Abstract

Silicon waveguides are promising χ3-based photon pair sources. Demonstrations so far have been based on picosecond pulsed lasers. Here, we present the first investigation of photon pair generation in silicon waveguides in a continuous regime. The source is characterized by coincidence measurements. We uncover the presence of unexpected noise which had not been noticed in earlier experiments. Subsequently, we present advances towards integration of the photon pair source with other components on the chip. This is demonstrated by photon pair generation in a Sagnac loop interferometer and inside a micro-ring cavity. Comparison with the straight waveguide shows that these are promising avenues for improving the source. In particular photon pair generation in the micro-ring cavity yields a source with a spectral width of approximately 150 pm resulting in a spectral brightness increased by more than 2 orders of magnitude.

© 2009 Optical Society of America

Full Article  |  PDF Article

Corrections

S. Clemmen, K. Phan Huy, W. Bogaerts, R. G. Baets, Ph. Emplit, and S. Massar, "Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators : erratum," Opt. Express 18, 14107-14107 (2010)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-18-13-14107

References

  • View by:
  • |
  • |
  • |

  1. W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, "Compact Wavelength-Selective Functions in Silicon-on-Insulator Photonic Wires," IEEE J. Sel. Top. Quantum Electron. 12,1394-1401 (2006).
    [CrossRef]
  2. M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, "Nonlinear optics in photonic nanowires," Opt. Express 16,1300-1320 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-2-1300.
    [CrossRef] [PubMed]
  3. Q. Lin, O. J. Painter, and G. P. Agrawal, "Nonlinear optical phenomena in silicon waveguides: modeling and applications," Opt. Express 15,16604-16644 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-25-16604.
    [CrossRef] [PubMed]
  4. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433,725728 (2005).
    [CrossRef]
  5. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature 441,960-963 (2006).
    [CrossRef] [PubMed]
  6. A. C Turner, M. A. Foster, A. L. Gaeta, and M. Lipson, "Ultra-low power parametric frequency conversion in a silicon microring resonator," Opt. Express 16,4881-4887 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-7-4881.
    [CrossRef] [PubMed]
  7. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431,1081-1084 (2004).
    [CrossRef] [PubMed]
  8. J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, "Generation of correlated photons in nanoscale silicon waveguides," Opt. Express 14,12388-12393 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-25-12388.
    [CrossRef] [PubMed]
  9. H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S.-I. Itabashi, "Entanglement generation using silicon wire waveguide," Appl. Phys. Lett. 91,201108 (2007).
    [CrossRef]
  10. H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-I. Itabashi, "Generation of polarization entangled photon pairs using silicon wire waveguide," Opt. Express 16,5721-5727 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-8-5721.
    [CrossRef] [PubMed]
  11. K.-I. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-I. Itabashi, "Generation of high-purity entangled photon pairs using silicon wire waveguide," Opt. Express 16, 20368-20373 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-25-20368.
    [CrossRef] [PubMed]
  12. M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, "All-fiber photon-pair source for quantum communications," IEEE Photon. Technol. Lett. 14,983 (2002).
    [CrossRef]
  13. X. Li, J. Chen, P. Voss, J. Sharping, and P. Kumar, "All-fiber photon-pair source for quantum communications: Improved generation of correlated photons," Opt. Express 12,3737-3744 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-16-3737.
    [CrossRef] [PubMed]
  14. H. Takesue and K. Inoue, "Generation of polarization-entangled photon pairs and violation of Bells inequality using spontaneous four-wave mixing in a fiber loop," Phys. Rev. A 70, 031802(R) (2004).
    [CrossRef]
  15. J. Fan, A. Migdall, and L. J. Wang, "Efficient generation of correlated photon pairs in a microstructure fiber," Opt. Lett. 30,3368-3370 (2005)
    [CrossRef]
  16. J. Fulconis, O. Alibart, W. Wadsworth, P. Russell, and J. Rarity, "High brightness single mode source of correlated photon pairs using a photonic crystal fiber," Opt. Express 13,7572-7582 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-19-7572.
    [CrossRef] [PubMed]
  17. Q. Lin, and G. P. Agrawal, "Silicon waveguides for creating quantum-correlated photon pairs," Opt. Lett. 31, 3140-3142 (2006).
    [CrossRef] [PubMed]
  18. J. Chen, J. B. Altepeter, and P. Kumar, "Quantum-state engineering using nonlinear optical Sagnac loops," New. J. Phys. 10,123019 (2008)
    [CrossRef]
  19. G. Priem, P. Dumon, W Bogaerts, D. Van Thourhout, G. Morthier, and R. G. Baets, "Optical bistability and ulsating behaviour in Silicon-On-Insulator ring resonator structures," Opt. Express 13,9623-9628 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-23-9623.
    [CrossRef] [PubMed]
  20. Q. Xu, and M. Lipson, "Carrier-induced optical bistability in silicon ring resonators," Opt. Lett. 31,341-343 (2006).
    [CrossRef] [PubMed]
  21. V. R. Almeida, and M. Lipson, "Optical bistability on a silicon chip," Opt. Lett. 29,2387-2389 (2004).
    [CrossRef] [PubMed]
  22. E. Brainis, "Four-photon scattering in birefringent fibers," Phys. Rev. A 79, 023840 (2009).
    [CrossRef]
  23. G. P. Agrawal, Nonlinear Fiber Optics, Third Edition (Academic Press, San Diego, 2001).
  24. P. P. Absil, J. V. Hryniewicz, B. E. Little, P. S. Cho, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, "Wavelength conversion in GaAs micro-ring resonators," Opt. Lett. 25,554-556 (2000).
    [CrossRef]
  25. P. Dumon, G. Priem, L. R. Nunes, W. Bogaerts, D. Van Thouhout, P. Bienstman, T. K. Liang, M. Tsuchiya, P. Jaenen, S. Beckx, J. Wouters, and R. G. Baets, "Linear and Nonlinear Nanophotonic Devices Based on Siliconon-Insulator Wire Waveguides," Jpn. J. Appl. Phys. 45,6589-6602 (2006).
    [CrossRef]
  26. A. Morand, K. Phan-Huy, Y. Desieres, and P. Benech, "Analytical Study of the Microdisks Resonant Modes Coupling With a Waveguide Based on the Perturbation Theory," J. Lightwave Technol. 22,827-832 (2007).
    [CrossRef]
  27. S. Clemmen, K. Phan Huy,W. Bogaerts, R. G. Baets, Ph. Emplit, and S. Massar, "Photon pair generation in a continuous regime in nanophotonic silicon waveguide," in Proceedings Symposium IEEE/LEOS Benelux Chapter, (University of Twente, The Netherlands, 2008), pp. 67-70.
  28. J. Van Campenhout, P. Rojo Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J.-M. Fedeli, C. Lagahe, and R. Baets, "Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit," Opt. Express 15,67446749 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-11-6744.
    [CrossRef]
  29. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metaloxidesemiconductor capacitor," Nature 427,615-618 (2004).
    [CrossRef] [PubMed]
  30. E. Knill, R. Laflamme, and G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature 409,46-52 (2001).
    [CrossRef] [PubMed]
  31. A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, "Silica-on-Silicon Waveguide Quantum Circuits," Science 320,646-649 (2008).
    [CrossRef] [PubMed]

