Abstract

In this work the impedance of separate-absorption-charge-multiplication Ge/Si avalanche photodiodes (APD) is characterized over a large range of bias voltage. An equivalent circuit with an inductive element is presented for modeling the Ge/Si APD. All the parameters for the elements included in the equivalent circuit are extracted by fitting the measured S22 with the genetic algorithm optimization. Due to a resonance in the avalanche region, the frequency response of the APD has a peak enhancement when the bias voltage is relatively high, which is observed in the measurement and agrees with the theoretical calculation shown in this paper.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Campbell, W. T. Tsang, G. J. Qua, and B. C. Johnson, “High-speed InP /InGaAsP /InGaAs avalanche photodiodes grown by chemical beam epitaxy,” IEEE J. Quantum Electron. 24(3), 496–500 (1988).
    [CrossRef]
  2. A. R. Hawkins, W. Wu, P. Abraham, K. Streubel, and J. E. Bowers, “High gain-bandwidth-product silicon heterointerface photodetector,” Appl. Phys. Lett. 70(3), 303–305 (1997).
    [CrossRef]
  3. Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic Ge/Si Avalanche Photodiodes with 340GHz Gain-Bandwidth Product,” Nat. Photonics 3(1), 59–63 (2008).
    [CrossRef]
  4. S. J. Koester, J. D. Schaub, G. Dehlinger, and J. O. Chu, “Germanium-on-SOI infrared detectors for integrated photonic applications,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1489–1502 (2006).
    [CrossRef]
  5. S. J. Koester, C. L. Schow, L. Schares, G. Dehlinger, J. D. Schaub, F. E. Doany, and R. A. John, “Ge-on-SOI-detector/Si-CMOS-amplifier receivers for high-performance optical-communication applications,” J. Lightwave Technol. 25(1), 46–57 (2007).
    [CrossRef]
  6. W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Origin of the gain-bandwidth-product enhancement in separate-absorption-charge-multiplication Ge/Si avalan-che photodiodes,” Optical fiber communication (OFC) (San Diego, CA, 2009).
  7. W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product,” Opt. Express 17(15), 12641–12649 (2009).
    [CrossRef] [PubMed]
  8. G. Wang, T. Tokumitsu, I. Hanawa, K. Sato, and M. Kobayashi, “Analysis of high speed p-i-n photodiodes s-parameters by a novel small-signal equivalent circuit model,” IEEE Microw. Wirel. Compon. Lett. 12(10), 378–380 (2002).
    [CrossRef]
  9. J.-W. Shi, Y.-S. Wu, Z.-R. Li, and P.-S. Chen, “Impact-ionization-induced bandwidth enhance-ment of a Si–SiGe-based avalanche photodiode operating at a wavelength of 830 nm with a gain-bandwidth product of 428 GHz,” IEEE Photon. Technol. Lett. 19(7), 474–476 (2007).
    [CrossRef]
  10. M.-J. Lee, H.-S. Kang, and W.-Y. Choi, “Equivalent Circuit model for Si avalanche photodetectors fabricated in standard CMOS process,” IEEE Electron Device Lett. 29(10), 1115–1117 (2008).
    [CrossRef]
  11. G. Kim, I. G. Kim, J. H. Baek, and O. K. Kwon, “Enhanced frequency response associated with negative photoconductance in an InGaAs/InAlAs avalanche photodetector,” Appl. Phys. Lett. 83(6), 1249–1251 (2003).
    [CrossRef]
  12. S. M. Sze, Physics of Semiconductor Devices, (New York: Wiley, 1981) Chap. 5.
  13. Y.-C. Wang, “Small-signal characteristics of a Read diode under conditions of field-dependent velocity and finite reverse saturation current,” Solid-State Electron. 21(4), 609–615 (1978).
    [CrossRef]
  14. A. Banoushi, M. R. Kardan, and M. A. Naeini, “A circuit model simulation for separate absorption, grading, charge, and multiplication avalanche photodiodes,” Solid-State Electron. 49(6), 871–877 (2005).
    [CrossRef]

