter based on Fabry-Perot cavity,” Opt. Commun. 239(1-3), 153–160 (2004).
[CrossRef]

2003 (1)

1999 (1)

M. A. Muriel, A. Carballar, and J. Azana, “Field distributions inside fiber gratings,” IEEE J. Quantum Electron. 35(4), 548–558 (1999).
[CrossRef]

1998 (2)

C. K. Madsen, J. Wagener, T. A. Strasser, D. Muehlner, M. A. Milbrodt, E. J. Laskowski, and J. DeMarco, “Planar waveguide optical spectrum analyzer using a UV-induced grating,” IEEE J. Sel. Top. Quantum Electron. 4(6), 925–929 (1998).
[CrossRef]

P. Tayebati, P. Wang, M. Azimi, L. Maflah, and D. Vakhshoori, “Microelectromechanical tunable filter with stable half symmetric cavity,” Electron. Lett. 34(20), 1967–1968 (1998).
[CrossRef]

1997 (1)

G. M. Yee, N. I. Maluf, P. A. Hing, M. Abin, and G. T. A. Kovacs, “Miniature spectrometers for biochemical analysis,” Sen. Act. A 58(1), 61–66 (1997).
[CrossRef]

1994 (1)

B. Pezeshki, F. F. Tong, J. A. Kash, and D. W. Kisker, “Vertical cavity devices as wavelength selective waveguides,” J. Lightwave Technol. 12(10), 1791–1801 (1994).
[CrossRef]

1990 (1)

1964 (1)

C. H. Tang, “Delay equalization by tapered cutoff waveguides,” IEEE Trans. Microw. Theory Tech. 12(6), 608–615 (1964).
[CrossRef]

Abin, M.

G. M. Yee, N. I. Maluf, P. A. Hing, M. Abin, and G. T. A. Kovacs, “Miniature spectrometers for biochemical analysis,” Sen. Act. A 58(1), 61–66 (1997).
[CrossRef]

Anheier, N. C.

Atia, W.

R. A. Crocombe, D. C. Flanders, and W. Atia, “Micro-optical instrumentation for process spectroscopy,” Proc. SPIE 5591, 11–25 (2004).
[CrossRef]

Auner, G. W.

Avrutsky, I.

Azana, J.

M. A. Muriel, A. Carballar, and J. Azana, “Field distributions inside fiber gratings,” IEEE J. Quantum Electron. 35(4), 548–558 (1999).
[CrossRef]

Azimi, M.

P. Tayebati, P. Wang, M. Azimi, L. Maflah, and D. Vakhshoori, “Microelectromechanical tunable filter with stable half symmetric cavity,” Electron. Lett. 34(20), 1967–1968 (1998).
[CrossRef]

Bassler, M.

O. Schmidt, P. Kiesel, and M. Bassler, “Performance of chip-size wavelength detectors,” Opt. Express 15(15), 9701–9706 (2007).
[CrossRef] [PubMed]

O. Schmidt, M. Bassler, P. Kiesel, C. Knollenberg, and N. Johnson, “Fluorescence spectrometer-on-a-fluidic-chip,” Lab Chip 7(5), 626–629 (2007).
[CrossRef] [PubMed]

Benech, P.

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lerondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1(8), 473–478 (2007).
[CrossRef]

Bermel, P.

P. Bermel, J. D. Joannopoulos, Y. Fink, P. A. Lane, and C. Tapalian, “Properties of radiating pointlike sources in cylindrical omnidirectionally reflecting waveguides,” Phys. Rev. B 69(3), 035316 (2004).
[CrossRef]

Biqin, H.

S. Weidong, L. Xiangdong, H. Biqin, Z. Yong, L. Xu, and G. Peifu, “Analysis on the tunable optical properties of MOEMS filter based on Fabry-Perot cavity,” Opt. Commun. 239(1-3), 153–160 (2004).
[CrossRef]

Blaize, S.

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lerondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1(8), 473–478 (2007).
[CrossRef]

Borel, P. I.

T. Niemi, L. H. Frandsen, K. K. Hede, A. Harpoth, P. I. Borel, and M. Kristensen, “Wavelength-division demultiplexing using photonic crystal waveguides,” IEEE Photon. Technol. Lett. 18(1), 226–228 (2006).
[CrossRef]

Cai, Y. M.

Carballar, A.