2009 (1)

E. Brainis, "Four-photon scattering in birefringent fibers," Phys. Rev. A 79, 023840 (2009).
[CrossRef]

2008 (6)

2007 (4)

Q. Lin, O. J. Painter, and G. P. Agrawal, "Nonlinear optical phenomena in silicon waveguides: modeling and applications," Opt. Express 15,16604-16644 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-25-16604.
[CrossRef] [PubMed]

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S.-I. Itabashi, "Entanglement generation using silicon wire waveguide," Appl. Phys. Lett. 91,201108 (2007).
[CrossRef]

A. Morand, K. Phan-Huy, Y. Desieres, and P. Benech, "Analytical Study of the Microdisks Resonant Modes Coupling With a Waveguide Based on the Perturbation Theory," J. Lightwave Technol. 22,827-832 (2007).
[CrossRef]

J. Van Campenhout, P. Rojo Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J.-M. Fedeli, C. Lagahe, and R. Baets, "Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit," Opt. Express 15,67446749 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-11-6744.
[CrossRef]

2006 (6)

P. Dumon, G. Priem, L. R. Nunes, W. Bogaerts, D. Van Thouhout, P. Bienstman, T. K. Liang, M. Tsuchiya, P. Jaenen, S. Beckx, J. Wouters, and R. G. Baets, "Linear and Nonlinear Nanophotonic Devices Based on Siliconon-Insulator Wire Waveguides," Jpn. J. Appl. Phys. 45,6589-6602 (2006).
[CrossRef]

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, "Compact Wavelength-Selective Functions in Silicon-on-Insulator Photonic Wires," IEEE J. Sel. Top. Quantum Electron. 12,1394-1401 (2006).
[CrossRef]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature 441,960-963 (2006).
[CrossRef] [PubMed]

Q. Xu, and M. Lipson, "Carrier-induced optical bistability in silicon ring resonators," Opt. Lett. 31,341-343 (2006).
[CrossRef] [PubMed]

Q. Lin, and G. P. Agrawal, "Silicon waveguides for creating quantum-correlated photon pairs," Opt. Lett. 31, 3140-3142 (2006).
[CrossRef] [PubMed]

