Abstract

We present a systematic numerical study of a metal-dielectric-metal sandwich plasmonic structure for broadband resonant transmission at terahertz frequencies. The proposed structure consists of periodic slotted metallic arrays on both sides of a thin dielectric substrate and is demonstrated to exhibit a broad passband transmission response. Various design considerations have been investigated to exploit their influence on the transmission passband width and the center resonance frequency. The structure ensures a broadband transmission over a wide range of incident angles.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68(2), 449–521 (2005).
    [CrossRef]
  2. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [CrossRef] [PubMed]
  3. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [CrossRef]
  4. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
    [CrossRef] [PubMed]
  5. M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313(5786), 502–504 (2006).
    [CrossRef] [PubMed]
  6. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [CrossRef] [PubMed]
  7. B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
    [CrossRef]
  8. D. Grischkowsky, S. Keiding, M. V. Exter, and Ch. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectric and semiconductors,” J. Opt. Soc. Am. B 7(10), 2006–2015 (1990).
    [CrossRef]
  9. J. Han, W. Zhang, W. Chen, S. Ray, J. Zhang, M. He, A. Azad, and Z. Zhu, “Terahertz dielectric properties and low-frequency phonon resonances of Zno nanostructures,” J. Phys. Chem. C 111(35), 13000–13006 (2007).
    [CrossRef]
  10. A. M. Melo, M. A. Kornberg, P. Kaufmann, M. H. Piazzetta, E. C. Bortolucci, M. B. Zakia, O. H. Bauer, A. Poglitsch, and A. M. P. Alves da Silva, “Metal mesh resonant filters for terahertz frequencies,” Appl. Opt. 47(32), 6064–6069 (2008).
    [CrossRef] [PubMed]
  11. A. K. Azad, Y. Zhao, W. Zhang, and M. He, “Effect of dielectric properties of metals on terahertz transmission subwavelength hole arrays,” Opt. Lett. 31(17), 2637–2639 (2006).
    [CrossRef] [PubMed]
  12. X. Lu, J. Han, and W. Zhang, “Resonant terahertz reflection of periodic arrays of subwavelength metallic rectangles,” Appl. Phys. Lett. 92(12), 121103 (2008).
    [CrossRef]
  13. F. Miyamaru and M. Hangyo, “Finite size effect of transmission property for metal hole arrays in subterahertz region,” Appl. Phys. Lett. 84(15), 2742–2744 (2004).
    [CrossRef]
  14. J. Han, X. Lu, and W. Zhang, “Terahertz transmission in subwavelength holes of asymmetric metal-dielectric interfaces: the effect of a dielectric layer,” J. Appl. Phys. 103(3), 033108 (2008).
    [CrossRef]
  15. J. Han, A. Lakhtakia, Z. Tian, X. Lu, and W. Zhang, “Magnetic and magnetothermal tunabilities of subwavelength-hole arrays in a semiconductor sheet,” Opt. Lett. 34(9), 1465–1467 (2009).
    [CrossRef] [PubMed]
  16. W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced infrared transmission through subwavelength coaxial metallic arrays,” Phys. Rev. Lett. 94(3), 033902 (2005).
    [CrossRef] [PubMed]
  17. A. I. Fernández-Domínguez, L. Martín-Moreno, F. J. García-Vidal, S. R. Andrews, and S. A. Maier, “Spoof surface plasmon polariton modes propagating along periodically corrugated wires,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1515–1521 (2008).
    [CrossRef]
  18. B. A. Munk, R. J. Luebbers, and R. D. Fulton, “Transmission through a two-layer array of loaded slots,” IEEE Trans. Antenn. Propag. 22(6), 804–809 (1974).
    [CrossRef]
  19. B. A. Munk, Frequency selected surfaces: theory and design (John-Wily and Sons, New York, 2000).
  20. L. Shafai, “Wideband Microstrip Antennas,” in Antenna Engineering Handbook, J. Volakis, ed. (McGraw-Hill, New York, 2007).
  21. J. Gu, et al., “A close-ring pair metamaterial resonating at terahertz frequencies,” unpublished.