2009 (1)

2008 (2)

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic Ge/Si Avalanche Photodiodes with 340GHz Gain-Bandwidth Product,” Nat. Photonics 3(1), 59–63 (2008).
[CrossRef]

M.-J. Lee, H.-S. Kang, and W.-Y. Choi, “Equivalent Circuit model for Si avalanche photodetectors fabricated in standard CMOS process,” IEEE Electron Device Lett. 29(10), 1115–1117 (2008).
[CrossRef]

2007 (2)

J.-W. Shi, Y.-S. Wu, Z.-R. Li, and P.-S. Chen, “Impact-ionization-induced bandwidth enhance-ment of a Si–SiGe-based avalanche photodiode operating at a wavelength of 830 nm with a gain-bandwidth product of 428 GHz,” IEEE Photon. Technol. Lett. 19(7), 474–476 (2007).
[CrossRef]

S. J. Koester, C. L. Schow, L. Schares, G. Dehlinger, J. D. Schaub, F. E. Doany, and R. A. John, “Ge-on-SOI-detector/Si-CMOS-amplifier receivers for high-performance optical-communication applications,” J. Lightwave Technol. 25(1), 46–57 (2007).
[CrossRef]

2006 (1)

S. J. Koester, J. D. Schaub, G. Dehlinger, and J. O. Chu, “Germanium-on-SOI infrared detectors for integrated photonic applications,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1489–1502 (2006).
[CrossRef]

2005 (1)

A. Banoushi, M. R. Kardan, and M. A. Naeini, “A circuit model simulation for separate absorption, grading, charge, and multiplication avalanche photodiodes,” Solid-State Electron. 49(6), 871–877 (2005).
[CrossRef]

2003 (1)

G. Kim, I. G. Kim, J. H. Baek, and O. K. Kwon, “Enhanced frequency response associated with negative photoconductance in an InGaAs/InAlAs avalanche photodetector,” Appl. Phys. Lett. 83(6), 1249–1251 (2003).
[CrossRef]

2002 (1)

G. Wang, T. Tokumitsu, I. Hanawa, K. Sato, and M. Kobayashi, “Analysis of high speed p-i-n photodiodes s-parameters by a novel small-signal equivalent circuit model,” IEEE Microw. Wirel. Compon. Lett. 12(10), 378–380 (2002).
[CrossRef]

1997 (1)

A. R. Hawkins, W. Wu, P. Abraham, K. Streubel, and J. E. Bowers, “High gain-bandwidth-product silicon heterointerface photodetector,” Appl. Phys. Lett. 70(3), 303–305 (1997).
[CrossRef]

1988 (1)

J. C. Campbell, W. T. Tsang, G. J. Qua, and B. C. Johnson, “High-speed InP /InGaAsP /InGaAs avalanche photodiodes grown by chemical beam epitaxy,” IEEE J. Quantum Electron. 24(3), 496–500 (1988).
[CrossRef]

1978 (1)

Y.-C. Wang, “Small-signal characteristics of a Read diode under conditions of field-dependent velocity and finite reverse saturation current,” Solid-State Electron. 21(4), 609–615 (1978).
[CrossRef]

Abraham, P.

A. R. Hawkins, W. Wu, P. Abraham, K. Streubel, and J. E. Bowers, “High gain-bandwidth-product silicon heterointerface photodetector,” Appl. Phys. Lett. 70(3), 303–305 (1997).
[CrossRef]

Baek, J. H.

G. Kim, I. G. Kim, J. H. Baek, and O. K. Kwon, “Enhanced frequency response associated with negative photoconductance in an InGaAs/InAlAs avalanche photodetector,” Appl. Phys. Lett. 83(6), 1249–1251 (2003).
[CrossRef]

Banoushi, A.