J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, "Generation of correlated photons in nanoscale silicon waveguides," Opt. Express 14,12388-12393 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-25-12388.
[CrossRef] [PubMed]

2005 (4)

2004 (5)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431,1081-1084 (2004).
[CrossRef] [PubMed]

H. Takesue and K. Inoue, "Generation of polarization-entangled photon pairs and violation of Bells inequality using spontaneous four-wave mixing in a fiber loop," Phys. Rev. A 70, 031802(R) (2004).
[CrossRef]

X. Li, J. Chen, P. Voss, J. Sharping, and P. Kumar, "All-fiber photon-pair source for quantum communications: Improved generation of correlated photons," Opt. Express 12,3737-3744 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-16-3737.
[CrossRef] [PubMed]

V. R. Almeida, and M. Lipson, "Optical bistability on a silicon chip," Opt. Lett. 29,2387-2389 (2004).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metaloxidesemiconductor capacitor," Nature 427,615-618 (2004).
[CrossRef] [PubMed]

2002 (1)

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, "All-fiber photon-pair source for quantum communications," IEEE Photon. Technol. Lett. 14,983 (2002).
[CrossRef]

2001 (1)

E. Knill, R. Laflamme, and G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature 409,46-52 (2001).
[CrossRef] [PubMed]

2000 (1)

Absil, P. P.

Agrawal, G. P.

Alibart, O.

Almeida, V. R.

V. R. Almeida, and M. Lipson, "Optical bistability on a silicon chip," Opt. Lett. 29,2387-2389 (2004).
[CrossRef] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431,1081-1084 (2004).
[CrossRef] [PubMed]

Altepeter, J. B.

J. Chen, J. B. Altepeter, and P. Kumar, "Quantum-state engineering using nonlinear optical Sagnac loops," New. J. Phys. 10,123019 (2008)
[CrossRef]

Baets, R.

J. Van Campenhout, P. Rojo Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J.-M. Fedeli, C. Lagahe, and R. Baets, "Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit," Opt. Express 15,67446749 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-11-6744.
[CrossRef]

Baets, R. G.

P. Dumon, G. Priem, L. R. Nunes, W. Bogaerts, D. Van Thouhout, P. Bienstman, T. K. Liang, M. Tsuchiya, P. Jaenen, S. Beckx, J. Wouters, and R. G. Baets, "Linear and Nonlinear Nanophotonic Devices Based on Siliconon-Insulator Wire Waveguides," Jpn. J. Appl. Phys. 45,6589-6602 (2006).
[CrossRef]

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, "Compact Wavelength-Selective Functions in Silicon-on-Insulator Photonic Wires," IEEE J. Sel. Top. Quantum Electron. 12,1394-1401 (2006).
[CrossRef]

G. Priem, P. Dumon, W Bogaerts, D. Van Thourhout, G. Morthier, and R. G. Baets, "Optical bistability and ulsating behaviour in Silicon-On-Insulator ring resonator structures," Opt. Express 13,9623-9628 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-23-9623.
[CrossRef] [PubMed]

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431,1081-1084 (2004).
[CrossRef] [PubMed]

Beckx, S.

P. Dumon, G. Priem, L. R. Nunes, W. Bogaerts, D. Van Thouhout, P. Bienstman, T. K. Liang, M. Tsuchiya, P. Jaenen, S. Beckx, J. Wouters, and R. G. Baets, "Linear and Nonlinear Nanophotonic Devices Based on Siliconon-Insulator Wire Waveguides," Jpn. J. Appl. Phys. 45,6589-6602 (2006).
[CrossRef]

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, "Compact Wavelength-Selective Functions in Silicon-on-Insulator Photonic Wires," IEEE J. Sel. Top. Quantum Electron. 12,1394-1401 (2006).
[CrossRef]

Benech, P.

Bienstman, P.

P. Dumon, G. Priem, L. R. Nunes, W. Bogaerts, D. Van Thouhout, P. Bienstman, T. K. Liang, M. Tsuchiya, P. Jaenen, S. Beckx, J. Wouters, and R. G. Baets, "Linear and Nonlinear Nanophotonic Devices Based on Siliconon-Insulator Wire Waveguides," Jpn. J. Appl. Phys. 45,6589-6602 (2006).
[CrossRef]

Bogaerts, W

Bogaerts, W.

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, "Compact Wavelength-Selective Functions in Silicon-on-Insulator Photonic Wires," IEEE J. Sel. Top. Quantum Electron. 12,1394-1401 (2006).
[CrossRef]

P. Dumon, G. Priem, L. R. Nunes, W. Bogaerts, D. Van Thouhout, P. Bienstman, T. K. Liang, M. Tsuchiya, P. Jaenen, S. Beckx, J. Wouters, and R. G. Baets, "Linear and Nonlinear Nanophotonic Devices Based on Siliconon-Insulator Wire Waveguides," Jpn. J. Appl. Phys. 45,6589-6602 (2006).
[CrossRef]

Brainis, E.