M. A. Muriel, A. Carballar, and J. Azana, “Field distributions inside fiber gratings,” IEEE J. Quantum Electron. 35(4), 548–558 (1999).
[CrossRef]

Carson, J. J. L.

Chaganti, K.

Chapman, G. H.

Cheben, P.

Chen, X.

S.-W. Wang, C. Xia, X. Chen, W. Lu, M. Li, H. Wang, W. Zheng, and T. Zhang, “Concept of a high-resolution miniature spectrometer using an integrated filter array,” Opt. Lett. 32(6), 632–634 (2007).
[CrossRef] [PubMed]

X. Chen, J. N. McMullin, C. J. Haugen, and R. G. DeCorby, “Integrated diffraction grating for lab-on-a-chip microspectrometers,” Proc. SPIE 5699, 511–516 (2005).
[CrossRef]

Crocombe, R. A.

R. A. Crocombe, D. C. Flanders, and W. Atia, “Micro-optical instrumentation for process spectroscopy,” Proc. SPIE 5591, 11–25 (2004).
[CrossRef]

DeCorby, R. G.

DeMarco, J.

C. K. Madsen, J. Wagener, T. A. Strasser, D. Muehlner, M. A. Milbrodt, E. J. Laskowski, and J. DeMarco, “Planar waveguide optical spectrum analyzer using a UV-induced grating,” IEEE J. Sel. Top. Quantum Electron. 4(6), 925–929 (1998).
[CrossRef]

Eklund, E. J.

E. J. Eklund and A. M. Shkel, “Factors affecting the performance of micromachined sensors based on Fabry-Perot interferometry,” J. Micromech. Microeng. 15(9), 1770–1776 (2005).
[CrossRef]

Emadi, A.

Fedeli, J. M.

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lerondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1(8), 473–478 (2007).
[CrossRef]

Fink, Y.

P. Bermel, J. D. Joannopoulos, Y. Fink, P. A. Lane, and C. Tapalian, “Properties of radiating pointlike sources in cylindrical omnidirectionally reflecting waveguides,” Phys. Rev. B 69(3), 035316 (2004).
[CrossRef]

Flanders, D. C.

R. A. Crocombe, D. C. Flanders, and W. Atia, “Micro-optical instrumentation for process spectroscopy,” Proc. SPIE 5591, 11–25 (2004).
[CrossRef]

Florjanczyk, M.

Frandsen, L. H.

T. Niemi, L. H. Frandsen, K. K. Hede, A. Harpoth, P. I. Borel, and M. Kristensen, “Wavelength-division demultiplexing using photonic crystal waveguides,” IEEE Photon. Technol. Lett. 18(1), 226–228 (2006).
[CrossRef]

Goldman, D. S.

Grabarnik, S.

Harpoth, A.

T. Niemi, L. H. Frandsen, K. K. Hede, A. Harpoth, P. I. Borel, and M. Kristensen, “Wavelength-division demultiplexing using photonic crystal waveguides,” IEEE Photon. Technol. Lett. 18(1), 226–228 (2006).
[CrossRef]

Haugen, C. J.

X. Chen, J. N. McMullin, C. J. Haugen, and R. G. DeCorby, “Integrated diffraction grating for lab-on-a-chip microspectrometers,” Proc. SPIE 5699, 511–516 (2005).
[CrossRef]

Hede, K. K.

T. Niemi, L. H. Frandsen, K. K. Hede, A. Harpoth, P. I. Borel, and M. Kristensen, “Wavelength-division demultiplexing using photonic crystal waveguides,” IEEE Photon. Technol. Lett. 18(1), 226–228 (2006).
[CrossRef]

Hing, P. A.

G. M. Yee, N. I. Maluf, P. A. Hing, M. Abin, and G. T. A. Kovacs, “Miniature spectrometers for biochemical analysis,” Sen. Act. A 58(1), 61–66 (1997).
[CrossRef]

Ibanescu, M.

M. L. Povinelli, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, “Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide,” Appl. Phys. Lett. 85(9), 1466–1468 (2004).
[CrossRef]

Imamura, A.

A. Imamura, N. Kitabayashi, and F. Koyama, “Modeling and experiment on tapered hollow waveguide multiplexer for multi-wavelength VCSEL array,” IEICE Electron. Express 5(12), 451–456 (2008).
[CrossRef]

Janz, S.

Joannopoulos, J. D.