A. Banoushi, M. R. Kardan, and M. A. Naeini, “A circuit model simulation for separate absorption, grading, charge, and multiplication avalanche photodiodes,” Solid-State Electron. 49(6), 871–877 (2005).
[CrossRef]

Beling, A.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic Ge/Si Avalanche Photodiodes with 340GHz Gain-Bandwidth Product,” Nat. Photonics 3(1), 59–63 (2008).
[CrossRef]

Bowers, J. E.

W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product,” Opt. Express 17(15), 12641–12649 (2009).
[CrossRef] [PubMed]

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic Ge/Si Avalanche Photodiodes with 340GHz Gain-Bandwidth Product,” Nat. Photonics 3(1), 59–63 (2008).
[CrossRef]

A. R. Hawkins, W. Wu, P. Abraham, K. Streubel, and J. E. Bowers, “High gain-bandwidth-product silicon heterointerface photodetector,” Appl. Phys. Lett. 70(3), 303–305 (1997).
[CrossRef]

Campbell, J. C.

W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product,” Opt. Express 17(15), 12641–12649 (2009).
[CrossRef] [PubMed]

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic Ge/Si Avalanche Photodiodes with 340GHz Gain-Bandwidth Product,” Nat. Photonics 3(1), 59–63 (2008).
[CrossRef]

J. C. Campbell, W. T. Tsang, G. J. Qua, and B. C. Johnson, “High-speed InP /InGaAsP /InGaAs avalanche photodiodes grown by chemical beam epitaxy,” IEEE J. Quantum Electron. 24(3), 496–500 (1988).
[CrossRef]

Chen, H.-W.

W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product,” Opt. Express 17(15), 12641–12649 (2009).
[CrossRef] [PubMed]

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic Ge/Si Avalanche Photodiodes with 340GHz Gain-Bandwidth Product,” Nat. Photonics 3(1), 59–63 (2008).
[CrossRef]

Chen, P.-S.

J.-W. Shi, Y.-S. Wu, Z.-R. Li, and P.-S. Chen, “Impact-ionization-induced bandwidth enhance-ment of a Si–SiGe-based avalanche photodiode operating at a wavelength of 830 nm with a gain-bandwidth product of 428 GHz,” IEEE Photon. Technol. Lett. 19(7), 474–476 (2007).
[CrossRef]

Choi, W.-Y.

M.-J. Lee, H.-S. Kang, and W.-Y. Choi, “Equivalent Circuit model for Si avalanche photodetectors fabricated in standard CMOS process,” IEEE Electron Device Lett. 29(10), 1115–1117 (2008).
[CrossRef]

Chu, J. O.

S. J. Koester, J. D. Schaub, G. Dehlinger, and J. O. Chu, “Germanium-on-SOI infrared detectors for integrated photonic applications,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1489–1502 (2006).
[CrossRef]

Dehlinger, G.

S. J. Koester, C. L. Schow, L. Schares, G. Dehlinger, J. D. Schaub, F. E. Doany, and R. A. John, “Ge-on-SOI-detector/Si-CMOS-amplifier receivers for high-performance optical-communication applications,” J. Lightwave Technol. 25(1), 46–57 (2007).
[CrossRef]

S. J. Koester, J. D. Schaub, G. Dehlinger, and J. O. Chu, “Germanium-on-SOI infrared detectors for integrated photonic applications,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1489–1502 (2006).
[CrossRef]

Doany, F. E.

Hanawa, I.

G. Wang, T. Tokumitsu, I. Hanawa, K. Sato, and M. Kobayashi, “Analysis of high speed p-i-n photodiodes s-parameters by a novel small-signal equivalent circuit model,” IEEE Microw. Wirel. Compon. Lett. 12(10), 378–380 (2002).
[CrossRef]

Hawkins, A. R.

A. R. Hawkins, W. Wu, P. Abraham, K. Streubel, and J. E. Bowers, “High gain-bandwidth-product silicon heterointerface photodetector,” Appl. Phys. Lett. 70(3), 303–305 (1997).
[CrossRef]

John, R. A.