E. Brainis, "Four-photon scattering in birefringent fibers," Phys. Rev. A 79, 023840 (2009).
[CrossRef]

Chen, J.

Cho, P. S.

Cohen, O.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433,725728 (2005).
[CrossRef]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metaloxidesemiconductor capacitor," Nature 427,615-618 (2004).
[CrossRef] [PubMed]

Cryan, M. J.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, "Silica-on-Silicon Waveguide Quantum Circuits," Science 320,646-649 (2008).
[CrossRef] [PubMed]

Desieres, Y.

Di Cioccio, L.

J. Van Campenhout, P. Rojo Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J.-M. Fedeli, C. Lagahe, and R. Baets, "Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit," Opt. Express 15,67446749 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-11-6744.
[CrossRef]

Dumon, P.

P. Dumon, G. Priem, L. R. Nunes, W. Bogaerts, D. Van Thouhout, P. Bienstman, T. K. Liang, M. Tsuchiya, P. Jaenen, S. Beckx, J. Wouters, and R. G. Baets, "Linear and Nonlinear Nanophotonic Devices Based on Siliconon-Insulator Wire Waveguides," Jpn. J. Appl. Phys. 45,6589-6602 (2006).
[CrossRef]

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, "Compact Wavelength-Selective Functions in Silicon-on-Insulator Photonic Wires," IEEE J. Sel. Top. Quantum Electron. 12,1394-1401 (2006).
[CrossRef]

G. Priem, P. Dumon, W Bogaerts, D. Van Thourhout, G. Morthier, and R. G. Baets, "Optical bistability and ulsating behaviour in Silicon-On-Insulator ring resonator structures," Opt. Express 13,9623-9628 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-23-9623.
[CrossRef] [PubMed]

Fan, J.

Fang, A.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433,725728 (2005).
[CrossRef]

Fedeli, J.-M.

J. Van Campenhout, P. Rojo Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J.-M. Fedeli, C. Lagahe, and R. Baets, "Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit," Opt. Express 15,67446749 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-11-6744.
[CrossRef]

Fiorentino, M.

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, "All-fiber photon-pair source for quantum communications," IEEE Photon. Technol. Lett. 14,983 (2002).
[CrossRef]

Foster, M. A.

Fukuda, H.

Fulconis, J.

Gaeta, A. L.

Hak, D.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433,725728 (2005).
[CrossRef]

Harada, K.-I.

Ho, P.-T.

Hryniewicz, J. V.

Inoue, K.

H. Takesue and K. Inoue, "Generation of polarization-entangled photon pairs and violation of Bells inequality using spontaneous four-wave mixing in a fiber loop," Phys. Rev. A 70, 031802(R) (2004).
[CrossRef]

Itabashi, S.-I.

Jaenen, P.

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, "Compact Wavelength-Selective Functions in Silicon-on-Insulator Photonic Wires," IEEE J. Sel. Top. Quantum Electron. 12,1394-1401 (2006).
[CrossRef]

P. Dumon, G. Priem, L. R. Nunes, W. Bogaerts, D. Van Thouhout, P. Bienstman, T. K. Liang, M. Tsuchiya, P. Jaenen, S. Beckx, J. Wouters, and R. G. Baets, "Linear and Nonlinear Nanophotonic Devices Based on Siliconon-Insulator Wire Waveguides," Jpn. J. Appl. Phys. 45,6589-6602 (2006).
[CrossRef]

Joneckis, L. G.

Jones, R.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433,725728 (2005).
[CrossRef]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metaloxidesemiconductor capacitor," Nature 427,615-618 (2004).
[CrossRef] [PubMed]

Knill, E.

E. Knill, R. Laflamme, and G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature 409,46-52 (2001).
[CrossRef] [PubMed]

Kumar, P.

Laflamme, R.

E. Knill, R. Laflamme, and G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature 409,46-52 (2001).
[CrossRef] [PubMed]

Lagahe, C.

J. Van Campenhout, P. Rojo Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J.-M. Fedeli, C. Lagahe, and R. Baets, "Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit," Opt. Express 15,67446749 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-11-6744.
[CrossRef]

Lee, K. F.

Li, X.

Liang, T. K.

P. Dumon, G. Priem, L. R. Nunes, W. Bogaerts, D. Van Thouhout, P. Bienstman, T. K. Liang, M. Tsuchiya, P. Jaenen, S. Beckx, J. Wouters, and R. G. Baets, "Linear and Nonlinear Nanophotonic Devices Based on Siliconon-Insulator Wire Waveguides," Jpn. J. Appl. Phys. 45,6589-6602 (2006).
[CrossRef]

Liao, L.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metaloxidesemiconductor capacitor," Nature 427,615-618 (2004).
[CrossRef] [PubMed]

Lin, Q.

