Abstract

We present the first experimental comparison of effective single mode operation bandwidth in sub-wavelength optical wires (SOWs) and conventional single-mode fibers (SMFs). The full transmission spectrum, half-turn bend loss and mode field diameter were measured and compared for a variety of SMFs of different cut-off wavelength and a SOW. The SOW was shown to offer an enormously broadband single-mode operation bandwidth with a larger mode field area than the SMFs. Applications of SOWs include fiber lasers, sensors, photolithography and optical coherence tomography amongst others.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Gerd Keiser, Optical Fiber Communications (McGraw-Hill, 2000).
  2. O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem. 74(12), 2663–2678 (2002).
    [CrossRef] [PubMed]
  3. B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
    [CrossRef] [PubMed]
  4. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
    [CrossRef] [PubMed]
  5. G. Brambilla, V. Finazzi, and D. J. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express 12(10), 2258–2263 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-10-2258 .
    [CrossRef] [PubMed]
  6. M. Sumetsky, Y. Dulashko, P. Domachuk, and B. J. Eggleton, “Thinnest optical waveguide: experimental test,” Opt. Lett. 32(7), 754–756 (2007).
    [CrossRef] [PubMed]
  7. Y. Jung, G. Brambilla, and D. J. Richardson, “Broadband single-mode operation of standard optical fibers by using a sub-wavelength optical wire filter,” Opt. Express 16(19), 14661–14667 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-19-14661 .
    [CrossRef] [PubMed]
  8. Y. Jung, G. Brambilla, and D. J. Richardson, “Optical microfiber coupler for broadband single-mode operation,” Opt. Express 17(7), 5273–5278 (2009).
    [CrossRef] [PubMed]
  9. R. Morgan, J. S. Barton, P. G. Harper, and J. D. C. Jones, “Wavelength dependence of bending loss in monomode optical fibers: effect of the fiber buffer coating,” Opt. Lett. 15(17), 947–949 (1990).
    [CrossRef] [PubMed]
  10. TIA/EIA Standard, FOTP-80, “Measuring cutoff wavelength of uncabled single mode fiber by transmitted power,” Feb., 1996.
  11. M. J. Li, “Bend-insensitive optical fibers simply fiber-to-the-home installations,” Proc. SPIE 7234, 72340B (2009).
    [CrossRef]
  12. M. Artiglia, G. Coppa, P. Di Vita, M. Potenza, and A. Sharma, “Mode field diameter measurements in single-mode optical fibers,” J. Lightwave Technol. 7(8), 1139–1152 (1989).
    [CrossRef]
  13. D. Marcuse, “Curvature loss formula for optical fibers,” J. Opt. Soc. Am. B 66(3), 216–220 (1976).
    [CrossRef]

2009

2008

2007

2005

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[CrossRef] [PubMed]

2004

2003

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

2002

O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem. 74(12), 2663–2678 (2002).
[CrossRef] [PubMed]

1990

1989

M. Artiglia, G. Coppa, P. Di Vita, M. Potenza, and A. Sharma, “Mode field diameter measurements in single-mode optical fibers,” J. Lightwave Technol. 7(8), 1139–1152 (1989).
[CrossRef]

1976

D. Marcuse, “Curvature loss formula for optical fibers,” J. Opt. Soc. Am. B 66(3), 216–220 (1976).
[CrossRef]

Artiglia, M.

M. Artiglia, G. Coppa, P. Di Vita, M. Potenza, and A. Sharma, “Mode field diameter measurements in single-mode optical fibers,” J. Lightwave Technol. 7(8), 1139–1152 (1989).
[CrossRef]

Ashcom, J. B.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Barton, J. S.

Brambilla, G.

Cheung, E. L. M.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[CrossRef] [PubMed]

Cocker, E. D.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[CrossRef] [PubMed]

Coppa, G.

M. Artiglia, G. Coppa, P. Di Vita, M. Potenza, and A. Sharma, “Mode field diameter measurements in single-mode optical fibers,” J. Lightwave Technol. 7(8), 1139–1152 (1989).
[CrossRef]

Di Vita, P.