Johnson, B. C.

J. C. Campbell, W. T. Tsang, G. J. Qua, and B. C. Johnson, “High-speed InP /InGaAsP /InGaAs avalanche photodiodes grown by chemical beam epitaxy,” IEEE J. Quantum Electron. 24(3), 496–500 (1988).
[CrossRef]

Kang, H.-S.

M.-J. Lee, H.-S. Kang, and W.-Y. Choi, “Equivalent Circuit model for Si avalanche photodetectors fabricated in standard CMOS process,” IEEE Electron Device Lett. 29(10), 1115–1117 (2008).
[CrossRef]

Kang, Y.

W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product,” Opt. Express 17(15), 12641–12649 (2009).
[CrossRef] [PubMed]

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic Ge/Si Avalanche Photodiodes with 340GHz Gain-Bandwidth Product,” Nat. Photonics 3(1), 59–63 (2008).
[CrossRef]

Kardan, M. R.

A. Banoushi, M. R. Kardan, and M. A. Naeini, “A circuit model simulation for separate absorption, grading, charge, and multiplication avalanche photodiodes,” Solid-State Electron. 49(6), 871–877 (2005).
[CrossRef]

Kim, G.

G. Kim, I. G. Kim, J. H. Baek, and O. K. Kwon, “Enhanced frequency response associated with negative photoconductance in an InGaAs/InAlAs avalanche photodetector,” Appl. Phys. Lett. 83(6), 1249–1251 (2003).
[CrossRef]

Kim, I. G.

G. Kim, I. G. Kim, J. H. Baek, and O. K. Kwon, “Enhanced frequency response associated with negative photoconductance in an InGaAs/InAlAs avalanche photodetector,” Appl. Phys. Lett. 83(6), 1249–1251 (2003).
[CrossRef]

Kobayashi, M.

G. Wang, T. Tokumitsu, I. Hanawa, K. Sato, and M. Kobayashi, “Analysis of high speed p-i-n photodiodes s-parameters by a novel small-signal equivalent circuit model,” IEEE Microw. Wirel. Compon. Lett. 12(10), 378–380 (2002).
[CrossRef]

Koester, S. J.

S. J. Koester, C. L. Schow, L. Schares, G. Dehlinger, J. D. Schaub, F. E. Doany, and R. A. John, “Ge-on-SOI-detector/Si-CMOS-amplifier receivers for high-performance optical-communication applications,” J. Lightwave Technol. 25(1), 46–57 (2007).
[CrossRef]

S. J. Koester, J. D. Schaub, G. Dehlinger, and J. O. Chu, “Germanium-on-SOI infrared detectors for integrated photonic applications,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1489–1502 (2006).
[CrossRef]

Kuo, Y.-H.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic Ge/Si Avalanche Photodiodes with 340GHz Gain-Bandwidth Product,” Nat. Photonics 3(1), 59–63 (2008).
[CrossRef]

Kwon, O. K.

G. Kim, I. G. Kim, J. H. Baek, and O. K. Kwon, “Enhanced frequency response associated with negative photoconductance in an InGaAs/InAlAs avalanche photodetector,” Appl. Phys. Lett. 83(6), 1249–1251 (2003).
[CrossRef]

Lee, M.-J.

M.-J. Lee, H.-S. Kang, and W.-Y. Choi, “Equivalent Circuit model for Si avalanche photodetectors fabricated in standard CMOS process,” IEEE Electron Device Lett. 29(10), 1115–1117 (2008).
[CrossRef]

Li, Z.-R.