Lipson, M.

Little, B. E.

Liu, A.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433,725728 (2005).
[CrossRef]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metaloxidesemiconductor capacitor," Nature 427,615-618 (2004).
[CrossRef] [PubMed]

Migdall, A.

Milburn, G. J.

E. Knill, R. Laflamme, and G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature 409,46-52 (2001).
[CrossRef] [PubMed]

Morand, A.

Morthier, G.

Nicolaescu, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metaloxidesemiconductor capacitor," Nature 427,615-618 (2004).
[CrossRef] [PubMed]

Nunes, L. R.

P. Dumon, G. Priem, L. R. Nunes, W. Bogaerts, D. Van Thouhout, P. Bienstman, T. K. Liang, M. Tsuchiya, P. Jaenen, S. Beckx, J. Wouters, and R. G. Baets, "Linear and Nonlinear Nanophotonic Devices Based on Siliconon-Insulator Wire Waveguides," Jpn. J. Appl. Phys. 45,6589-6602 (2006).
[CrossRef]

O’Brien, J. L.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, "Silica-on-Silicon Waveguide Quantum Circuits," Science 320,646-649 (2008).
[CrossRef] [PubMed]

Painter, O. J.

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431,1081-1084 (2004).
[CrossRef] [PubMed]

Paniccia, M.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433,725728 (2005).
[CrossRef]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metaloxidesemiconductor capacitor," Nature 427,615-618 (2004).
[CrossRef] [PubMed]

Phan-Huy, K.

Politi, A.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, "Silica-on-Silicon Waveguide Quantum Circuits," Science 320,646-649 (2008).
[CrossRef] [PubMed]

Priem, G.

P. Dumon, G. Priem, L. R. Nunes, W. Bogaerts, D. Van Thouhout, P. Bienstman, T. K. Liang, M. Tsuchiya, P. Jaenen, S. Beckx, J. Wouters, and R. G. Baets, "Linear and Nonlinear Nanophotonic Devices Based on Siliconon-Insulator Wire Waveguides," Jpn. J. Appl. Phys. 45,6589-6602 (2006).
[CrossRef]

G. Priem, P. Dumon, W Bogaerts, D. Van Thourhout, G. Morthier, and R. G. Baets, "Optical bistability and ulsating behaviour in Silicon-On-Insulator ring resonator structures," Opt. Express 13,9623-9628 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-23-9623.
[CrossRef] [PubMed]

Rarity, J.

Rarity, J. G.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, "Silica-on-Silicon Waveguide Quantum Circuits," Science 320,646-649 (2008).
[CrossRef] [PubMed]

Regreny, P.

J. Van Campenhout, P. Rojo Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J.-M. Fedeli, C. Lagahe, and R. Baets, "Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit," Opt. Express 15,67446749 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-11-6744.
[CrossRef]

Rojo Romeo, P.

J. Van Campenhout, P. Rojo Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J.-M. Fedeli, C. Lagahe, and R. Baets, "Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit," Opt. Express 15,67446749 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-11-6744.
[CrossRef]

Rong, H.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433,725728 (2005).
[CrossRef]

Rubin, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metaloxidesemiconductor capacitor," Nature 427,615-618 (2004).
[CrossRef] [PubMed]

Russell, P.

Samara-Rubio, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metaloxidesemiconductor capacitor," Nature 427,615-618 (2004).
[CrossRef] [PubMed]

Schmidt, B. S.

Seassal, C.

J. Van Campenhout, P. Rojo Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J.-M. Fedeli, C. Lagahe, and R. Baets, "Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit," Opt. Express 15,67446749 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-11-6744.
[CrossRef]

Sharping, J.

Sharping, J. E.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature 441,960-963 (2006).
[CrossRef] [PubMed]

J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, "Generation of correlated photons in nanoscale silicon waveguides," Opt. Express 14,12388-12393 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-25-12388.
[CrossRef] [PubMed]

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, "All-fiber photon-pair source for quantum communications," IEEE Photon. Technol. Lett. 14,983 (2002).
[CrossRef]

Taillaert, D.

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, "Compact Wavelength-Selective Functions in Silicon-on-Insulator Photonic Wires," IEEE J. Sel. Top. Quantum Electron. 12,1394-1401 (2006).
[CrossRef]

Takesue, H.

Tokura, Y.

Tsuchiya, M.

P. Dumon, G. Priem, L. R. Nunes, W. Bogaerts, D. Van Thouhout, P. Bienstman, T. K. Liang, M. Tsuchiya, P. Jaenen, S. Beckx, J. Wouters, and R. G. Baets, "Linear and Nonlinear Nanophotonic Devices Based on Siliconon-Insulator Wire Waveguides," Jpn. J. Appl. Phys. 45,6589-6602 (2006).
[CrossRef]

Tsuchizawa, T.