2009 (1)

2008 (4)

J. Han, X. Lu, and W. Zhang, “Terahertz transmission in subwavelength holes of asymmetric metal-dielectric interfaces: the effect of a dielectric layer,” J. Appl. Phys. 103(3), 033108 (2008).
[CrossRef]

A. M. Melo, M. A. Kornberg, P. Kaufmann, M. H. Piazzetta, E. C. Bortolucci, M. B. Zakia, O. H. Bauer, A. Poglitsch, and A. M. P. Alves da Silva, “Metal mesh resonant filters for terahertz frequencies,” Appl. Opt. 47(32), 6064–6069 (2008).
[CrossRef] [PubMed]

X. Lu, J. Han, and W. Zhang, “Resonant terahertz reflection of periodic arrays of subwavelength metallic rectangles,” Appl. Phys. Lett. 92(12), 121103 (2008).
[CrossRef]

A. I. Fernández-Domínguez, L. Martín-Moreno, F. J. García-Vidal, S. R. Andrews, and S. A. Maier, “Spoof surface plasmon polariton modes propagating along periodically corrugated wires,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1515–1521 (2008).
[CrossRef]

2007 (1)

J. Han, W. Zhang, W. Chen, S. Ray, J. Zhang, M. He, A. Azad, and Z. Zhu, “Terahertz dielectric properties and low-frequency phonon resonances of Zno nanostructures,” J. Phys. Chem. C 111(35), 13000–13006 (2007).
[CrossRef]

2006 (3)

A. K. Azad, Y. Zhao, W. Zhang, and M. He, “Effect of dielectric properties of metals on terahertz transmission subwavelength hole arrays,” Opt. Lett. 31(17), 2637–2639 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313(5786), 502–504 (2006).
[CrossRef] [PubMed]

2005 (2)

S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68(2), 449–521 (2005).
[CrossRef]

W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced infrared transmission through subwavelength coaxial metallic arrays,” Phys. Rev. Lett. 94(3), 033902 (2005).
[CrossRef] [PubMed]

2004 (2)

F. Miyamaru and M. Hangyo, “Finite size effect of transmission property for metal hole arrays in subterahertz region,” Appl. Phys. Lett. 84(15), 2742–2744 (2004).
[CrossRef]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[CrossRef] [PubMed]

2002 (1)

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[CrossRef]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

1990 (1)

1974 (1)

B. A. Munk, R. J. Luebbers, and R. D. Fulton, “Transmission through a two-layer array of loaded slots,” IEEE Trans. Antenn. Propag. 22(6), 804–809 (1974).
[CrossRef]

Alves da Silva, A. M. P.

Andrews, S. R.

A. I. Fernández-Domínguez, L. Martín-Moreno, F. J. García-Vidal, S. R. Andrews, and S. A. Maier, “Spoof surface plasmon polariton modes propagating along periodically corrugated wires,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1515–1521 (2008).
[CrossRef]

Azad, A.

J. Han, W. Zhang, W. Chen, S. Ray, J. Zhang, M. He, A. Azad, and Z. Zhu, “Terahertz dielectric properties and low-frequency phonon resonances of Zno nanostructures,” J. Phys. Chem. C 111(35), 13000–13006 (2007).
[CrossRef]

Azad, A. K.

Basov, D. N.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[CrossRef] [PubMed]

Bauer, O. H.

Bortolucci, E. C.

Brueck, S. R. J.

W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced infrared transmission through subwavelength coaxial metallic arrays,” Phys. Rev. Lett. 94(3), 033902 (2005).
[CrossRef] [PubMed]

Chen, W.

J. Han, W. Zhang, W. Chen, S. Ray, J. Zhang, M. He, A. Azad, and Z. Zhu, “Terahertz dielectric properties and low-frequency phonon resonances of Zno nanostructures,” J. Phys. Chem. C 111(35), 13000–13006 (2007).
[CrossRef]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Enkrich, C.

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313(5786), 502–504 (2006).
[CrossRef] [PubMed]

Exter, M. V.

Fan, W.

W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced infrared transmission through subwavelength coaxial metallic arrays,” Phys. Rev. Lett. 94(3), 033902 (2005).
[CrossRef] [PubMed]

Fang, N.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[CrossRef] [PubMed]

Fattinger, Ch.

Ferguson, B.