J.-W. Shi, Y.-S. Wu, Z.-R. Li, and P.-S. Chen, “Impact-ionization-induced bandwidth enhance-ment of a Si–SiGe-based avalanche photodiode operating at a wavelength of 830 nm with a gain-bandwidth product of 428 GHz,” IEEE Photon. Technol. Lett. 19(7), 474–476 (2007).
[CrossRef]

Litski, S.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic Ge/Si Avalanche Photodiodes with 340GHz Gain-Bandwidth Product,” Nat. Photonics 3(1), 59–63 (2008).
[CrossRef]

Liu, H.-D.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic Ge/Si Avalanche Photodiodes with 340GHz Gain-Bandwidth Product,” Nat. Photonics 3(1), 59–63 (2008).
[CrossRef]

McIntosh, D. C.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic Ge/Si Avalanche Photodiodes with 340GHz Gain-Bandwidth Product,” Nat. Photonics 3(1), 59–63 (2008).
[CrossRef]

Morse, M.

W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product,” Opt. Express 17(15), 12641–12649 (2009).
[CrossRef] [PubMed]

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic Ge/Si Avalanche Photodiodes with 340GHz Gain-Bandwidth Product,” Nat. Photonics 3(1), 59–63 (2008).
[CrossRef]

Naeini, M. A.

A. Banoushi, M. R. Kardan, and M. A. Naeini, “A circuit model simulation for separate absorption, grading, charge, and multiplication avalanche photodiodes,” Solid-State Electron. 49(6), 871–877 (2005).
[CrossRef]

Paniccia, M. J.

W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product,” Opt. Express 17(15), 12641–12649 (2009).
[CrossRef] [PubMed]

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic Ge/Si Avalanche Photodiodes with 340GHz Gain-Bandwidth Product,” Nat. Photonics 3(1), 59–63 (2008).
[CrossRef]

Pauchard, A.

W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product,” Opt. Express 17(15), 12641–12649 (2009).
[CrossRef] [PubMed]

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic Ge/Si Avalanche Photodiodes with 340GHz Gain-Bandwidth Product,” Nat. Photonics 3(1), 59–63 (2008).
[CrossRef]

Qua, G. J.

J. C. Campbell, W. T. Tsang, G. J. Qua, and B. C. Johnson, “High-speed InP /InGaAsP /InGaAs avalanche photodiodes grown by chemical beam epitaxy,” IEEE J. Quantum Electron. 24(3), 496–500 (1988).
[CrossRef]

Sarid, G.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic Ge/Si Avalanche Photodiodes with 340GHz Gain-Bandwidth Product,” Nat. Photonics 3(1), 59–63 (2008).
[CrossRef]

Sato, K.

G. Wang, T. Tokumitsu, I. Hanawa, K. Sato, and M. Kobayashi, “Analysis of high speed p-i-n photodiodes s-parameters by a novel small-signal equivalent circuit model,” IEEE Microw. Wirel. Compon. Lett. 12(10), 378–380 (2002).
[CrossRef]

Schares, L.

Schaub, J. D.

S. J. Koester, C. L. Schow, L. Schares, G. Dehlinger, J. D. Schaub, F. E. Doany, and R. A. John, “Ge-on-SOI-detector/Si-CMOS-amplifier receivers for high-performance optical-communication applications,” J. Lightwave Technol. 25(1), 46–57 (2007).
[CrossRef]

S. J. Koester, J. D. Schaub, G. Dehlinger, and J. O. Chu, “Germanium-on-SOI infrared detectors for integrated photonic applications,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1489–1502 (2006).
[CrossRef]

Schow, C. L.

Shi, J.-W.

J.-W. Shi, Y.-S. Wu, Z.-R. Li, and P.-S. Chen, “Impact-ionization-induced bandwidth enhance-ment of a Si–SiGe-based avalanche photodiode operating at a wavelength of 830 nm with a gain-bandwidth product of 428 GHz,” IEEE Photon. Technol. Lett. 19(7), 474–476 (2007).
[CrossRef]

Streubel, K.

A. R. Hawkins, W. Wu, P. Abraham, K. Streubel, and J. E. Bowers, “High gain-bandwidth-product silicon heterointerface photodetector,” Appl. Phys. Lett. 70(3), 303–305 (1997).
[CrossRef]

Tokumitsu, T.