Turner, A. C

Turner, A. C.

Van Campenhout, J.

J. Van Campenhout, P. Rojo Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J.-M. Fedeli, C. Lagahe, and R. Baets, "Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit," Opt. Express 15,67446749 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-11-6744.
[CrossRef]

Van Thouhout, D.

P. Dumon, G. Priem, L. R. Nunes, W. Bogaerts, D. Van Thouhout, P. Bienstman, T. K. Liang, M. Tsuchiya, P. Jaenen, S. Beckx, J. Wouters, and R. G. Baets, "Linear and Nonlinear Nanophotonic Devices Based on Siliconon-Insulator Wire Waveguides," Jpn. J. Appl. Phys. 45,6589-6602 (2006).
[CrossRef]

Van Thourhout, D.

J. Van Campenhout, P. Rojo Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J.-M. Fedeli, C. Lagahe, and R. Baets, "Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit," Opt. Express 15,67446749 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-11-6744.
[CrossRef]

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, "Compact Wavelength-Selective Functions in Silicon-on-Insulator Photonic Wires," IEEE J. Sel. Top. Quantum Electron. 12,1394-1401 (2006).
[CrossRef]

G. Priem, P. Dumon, W Bogaerts, D. Van Thourhout, G. Morthier, and R. G. Baets, "Optical bistability and ulsating behaviour in Silicon-On-Insulator ring resonator structures," Opt. Express 13,9623-9628 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-23-9623.
[CrossRef] [PubMed]

Verstuyft, S.

J. Van Campenhout, P. Rojo Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J.-M. Fedeli, C. Lagahe, and R. Baets, "Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit," Opt. Express 15,67446749 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-11-6744.
[CrossRef]

Voss, P.

Voss, P. L.

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, "All-fiber photon-pair source for quantum communications," IEEE Photon. Technol. Lett. 14,983 (2002).
[CrossRef]

Wadsworth, W.

Wang, L. J.

Watanabe, T.

Wiaux, V.

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, "Compact Wavelength-Selective Functions in Silicon-on-Insulator Photonic Wires," IEEE J. Sel. Top. Quantum Electron. 12,1394-1401 (2006).
[CrossRef]

Wilson, R. A.

Wouters, J.

P. Dumon, G. Priem, L. R. Nunes, W. Bogaerts, D. Van Thouhout, P. Bienstman, T. K. Liang, M. Tsuchiya, P. Jaenen, S. Beckx, J. Wouters, and R. G. Baets, "Linear and Nonlinear Nanophotonic Devices Based on Siliconon-Insulator Wire Waveguides," Jpn. J. Appl. Phys. 45,6589-6602 (2006).
[CrossRef]

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, "Compact Wavelength-Selective Functions in Silicon-on-Insulator Photonic Wires," IEEE J. Sel. Top. Quantum Electron. 12,1394-1401 (2006).
[CrossRef]

Xu, Q.

Yamada, K.

Yu, S.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, "Silica-on-Silicon Waveguide Quantum Circuits," Science 320,646-649 (2008).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S.-I. Itabashi, "Entanglement generation using silicon wire waveguide," Appl. Phys. Lett. 91,201108 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, "Compact Wavelength-Selective Functions in Silicon-on-Insulator Photonic Wires," IEEE J. Sel. Top. Quantum Electron. 12,1394-1401 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, "All-fiber photon-pair source for quantum communications," IEEE Photon. Technol. Lett. 14,983 (2002).
[CrossRef]

J. Lightwave Technol. (1)

Jpn. J. Appl. Phys. (1)

P. Dumon, G. Priem, L. R. Nunes, W. Bogaerts, D. Van Thouhout, P. Bienstman, T. K. Liang, M. Tsuchiya, P. Jaenen, S. Beckx, J. Wouters, and R. G. Baets, "Linear and Nonlinear Nanophotonic Devices Based on Siliconon-Insulator Wire Waveguides," Jpn. J. Appl. Phys. 45,6589-6602 (2006).
[CrossRef]

Nature (5)

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metaloxidesemiconductor capacitor," Nature 427,615-618 (2004).
[CrossRef] [PubMed]

E. Knill, R. Laflamme, and G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature 409,46-52 (2001).
[CrossRef] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433,725728 (2005).
[CrossRef]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature 441,960-963 (2006).
[CrossRef] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431,1081-1084 (2004).
[CrossRef] [PubMed]

New. J. Phys. (1)

J. Chen, J. B. Altepeter, and P. Kumar, "Quantum-state engineering using nonlinear optical Sagnac loops," New. J. Phys. 10,123019 (2008)
[CrossRef]