M. Artiglia, G. Coppa, P. Di Vita, M. Potenza, and A. Sharma, “Mode field diameter measurements in single-mode optical fibers,” J. Lightwave Technol. 7(8), 1139–1152 (1989).
[CrossRef]

Domachuk, P.

Dulashko, Y.

Eggleton, B. J.

Finazzi, V.

Flusberg, B. A.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[CrossRef] [PubMed]

Gattass, R. R.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Harper, P. G.

He, S.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Jones, J. D. C.

Jung, J. C.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[CrossRef] [PubMed]

Jung, Y.

Li, M. J.

M. J. Li, “Bend-insensitive optical fibers simply fiber-to-the-home installations,” Proc. SPIE 7234, 72340B (2009).
[CrossRef]

Lou, J.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Marcuse, D.

D. Marcuse, “Curvature loss formula for optical fibers,” J. Opt. Soc. Am. B 66(3), 216–220 (1976).
[CrossRef]

Maxwell, I.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Mazur, E.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Morgan, R.

Piyawattanametha, W.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[CrossRef] [PubMed]

Potenza, M.

M. Artiglia, G. Coppa, P. Di Vita, M. Potenza, and A. Sharma, “Mode field diameter measurements in single-mode optical fibers,” J. Lightwave Technol. 7(8), 1139–1152 (1989).
[CrossRef]

Richardson, D. J.

Schnitzer, M. J.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[CrossRef] [PubMed]

Sharma, A.

M. Artiglia, G. Coppa, P. Di Vita, M. Potenza, and A. Sharma, “Mode field diameter measurements in single-mode optical fibers,” J. Lightwave Technol. 7(8), 1139–1152 (1989).
[CrossRef]

Shen, M.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Sumetsky, M.

Tong, L.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Wolfbeis, O. S.

O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem. 74(12), 2663–2678 (2002).
[CrossRef] [PubMed]

Anal. Chem.

O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem. 74(12), 2663–2678 (2002).
[CrossRef] [PubMed]

J. Lightwave Technol.

M. Artiglia, G. Coppa, P. Di Vita, M. Potenza, and A. Sharma, “Mode field diameter measurements in single-mode optical fibers,” J. Lightwave Technol. 7(8), 1139–1152 (1989).
[CrossRef]

J. Opt. Soc. Am. B

D. Marcuse, “Curvature loss formula for optical fibers,” J. Opt. Soc. Am. B 66(3), 216–220 (1976).
[CrossRef]

Nat. Methods

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[CrossRef] [PubMed]

Nature

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Proc. SPIE

M. J. Li, “Bend-insensitive optical fibers simply fiber-to-the-home installations,” Proc. SPIE 7234, 72340B (2009).
[CrossRef]

Other

Gerd Keiser, Optical Fiber Communications (McGraw-Hill, 2000).

TIA/EIA Standard, FOTP-80, “Measuring cutoff wavelength of uncabled single mode fiber by transmitted power,” Feb., 1996.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic diagram of the sub-wavelength optical wire (SOW) for higher-order mode filtering. The biconical SOW with specially designed transition taper and very-thin taper waist effectively suppresses any higher-order modes at the fiber input and provide broadband single mode operation at the output. The transmission spectra of standard telecom fiber at the input (b) and output (c) are also compared.

Fig. 2
Fig. 2

Full transmission spectra and bend loss properties of various kinds of short-wavelength cutoff SMFs and a SOW. For a 1μm SOW, there is no higher-order mode cutoff as observed in the SMFs at short wavelengths and the bandwidth is limited simply by the bend loss edge of the fundamental mode at long wavelength.

Fig. 3
Fig. 3

Comparison between the effective single-mode operation bandwidths of several SMFs and a telecom fiber with a SOW filter for different bend diameters.

Fig. 4
Fig. 4

Measured (symbol) and simulated (line) mode field diameter comparison for several SMFs and for a telecom fiber with a SOW filter.

Fig. 5
Fig. 5

Comparison of bending loss coefficients for LP01 and LP11 mode in the telecom SMF (Corning SMF28): symbols and continuous lines represent experiments and simple model of Ref. 13, respectively.

Metrics