G. Wang, T. Tokumitsu, I. Hanawa, K. Sato, and M. Kobayashi, “Analysis of high speed p-i-n photodiodes s-parameters by a novel small-signal equivalent circuit model,” IEEE Microw. Wirel. Compon. Lett. 12(10), 378–380 (2002).
[CrossRef]

Tsang, W. T.

J. C. Campbell, W. T. Tsang, G. J. Qua, and B. C. Johnson, “High-speed InP /InGaAsP /InGaAs avalanche photodiodes grown by chemical beam epitaxy,” IEEE J. Quantum Electron. 24(3), 496–500 (1988).
[CrossRef]

Wang, G.

G. Wang, T. Tokumitsu, I. Hanawa, K. Sato, and M. Kobayashi, “Analysis of high speed p-i-n photodiodes s-parameters by a novel small-signal equivalent circuit model,” IEEE Microw. Wirel. Compon. Lett. 12(10), 378–380 (2002).
[CrossRef]

Wang, Y.-C.

Y.-C. Wang, “Small-signal characteristics of a Read diode under conditions of field-dependent velocity and finite reverse saturation current,” Solid-State Electron. 21(4), 609–615 (1978).
[CrossRef]

Wu, W.

A. R. Hawkins, W. Wu, P. Abraham, K. Streubel, and J. E. Bowers, “High gain-bandwidth-product silicon heterointerface photodetector,” Appl. Phys. Lett. 70(3), 303–305 (1997).
[CrossRef]

Wu, Y.-S.

J.-W. Shi, Y.-S. Wu, Z.-R. Li, and P.-S. Chen, “Impact-ionization-induced bandwidth enhance-ment of a Si–SiGe-based avalanche photodiode operating at a wavelength of 830 nm with a gain-bandwidth product of 428 GHz,” IEEE Photon. Technol. Lett. 19(7), 474–476 (2007).
[CrossRef]

Zadka, M.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic Ge/Si Avalanche Photodiodes with 340GHz Gain-Bandwidth Product,” Nat. Photonics 3(1), 59–63 (2008).
[CrossRef]

Zaoui, W. S.

W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product,” Opt. Express 17(15), 12641–12649 (2009).
[CrossRef] [PubMed]

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic Ge/Si Avalanche Photodiodes with 340GHz Gain-Bandwidth Product,” Nat. Photonics 3(1), 59–63 (2008).
[CrossRef]

Zheng, X.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic Ge/Si Avalanche Photodiodes with 340GHz Gain-Bandwidth Product,” Nat. Photonics 3(1), 59–63 (2008).
[CrossRef]

Appl. Phys. Lett. (2)

A. R. Hawkins, W. Wu, P. Abraham, K. Streubel, and J. E. Bowers, “High gain-bandwidth-product silicon heterointerface photodetector,” Appl. Phys. Lett. 70(3), 303–305 (1997).
[CrossRef]

G. Kim, I. G. Kim, J. H. Baek, and O. K. Kwon, “Enhanced frequency response associated with negative photoconductance in an InGaAs/InAlAs avalanche photodetector,” Appl. Phys. Lett. 83(6), 1249–1251 (2003).
[CrossRef]

IEEE Electron Device Lett. (1)

M.-J. Lee, H.-S. Kang, and W.-Y. Choi, “Equivalent Circuit model for Si avalanche photodetectors fabricated in standard CMOS process,” IEEE Electron Device Lett. 29(10), 1115–1117 (2008).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. C. Campbell, W. T. Tsang, G. J. Qua, and B. C. Johnson, “High-speed InP /InGaAsP /InGaAs avalanche photodiodes grown by chemical beam epitaxy,” IEEE J. Quantum Electron. 24(3), 496–500 (1988).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

S. J. Koester, J. D. Schaub, G. Dehlinger, and J. O. Chu, “Germanium-on-SOI infrared detectors for integrated photonic applications,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1489–1502 (2006).
[CrossRef]