Opt. Express (10)

X. Li, J. Chen, P. Voss, J. Sharping, and P. Kumar, "All-fiber photon-pair source for quantum communications: Improved generation of correlated photons," Opt. Express 12,3737-3744 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-16-3737.
[CrossRef] [PubMed]

J. Fulconis, O. Alibart, W. Wadsworth, P. Russell, and J. Rarity, "High brightness single mode source of correlated photon pairs using a photonic crystal fiber," Opt. Express 13,7572-7582 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-19-7572.
[CrossRef] [PubMed]

G. Priem, P. Dumon, W Bogaerts, D. Van Thourhout, G. Morthier, and R. G. Baets, "Optical bistability and ulsating behaviour in Silicon-On-Insulator ring resonator structures," Opt. Express 13,9623-9628 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-23-9623.
[CrossRef] [PubMed]

J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, "Generation of correlated photons in nanoscale silicon waveguides," Opt. Express 14,12388-12393 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-25-12388.
[CrossRef] [PubMed]

Q. Lin, O. J. Painter, and G. P. Agrawal, "Nonlinear optical phenomena in silicon waveguides: modeling and applications," Opt. Express 15,16604-16644 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-25-16604.
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, "Nonlinear optics in photonic nanowires," Opt. Express 16,1300-1320 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-2-1300.
[CrossRef] [PubMed]

A. C Turner, M. A. Foster, A. L. Gaeta, and M. Lipson, "Ultra-low power parametric frequency conversion in a silicon microring resonator," Opt. Express 16,4881-4887 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-7-4881.
[CrossRef] [PubMed]

H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-I. Itabashi, "Generation of polarization entangled photon pairs using silicon wire waveguide," Opt. Express 16,5721-5727 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-8-5721.
[CrossRef] [PubMed]

K.-I. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-I. Itabashi, "Generation of high-purity entangled photon pairs using silicon wire waveguide," Opt. Express 16, 20368-20373 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-25-20368.
[CrossRef] [PubMed]

J. Van Campenhout, P. Rojo Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J.-M. Fedeli, C. Lagahe, and R. Baets, "Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit," Opt. Express 15,67446749 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-11-6744.
[CrossRef]

Opt. Lett. (5)

Phys. Rev. A (2)

H. Takesue and K. Inoue, "Generation of polarization-entangled photon pairs and violation of Bells inequality using spontaneous four-wave mixing in a fiber loop," Phys. Rev. A 70, 031802(R) (2004).
[CrossRef]

E. Brainis, "Four-photon scattering in birefringent fibers," Phys. Rev. A 79, 023840 (2009).
[CrossRef]

Science (1)

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, "Silica-on-Silicon Waveguide Quantum Circuits," Science 320,646-649 (2008).
[CrossRef] [PubMed]

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics, Third Edition (Academic Press, San Diego, 2001).

S. Clemmen, K. Phan Huy,W. Bogaerts, R. G. Baets, Ph. Emplit, and S. Massar, "Photon pair generation in a continuous regime in nanophotonic silicon waveguide," in Proceedings Symposium IEEE/LEOS Benelux Chapter, (University of Twente, The Netherlands, 2008), pp. 67-70.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Losses due to linear scattering (oe-17-19-16558-i001), two-photon absorption (oe-17-19-16558-i002), and free-carrier absorption (oe-17-19-16558-i003) for free-carrier lifetimes τ ranging from 5 to 0.5 ns. Modulational instability gain (γP) when phase matching is perfectly satisfied is plotted in black. In the present experiment we operate at a pump power less than 10 mW when linear losses dominate.

Fig. 2.
Fig. 2.

Experimental Setup: Tunable laser is made of an Agilent 81600B laser with picometer resolution followed by a homemade Erbium-Doped Fiber Amplifier. Input Filtration is made of fiber bragg gratings (FBG), circulators, and 100GHz DWDM commercial filters. It suppresses 150 dB outside of the pump band [1538.9–1540.6] nm. HWP is an Half-Wave Plate. Loss due to in and out coupling were 8±1 (7.5±1) dB for straight waveguide and Sagnac Interferometer (ring). Output Filtration is made of 2 FBGs and two 200GHz DWDM commercial filters. It suppresses 150 dB on the pump band; it induces 2.2 dB of loss (to which one should add a 1 dB excess loss in a restricted band [1537–1534] nm of the filtration line). A first version of the setup uses a demultiplexer to separates Stokes band [1542–1558] nm from anti-Stokes band [1523–1538] nm. It is made of commercial CWDM filters and it induces 1 dB (2 dB) loss on Stokes (anti-Stokes) band. For the second version of the setup, the demultiplexer is made of DWDM commercial components and separates narrower Stokes band [1551.5–1552.1] from anti-Stokes band [1528.8–1528.35] with less than 1 dB of loss. d1 and d2 are commercial ID-quantique Avalanche Photodiodes (APD) with gate duration of 50 ns and operationg at 100 kHz (d2 is trigged with a delay with respect to d1, this delay corresponds to the optical delay). For the first setup, detectors are ID-200 model with dark count rate of 5.6 10-5 and 4.4 10-5 per ns, and detection efficiency of 10%. For the second setup, detectors are ID-201 model with detection efficiency set to 10% and 15% while dark counts are 1.4 10-5 and 3 10-5 per ns. TAC : time to amplitude converter. Time resolution of the coincidence detection system is 1.5 ns. Tunable filter has 6.5 dB loss.