M. L. Povinelli, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, “Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide,” Appl. Phys. Lett. 85(9), 1466–1468 (2004).
[CrossRef]

P. Bermel, J. D. Joannopoulos, Y. Fink, P. A. Lane, and C. Tapalian, “Properties of radiating pointlike sources in cylindrical omnidirectionally reflecting waveguides,” Phys. Rev. B 69(3), 035316 (2004).
[CrossRef]

Johnson, N.

O. Schmidt, M. Bassler, P. Kiesel, C. Knollenberg, and N. Johnson, “Fluorescence spectrometer-on-a-fluidic-chip,” Lab Chip 7(5), 626–629 (2007).
[CrossRef] [PubMed]

Johnson, S. G.

M. L. Povinelli, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, “Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide,” Appl. Phys. Lett. 85(9), 1466–1468 (2004).
[CrossRef]

Kaminska, B.

Kash, J. A.

B. Pezeshki, F. F. Tong, J. A. Kash, and D. W. Kisker, “Vertical cavity devices as wavelength selective waveguides,” J. Lightwave Technol. 12(10), 1791–1801 (1994).
[CrossRef]

Kern, P.

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lerondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1(8), 473–478 (2007).
[CrossRef]

Kiesel, P.

O. Schmidt, M. Bassler, P. Kiesel, C. Knollenberg, and N. Johnson, “Fluorescence spectrometer-on-a-fluidic-chip,” Lab Chip 7(5), 626–629 (2007).
[CrossRef] [PubMed]

O. Schmidt, P. Kiesel, and M. Bassler, “Performance of chip-size wavelength detectors,” Opt. Express 15(15), 9701–9706 (2007).
[CrossRef] [PubMed]

Kisker, D. W.

B. Pezeshki, F. F. Tong, J. A. Kash, and D. W. Kisker, “Vertical cavity devices as wavelength selective waveguides,” J. Lightwave Technol. 12(10), 1791–1801 (1994).
[CrossRef]

Kitabayashi, N.

A. Imamura, N. Kitabayashi, and F. Koyama, “Modeling and experiment on tapered hollow waveguide multiplexer for multi-wavelength VCSEL array,” IEICE Electron. Express 5(12), 451–456 (2008).
[CrossRef]

Knollenberg, C.

O. Schmidt, M. Bassler, P. Kiesel, C. Knollenberg, and N. Johnson, “Fluorescence spectrometer-on-a-fluidic-chip,” Lab Chip 7(5), 626–629 (2007).
[CrossRef] [PubMed]

Kovacs, G. T. A.

G. M. Yee, N. I. Maluf, P. A. Hing, M. Abin, and G. T. A. Kovacs, “Miniature spectrometers for biochemical analysis,” Sen. Act. A 58(1), 61–66 (1997).
[CrossRef]

Koyama, F.

A. Imamura, N. Kitabayashi, and F. Koyama, “Modeling and experiment on tapered hollow waveguide multiplexer for multi-wavelength VCSEL array,” IEICE Electron. Express 5(12), 451–456 (2008).
[CrossRef]

Kristensen, M.

T. Niemi, L. H. Frandsen, K. K. Hede, A. Harpoth, P. I. Borel, and M. Kristensen, “Wavelength-division demultiplexing using photonic crystal waveguides,” IEEE Photon. Technol. Lett. 18(1), 226–228 (2006).
[CrossRef]

Lane, P. A.

P. Bermel, J. D. Joannopoulos, Y. Fink, P. A. Lane, and C. Tapalian, “Properties of radiating pointlike sources in cylindrical omnidirectionally reflecting waveguides,” Phys. Rev. B 69(3), 035316 (2004).
[CrossRef]

Laskowski, E. J.

C. K. Madsen, J. Wagener, T. A. Strasser, D. Muehlner, M. A. Milbrodt, E. J. Laskowski, and J. DeMarco, “Planar waveguide optical spectrum analyzer using a UV-induced grating,” IEEE J. Sel. Top. Quantum Electron. 4(6), 925–929 (1998).
[CrossRef]

Le Coarer, E.

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lerondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1(8), 473–478 (2007).
[CrossRef]

Leblond, G.

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lerondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1(8), 473–478 (2007).
[CrossRef]

Lerondel, G.

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lerondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1(8), 473–478 (2007).
[CrossRef]

Li, M.

Loktev, M.

Lu, W.

Madsen, C. K.