IEEE Microw. Wirel. Compon. Lett. (1)

G. Wang, T. Tokumitsu, I. Hanawa, K. Sato, and M. Kobayashi, “Analysis of high speed p-i-n photodiodes s-parameters by a novel small-signal equivalent circuit model,” IEEE Microw. Wirel. Compon. Lett. 12(10), 378–380 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J.-W. Shi, Y.-S. Wu, Z.-R. Li, and P.-S. Chen, “Impact-ionization-induced bandwidth enhance-ment of a Si–SiGe-based avalanche photodiode operating at a wavelength of 830 nm with a gain-bandwidth product of 428 GHz,” IEEE Photon. Technol. Lett. 19(7), 474–476 (2007).
[CrossRef]

J. Lightwave Technol. (1)

Nat. Photonics (1)

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic Ge/Si Avalanche Photodiodes with 340GHz Gain-Bandwidth Product,” Nat. Photonics 3(1), 59–63 (2008).
[CrossRef]

Opt. Express (1)

Solid-State Electron. (2)

Y.-C. Wang, “Small-signal characteristics of a Read diode under conditions of field-dependent velocity and finite reverse saturation current,” Solid-State Electron. 21(4), 609–615 (1978).
[CrossRef]

A. Banoushi, M. R. Kardan, and M. A. Naeini, “A circuit model simulation for separate absorption, grading, charge, and multiplication avalanche photodiodes,” Solid-State Electron. 49(6), 871–877 (2005).
[CrossRef]

Other (2)

W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Origin of the gain-bandwidth-product enhancement in separate-absorption-charge-multiplication Ge/Si avalan-che photodiodes,” Optical fiber communication (OFC) (San Diego, CA, 2009).

S. M. Sze, Physics of Semiconductor Devices, (New York: Wiley, 1981) Chap. 5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Schematic configuration of the Ge/Si SACM APD device; (b) the parameters for the layers.

Fig. 2
Fig. 2

Measured frequency responses at different bias voltages for SACM APDs with diameters D = 150μm (a), D = 80μm (b), and D = 50μm (c). The input optical power is –14dBm and the operating temperature is 25°C.

Fig. 3
Fig. 3

Comparison between the bandwidths for the SACM APDs with diameters D = 150μm, 80μm, and 50μm. The input optical power P = –14dBm and the operating temperature T = 25°C.

Fig. 4
Fig. 4

The dark currents of the presented SACM APDs with diameters of D = 150μm, 80μm and 50μm. The operational temperature is 25°C.

Fig. 5
Fig. 5

Measured S22 at different bias voltages for SACM APDs with diameters of D = 150μm (a), D = 80μm (b), and D = 50μm (c). The input optical power is –14dBm and the operational temperature is 25°C.

Fig. 6
Fig. 6

The measured impedance at different bias voltages for the present SACM APD with a diameter of D = 80μm. The input optical power is –14dBm and the operation temperature is 25°C. (a) The real part Zr of the impedance. (b) The imaginary part Zi of the impedance.

Fig. 7
Fig. 7

The equivalent circuit of the SACM APD.

Fig. 8
Fig. 8

The measured and fitted reflection coefficients of GeSi APD under –14dBm optical illumination (a) Vbias = –26.6V; (b) Vbias = –26.4V; (c) Vbias = –26.2V; (d) Vbias = –26.0V. The temperature is 25 °C.

Fig. 9
Fig. 9

The measured and calculated frequency responses when the input optical power P = –14dBm for (a) Vbias = –26.6V; (b) Vbias = –26.4V; (c) Vbias = –26.2V; (d) Vbias = –26.0V.

Tables (3)

Tables Icon

Table 1 The fitted parameters at P = –14dBm.

Tables Icon

Table 2 The fitted parameters at P = –20dBm.

Tables Icon

Table 3 The fitted parameters for calculation of the frequency response.

Metrics