Fig. 3.
Fig. 3.

Photon pair generation in straight waveguide. (a) : Collected photon flux (dark counts are subtracted) in the Stokes band versus the input pump power (oe-17-19-16558-i004). Second order polynomial fit (oe-17-19-16558-i005) and corresponding quadratic (oe-17-19-16558-i006) and linear (oe-17-19-16558-i007) contribution. The behavior is similar in the anti-Stokes band (figure not shown). (b) : Generated Photon pair flux (i.e. true coincidences rate corrected for loss, detection inefficiency, and time detection rate) versus pump power in the waveguide. Experimental points (oe-17-19-16558-i008) are fitted (oe-17-19-16558-i009) by the flux given by Eq. (2) with a bandwidth of 18 nm, an effective propagation distance of 4 mm and a correction factor of 1.4. The factor relating generated pair flux and detected coincidence rate is 4 106. (c) : Evolution of the SNR with respect to the generated pairs flux. (d) : Emission spectra measured with a conventional Optical Spectrum Analyzer (OSA) for a 10 mW pump power inside the waveguide. Noise from the OSA is subtracted and data are average over 10 scans. filtration line. The asymmetry between Stokes and anti-Stokes frequencies is due to asymmetric losses in the output filtration line. Note that panels (a), (b), (c) are taken with the first setup described in Fig. 2.

Fig. 4.
Fig. 4.

Photon pair generation in a Sagnac loop interferometer. (a) : Signal-to-Noise Ratio versus the generated pair flux inside the Sagnac loop. SNR is lower than in the straight waveguide. This is mainly due to the lower efficiency of the photon pair generation. (b) : Output pump power (measured after the first filter of the output filtration line) versus generated photon pair flux from the 11.3 mm long straight waveguide (oe-17-19-16558-i010) and from the Sagnac loop interferometer (oe-17-19-16558-i011). The output pump power for a given pair flux is 6 to 16 dB lower for the Sagnac loop than for the straight waveguide despite the lower efficiency of photon pair generation in the Sagnac loop.

Fig. 5.
Fig. 5.

Photon pair generation in micro-ring resonator. Note that results presented in panels (a) and (b) differs from those in panels (c) and (d) by a temperature change due to external conditions. Note that panels (c) and (d) were taken with the second setup described in Fig. 2. (a) : Transmission spectrum of the ring cavity. Insets: zoom on the resonances. (b) : Emission spectrum from the ring cavity. The measurement is made thanks to a tunable filter and a single photon detector for an estimated pump power at the input of the cavity of 0.4 mW. The width of the peaks are limited by the linewidth of the tunable filter (continuous curves - FWHM=1.3 nm). The linewidth of the Stokes resonance has been investigated (inset) thanks to a very narrow tunable filter (FWHM=20 pm) which shows the emission linewidth to be approximately 150 pm. (c) : Generated Photon Pair flux (i.e. coincidences only as in Fig. 3(b)) versus pump power for pumping on resonance (oe-17-19-16558-i012, λPump ≈1539.9± 0.05 nm). Quadratic curve (oe-17-19-16558-i013) show that evolution of pair generation inside the ring resonator does not follow any clear law, see discussion in the main text. Grey diamonds (oe-17-19-16558-i014) show the pair flux generated in the 11.3 mm long straight waveguide while filtered by the demultiplexer used for the ring. The corresponding quadratic fit is plotted in grey (-). (d) : SNR versus generated pair flux generated in the ring resonator (oe-17-19-16558-i015) and in the 11.3 mm long straight waveguide (oe-17-19-16558-i016).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

f = γP g ( ω ) sinh [ g ( ω ) z ] 2
( γ P L ) 2 sinc 2 ( β 2 ω 2 L 2 )
f = ( F p 2 F s F i γ PL ring ) 2
SNR = c a + c p c a
SNR = c a + c p c a
p s , a = γ e η s , a + dk s , a ( s , a stand for Stokes or anti-Stokes )
c a = ( γ e η s + dk s ) ( γ e η a + dk a ) τ b 2
c a = γ e η s η a τ b

Metrics