C. K. Madsen, J. Wagener, T. A. Strasser, D. Muehlner, M. A. Milbrodt, E. J. Laskowski, and J. DeMarco, “Planar waveguide optical spectrum analyzer using a UV-induced grating,” IEEE J. Sel. Top. Quantum Electron. 4(6), 925–929 (1998).
[CrossRef]

Maflah, L.

P. Tayebati, P. Wang, M. Azimi, L. Maflah, and D. Vakhshoori, “Microelectromechanical tunable filter with stable half symmetric cavity,” Electron. Lett. 34(20), 1967–1968 (1998).
[CrossRef]

Maluf, N. I.

G. M. Yee, N. I. Maluf, P. A. Hing, M. Abin, and G. T. A. Kovacs, “Miniature spectrometers for biochemical analysis,” Sen. Act. A 58(1), 61–66 (1997).
[CrossRef]

McMullin, J. N.

X. Chen, J. N. McMullin, C. J. Haugen, and R. G. DeCorby, “Integrated diffraction grating for lab-on-a-chip microspectrometers,” Proc. SPIE 5699, 511–516 (2005).
[CrossRef]

Milbrodt, M. A.

C. K. Madsen, J. Wagener, T. A. Strasser, D. Muehlner, M. A. Milbrodt, E. J. Laskowski, and J. DeMarco, “Planar waveguide optical spectrum analyzer using a UV-induced grating,” IEEE J. Sel. Top. Quantum Electron. 4(6), 925–929 (1998).
[CrossRef]

Morand, A.

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lerondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1(8), 473–478 (2007).
[CrossRef]

Morawski, R. Z.

R. Z. Morawski, “Spectrophotometric applications of digital signal processing,” Meas. Sci. Technol. 17(9), R117–R144 (2006).
[CrossRef]

Muehlner, D.

C. K. Madsen, J. Wagener, T. A. Strasser, D. Muehlner, M. A. Milbrodt, E. J. Laskowski, and J. DeMarco, “Planar waveguide optical spectrum analyzer using a UV-induced grating,” IEEE J. Sel. Top. Quantum Electron. 4(6), 925–929 (1998).
[CrossRef]

Muriel, M. A.

M. A. Muriel, A. Carballar, and J. Azana, “Field distributions inside fiber gratings,” IEEE J. Quantum Electron. 35(4), 548–558 (1999).
[CrossRef]

Niemi, T.

T. Niemi, L. H. Frandsen, K. K. Hede, A. Harpoth, P. I. Borel, and M. Kristensen, “Wavelength-division demultiplexing using photonic crystal waveguides,” IEEE Photon. Technol. Lett. 18(1), 226–228 (2006).
[CrossRef]

Peifu, G.

S. Weidong, L. Xiangdong, H. Biqin, Z. Yong, L. Xu, and G. Peifu, “Analysis on the tunable optical properties of MOEMS filter based on Fabry-Perot cavity,” Opt. Commun. 239(1-3), 153–160 (2004).
[CrossRef]

Pezeshki, B.

B. Pezeshki, F. F. Tong, J. A. Kash, and D. W. Kisker, “Vertical cavity devices as wavelength selective waveguides,” J. Lightwave Technol. 12(10), 1791–1801 (1994).
[CrossRef]

Ponnampalam, N.

Povinelli, M. L.

M. L. Povinelli, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, “Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide,” Appl. Phys. Lett. 85(9), 1466–1468 (2004).
[CrossRef]

Royer, P.

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lerondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1(8), 473–478 (2007).
[CrossRef]

Salakhutdinov, I.

Schmidt, O.

O. Schmidt, M. Bassler, P. Kiesel, C. Knollenberg, and N. Johnson, “Fluorescence spectrometer-on-a-fluidic-chip,” Lab Chip 7(5), 626–629 (2007).
[CrossRef] [PubMed]

O. Schmidt, P. Kiesel, and M. Bassler, “Performance of chip-size wavelength detectors,” Opt. Express 15(15), 9701–9706 (2007).
[CrossRef] [PubMed]

Scott, A.

Shkel, A. M.

E. J. Eklund and A. M. Shkel, “Factors affecting the performance of micromachined sensors based on Fabry-Perot interferometry,” J. Micromech. Microeng. 15(9), 1770–1776 (2005).
[CrossRef]

Sokolova, E.

Solheim, B.

Stefanon, I.

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lerondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1(8), 473–478 (2007).
[CrossRef]

Strasser, T. A.

C. K. Madsen, J. Wagener, T. A. Strasser, D. Muehlner, M. A. Milbrodt, E. J. Laskowski, and J. DeMarco, “Planar waveguide optical spectrum analyzer using a UV-induced grating,” IEEE J. Sel. Top. Quantum Electron. 4(6), 925–929 (1998).
[CrossRef]

Tang, C. H.

C. H. Tang, “Delay equalization by tapered cutoff waveguides,” IEEE Trans. Microw. Theory Tech. 12(6), 608–615 (1964).
[CrossRef]

Tapalian, C.

P. Bermel, J. D. Joannopoulos, Y. Fink, P. A. Lane, and C. Tapalian, “Properties of radiating pointlike sources in cylindrical omnidirectionally reflecting waveguides,” Phys. Rev. B 69(3), 035316 (2004).
[CrossRef]

Tayebati, P.

P. Tayebati, P. Wang, M. Azimi, L. Maflah, and D. Vakhshoori, “Microelectromechanical tunable filter with stable half symmetric cavity,” Electron. Lett. 34(20), 1967–1968 (1998).
[CrossRef]

Tong, F. F.

B. Pezeshki, F. F. Tong, J. A. Kash, and D. W. Kisker, “Vertical cavity devices as wavelength selective waveguides,” J. Lightwave Technol. 12(10), 1791–1801 (1994).
[CrossRef]

Vakhshoori, D.

P. Tayebati, P. Wang, M. Azimi, L. Maflah, and D. Vakhshoori, “Microelectromechanical tunable filter with stable half symmetric cavity,” Electron. Lett. 34(20), 1967–1968 (1998).
[CrossRef]

Vasefi, F.

Vdovin, G.

Wagener, J.

C. K. Madsen, J. Wagener, T. A. Strasser, D. Muehlner, M. A. Milbrodt, E. J. Laskowski, and J. DeMarco, “Planar waveguide optical spectrum analyzer using a UV-induced grating,” IEEE J. Sel. Top. Quantum Electron. 4(6), 925–929 (1998).
[CrossRef]

Wang, H.

Wang, P.

P. Tayebati, P. Wang, M. Azimi, L. Maflah, and D. Vakhshoori, “Microelectromechanical tunable filter with stable half symmetric cavity,” Electron. Lett. 34(20), 1967–1968 (1998).
[CrossRef]

Wang, S.-W.

Wang, Y. L.

Weidong, S.

S. Weidong, L. Xiangdong, H. Biqin, Z. Yong, L. Xu, and G. Peifu, “Analysis on the tunable optical properties of MOEMS filter based on Fabry-Perot cavity,” Opt. Commun. 239(1-3), 153–160 (2004).
[CrossRef]

White, P. L.

Wolfenbuttel, R. F.

R. F. Wolfenbuttel, “State-of-the-art in integrated optical microspectrometers,” IEEE Trans. Instrum. Meas. 53(1), 197–202 (2004).
[CrossRef]

Wolffenbuttel, R.

Wolffenbuttel, R. F.

Wu, Y. M.

Xia, C.

Xiang, M.

Xiangdong, L.

S. Weidong, L. Xiangdong, H. Biqin, Z. Yong, L. Xu, and G. Peifu, “Analysis on the tunable optical properties of MOEMS filter based on Fabry-Perot cavity,” Opt. Commun. 239(1-3), 153–160 (2004).
[CrossRef]

Xu, D.-X.

Xu, L.

S. Weidong, L. Xiangdong, H. Biqin, Z. Yong, L. Xu, and G. Peifu, “Analysis on the tunable optical properties of MOEMS filter based on Fabry-Perot cavity,” Opt. Commun. 239(1-3), 153–160 (2004).
[CrossRef]

Yang, J. Y.

Yee, G. M.

G. M. Yee, N. I. Maluf, P. A. Hing, M. Abin, and G. T. A. Kovacs, “Miniature spectrometers for biochemical analysis,” Sen. Act. A 58(1), 61–66 (1997).
[CrossRef]

Yong, Z.

S. Weidong, L. Xiangdong, H. Biqin, Z. Yong, L. Xu, and G. Peifu, “Analysis on the tunable optical properties of MOEMS filter based on Fabry-Perot cavity,” Opt. Commun. 239(1-3), 153–160 (2004).
[CrossRef]

Zhang, T.

Zheng, W.

Appl. Opt. (3)

Appl. Phys. Lett. (1)

M. L. Povinelli, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, “Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide,” Appl. Phys. Lett. 85(9), 1466–1468 (2004).
[CrossRef]

Electron. Lett. (1)

P. Tayebati, P. Wang, M. Azimi, L. Maflah, and D. Vakhshoori, “Microelectromechanical tunable filter with stable half symmetric cavity,” Electron. Lett. 34(20), 1967–1968 (1998).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. A. Muriel, A. Carballar, and J. Azana, “Field distributions inside fiber gratings,” IEEE J. Quantum Electron. 35(4), 548–558 (1999).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

C. K. Madsen, J. Wagener, T. A. Strasser, D. Muehlner, M. A. Milbrodt, E. J. Laskowski, and J. DeMarco, “Planar waveguide optical spectrum analyzer using a UV-induced grating,” IEEE J. Sel. Top. Quantum Electron. 4(6), 925–929 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

T. Niemi, L. H. Frandsen, K. K. Hede, A. Harpoth, P. I. Borel, and M. Kristensen, “Wavelength-division demultiplexing using photonic crystal waveguides,” IEEE Photon. Technol. Lett. 18(1), 226–228 (2006).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

R. F. Wolfenbuttel, “State-of-the-art in integrated optical microspectrometers,” IEEE Trans. Instrum. Meas. 53(1), 197–202 (2004).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

C. H. Tang, “Delay equalization by tapered cutoff waveguides,” IEEE Trans. Microw. Theory Tech. 12(6), 608–615 (1964).
[CrossRef]

IEICE Electron. Express (1)

A. Imamura, N. Kitabayashi, and F. Koyama, “Modeling and experiment on tapered hollow waveguide multiplexer for multi-wavelength VCSEL array,” IEICE Electron. Express 5(12), 451–456 (2008).
[CrossRef]

J. Lightwave Technol. (1)

B. Pezeshki, F. F. Tong, J. A. Kash, and D. W. Kisker, “Vertical cavity devices as wavelength selective waveguides,” J. Lightwave Technol. 12(10), 1791–1801 (1994).
[CrossRef]

J. Micromech. Microeng. (1)

E. J. Eklund and A. M. Shkel, “Factors affecting the performance of micromachined sensors based on Fabry-Perot interferometry,” J. Micromech. Microeng. 15(9), 1770–1776 (2005).
[CrossRef]

Lab Chip (1)

O. Schmidt, M. Bassler, P. Kiesel, C. Knollenberg, and N. Johnson, “Fluorescence spectrometer-on-a-fluidic-chip,” Lab Chip 7(5), 626–629 (2007).
[CrossRef] [PubMed]

Meas. Sci. Technol. (1)

R. Z. Morawski, “Spectrophotometric applications of digital signal processing,” Meas. Sci. Technol. 17(9), R117–R144 (2006).
[CrossRef]

Nat. Photonics (2)

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lerondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1(8), 473–478 (2007).
[CrossRef]

“Diverse applications drive growth in spectroscopy market,” Nat. Photonics 2, 544 (2008).

Opt. Commun. (1)

S. Weidong, L. Xiangdong, H. Biqin, Z. Yong, L. Xu, and G. Peifu, “Analysis on the tunable optical properties of MOEMS filter based on Fabry-Perot cavity,” Opt. Commun. 239(1-3), 153–160 (2004).
[CrossRef]

Opt. Express (8)

M. Xiang, Y. M. Cai, Y. M. Wu, J. Y. Yang, and Y. L. Wang, “Experimental study of the free spectral range (FSR) in FPI with a small plate gap,” Opt. Express 11(23), 3147–3152 (2003).
[CrossRef] [PubMed]

K. Chaganti, I. Salakhutdinov, I. Avrutsky, and G. W. Auner, “A simple miniature optical spectrometer with a planar waveguide grating coupler in combination with a plano-convex lens,” Opt. Express 14(9), 4064–4072 (2006).
[CrossRef] [PubMed]

N. Ponnampalam and R. G. DeCorby, “Out-of-plane coupling at mode cutoff in tapered hollow waveguides with omnidirectional reflector claddings,” Opt. Express 16(5), 2894–2908 (2008).
[CrossRef] [PubMed]

S. Grabarnik, R. Wolffenbuttel, A. Emadi, M. Loktev, E. Sokolova, and G. Vdovin, “Planar double-grating microspectrometer,” Opt. Express 15(6), 3581–3588 (2007).
[CrossRef] [PubMed]

O. Schmidt, P. Kiesel, and M. Bassler, “Performance of chip-size wavelength detectors,” Opt. Express 15(15), 9701–9706 (2007).
[CrossRef] [PubMed]

N. Ponnampalam and R. G. Decorby, “Self-assembled hollow waveguides with hybrid metal-dielectric Bragg claddings,” Opt. Express 15(20), 12595–12604 (2007).
[CrossRef] [PubMed]

M. Florja?czyk, P. Cheben, S. Janz, A. Scott, B. Solheim, and D.-X. Xu, “Multiaperture planar waveguide spectrometer formed by arrayed Mach-Zehnder interferometers,” Opt. Express 15(26), 18176–18189 (2007).
[CrossRef] [PubMed]

F. Vasefi, B. Kaminska, G. H. Chapman, and J. J. L. Carson, “Image contrast enhancement in angular domain optical imaging of turbid media,” Opt. Express 16(26), 21492–21504 (2008).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rev. B (1)

P. Bermel, J. D. Joannopoulos, Y. Fink, P. A. Lane, and C. Tapalian, “Properties of radiating pointlike sources in cylindrical omnidirectionally reflecting waveguides,” Phys. Rev. B 69(3), 035316 (2004).
[CrossRef]

Proc. SPIE (2)

X. Chen, J. N. McMullin, C. J. Haugen, and R. G. DeCorby, “Integrated diffraction grating for lab-on-a-chip microspectrometers,” Proc. SPIE 5699, 511–516 (2005).
[CrossRef]

R. A. Crocombe, D. C. Flanders, and W. Atia, “Micro-optical instrumentation for process spectroscopy,” Proc. SPIE 5591, 11–25 (2004).
[CrossRef]

Sen. Act. A (1)

G. M. Yee, N. I. Maluf, P. A. Hing, M. Abin, and G. T. A. Kovacs, “Miniature spectrometers for biochemical analysis,” Sen. Act. A 58(1), 61–66 (1997).
[CrossRef]

Other (4)

T. Miura, Y. Yokota, and F. Koyama, “Proposal of tunable demultiplexer based on tapered hollow waveguides with highly reflective multilayer mirrors,” Proc. of LEOS 2005, 272–273 (2005).

A. Yariv, and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed., Oxford University Press, New York (2007).

G. A. Neece, “Microspectrometers – an industry & instrumentation overview,” Proc. of SPIE 7086, 708602–1-8, (2008).

T. Yamada, and T. Kobayashi, “Collimator and spectrophotometer,” United States Patent 7,114,232 (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) A ray optics representation of the out-of-plane radiation near mode cutoff in a tapered air-core slab waveguide clad by omnidirectional reflectors [16]. For a given mode and wavelength, cutoff occurs at the mirror spacing δC that produces a vertical Fabry-Perot resonance condition. In a short distance leading up to the cutoff point, the ray angle approaches the substrate normal and the radiation loss diverges. (b) Schematic illustration of a proposed micro-spectrometer exploiting the cutoff mechanism. Metal layers (shown black) are added to the dielectric mirrors, to increase their reflectance and suppress stray light. An adjacent detector array would enable spectral analysis of a polychromatic input signal, represented by the two wavelengths shown. For optimal resolution and stray light reduction, a low NA optic or angular filter could be added to suppress the detection of off-normal radiation. In order to improve optical efficiency, it might be desirable to open a window in the metal layer (as indicated by the dashed section) adjacent to the detector array. In this case, the Bragg stack could have additional layers as shown, so that high cavity Q-factor is maintained. However, note that the experimental devices studied here have uniform metal layers (no windows) and were modeled accordingly.

Fig. 2
Fig. 2

(a) End-facet schematic showing the sequence of layers in the as-fabricated structure. PAI is polyamide-imide polymer (n~1.65) and IG2 is Ge33As12Se55 chalcogenide glass (n~2.55). The IG2 layers in the upper cladding are Ag-doped, which increases their refractive index (n~2.95). All PAI layers are ~290 nm in thickness. The IG2 and Ag:IG2 layers are ~140 nm in thickness, except for the Ag:IG2 layer adjacent to the air core, which is ~270 nm in thickness. Both upper and lower mirror are terminated by a gold layer ~50 nm in thickness. (b) Schematic illustration of the effective index transfer matrix model for a tapered slab waveguide. Ni is the complex modal effective index for a mirror separation δi .

Fig. 3
Fig. 3

(a) The middle plot shows the taper profile used in simulations. The slope (indicated in units of μm/mm) was assumed to change abruptly at the point indicated by the vertical dashed line. The lower plot shows power dissipation versus distance for four vertical mode orders, as calculated using the effective index transfer matrix model for each mode at 1600 nm wavelength. For clarity, only the portions of the m = 2,3,4 curves near their respective cutoff points are shown. The image above the plots is on the same scale, and shows the radiation of four vertical mode orders as captured by an infrared camera via a microscope. (b) The plot shows the simulated m = 1 power radiation in the vicinity of cutoff. The image above the plot is a magnified picture of the m = 1 spot from part a, as captured using a 60x microscope objective (NA = 0.85). For illustration purposes, the main lobe in the image was aligned with that in the plot. Both camera images are from ref [16].

Fig. 4
Fig. 4

Predictions of the effective index model are shown for the m = 1 case. (a) Radiated power versus distance for two closely spaced wavelengths. (b) Power versus wavelength collected by a high NA detector centered at a fixed position. Some numerical noise is evident, due to the finite step size used in the model. The legend indicates detector sizes of 10, 5, and 1 μm. (c) The upper plot shows the predicted radiation angle versus distance, corresponding to the simulated data at 1600 nm shown in the lower plot. In the lower plot, the dashed line indicates the power radiated to the right of a given position. For the case shown, approximately 8% of the input power is dissipated within the main lobe next to the cutoff point. As indicated by the vertical dotted lines, this lobe corresponds to radiation angles in the range 0-6 degrees.

Fig. 5
Fig. 5

Schematic illustration of the experimental setup used to assess the spectral and polarization dependence of the out-coupling mechanism. Alignment of the lensed SMF enabled selective excitation of low order modes, as evidenced by the predominately single-lobed radiation patterns for the typical images shown (inset, captured using a 60x objective lens, NA = 0.85). The images correspond to the m = 3 mode at a wavelength of 1600 nm. The bright spot at the top of each image is a defective camera pixel used as a position reference.

Fig. 6
Fig. 6

(a) Shift of the cutoff point (relative to the 1620 nm cutoff point) is plotted versus wavelength, for the m = 1 radiation streak of 3 nominally identical tapers. The line is the prediction of the effective index slab waveguide model. The inset shows images captured with a 60x objective lens at a fixed position and for two different input wavelengths, providing good corroboration of the simulated results of Fig. 4(a). For scale reference, note that the period of the standing wave is ~8 μm. (b) An m = 1 radiation streak for 1600 nm wavelength as captured using three different objective lenses, with the images sized to a common scale and the numerical aperture indicated.

Fig. 7
Fig. 7

Power collected by a cleaved SMF-28 pickup fiber at a series of locations along a hollow waveguide taper (taper 3 from Fig. 6(a)), corresponding to the out-coupling of the m = 1 mode. (a) Linear plot to illustrate variation in the linewidth. The larger linewidth for the spectral feature near 1540 nm is due to lower taper dispersion in this range. (b) Log plot to illustrate that secondary peaks are suppressed by >10 dB at the photodetector.

Fig. 8
Fig. 8

Power collected by a lensed fiber placed at fixed positions above a tapered waveguide, versus wavelength of the input light. (a) Data is shown for the TE30 mode near 1570 nm and the TE20 mode near 1600 nm. (b) Zoomed-in plot showing the linewidth of the main lobe for the TE20 result from part (a).

Fig. 9
Fig. 9

(a) Infrared camera images captured using 20x and 10x objective lenses, showing the radiation streaks for a broadband ASE source. Relatively high input power was used for the 20x case, so that the edges of the taper are visible by light scattering. (b) The image shows an m = 3 radiation streak as captured by a 5x objective lens, and flipped so that the input is towards the right (scale bar ~500 μm). The plot shows the intensity distribution across one row of pixels centered on the radiation streak. (c) The ASE spectrum extracted from the m = 3 radiation streak in (b), using a pixel-to-wavelength mapping obtained separately, compared to the spectrum as measured by a commercial optical spectrum analyzer (blue solid line).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ΔλΔλD+ΔλFP=zPDT+λ0(m+1)π(R1R),
1DT=|Δλ0Δz|=|Δλ0Δδ||ΔδΔz|2m+1ST,
ηTηinηpropηrad,
ηradTT,B1RTRB.
Ni=niαi(λ04π),
Pi=cε0niαi2   |Ei++Ei|2,

Metrics