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[CrossRef]

Fernández-Domínguez, A. I.

A. I. Fernández-Domínguez, L. Martín-Moreno, F. J. García-Vidal, S. R. Andrews, and S. A. Maier, “Spoof surface plasmon polariton modes propagating along periodically corrugated wires,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1515–1521 (2008).
[CrossRef]

Fulton, R. D.

B. A. Munk, R. J. Luebbers, and R. D. Fulton, “Transmission through a two-layer array of loaded slots,” IEEE Trans. Antenn. Propag. 22(6), 804–809 (1974).
[CrossRef]

García-Vidal, F. J.

A. I. Fernández-Domínguez, L. Martín-Moreno, F. J. García-Vidal, S. R. Andrews, and S. A. Maier, “Spoof surface plasmon polariton modes propagating along periodically corrugated wires,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1515–1521 (2008).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Grischkowsky, D.

Han, J.

J. Han, A. Lakhtakia, Z. Tian, X. Lu, and W. Zhang, “Magnetic and magnetothermal tunabilities of subwavelength-hole arrays in a semiconductor sheet,” Opt. Lett. 34(9), 1465–1467 (2009).
[CrossRef] [PubMed]

X. Lu, J. Han, and W. Zhang, “Resonant terahertz reflection of periodic arrays of subwavelength metallic rectangles,” Appl. Phys. Lett. 92(12), 121103 (2008).
[CrossRef]

J. Han, X. Lu, and W. Zhang, “Terahertz transmission in subwavelength holes of asymmetric metal-dielectric interfaces: the effect of a dielectric layer,” J. Appl. Phys. 103(3), 033108 (2008).
[CrossRef]

J. Han, W. Zhang, W. Chen, S. Ray, J. Zhang, M. He, A. Azad, and Z. Zhu, “Terahertz dielectric properties and low-frequency phonon resonances of Zno nanostructures,” J. Phys. Chem. C 111(35), 13000–13006 (2007).
[CrossRef]

Hangyo, M.

F. Miyamaru and M. Hangyo, “Finite size effect of transmission property for metal hole arrays in subterahertz region,” Appl. Phys. Lett. 84(15), 2742–2744 (2004).
[CrossRef]

He, M.

J. Han, W. Zhang, W. Chen, S. Ray, J. Zhang, M. He, A. Azad, and Z. Zhu, “Terahertz dielectric properties and low-frequency phonon resonances of Zno nanostructures,” J. Phys. Chem. C 111(35), 13000–13006 (2007).
[CrossRef]

A. K. Azad, Y. Zhao, W. Zhang, and M. He, “Effect of dielectric properties of metals on terahertz transmission subwavelength hole arrays,” Opt. Lett. 31(17), 2637–2639 (2006).
[CrossRef] [PubMed]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Kaufmann, P.

Keiding, S.

Klein, M. W.

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313(5786), 502–504 (2006).
[CrossRef] [PubMed]

Kornberg, M. A.

Lakhtakia, A.

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Linden, S.

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313(5786), 502–504 (2006).
[CrossRef] [PubMed]

Lu, X.

J. Han, A. Lakhtakia, Z. Tian, X. Lu, and W. Zhang, “Magnetic and magnetothermal tunabilities of subwavelength-hole arrays in a semiconductor sheet,” Opt. Lett. 34(9), 1465–1467 (2009).
[CrossRef] [PubMed]

X. Lu, J. Han, and W. Zhang, “Resonant terahertz reflection of periodic arrays of subwavelength metallic rectangles,” Appl. Phys. Lett. 92(12), 121103 (2008).
[CrossRef]

J. Han, X. Lu, and W. Zhang, “Terahertz transmission in subwavelength holes of asymmetric metal-dielectric interfaces: the effect of a dielectric layer,” J. Appl. Phys. 103(3), 033108 (2008).
[CrossRef]

Luebbers, R. J.

B. A. Munk, R. J. Luebbers, and R. D. Fulton, “Transmission through a two-layer array of loaded slots,” IEEE Trans. Antenn. Propag. 22(6), 804–809 (1974).
[CrossRef]

Maier, S. A.

A. I. Fernández-Domínguez, L. Martín-Moreno, F. J. García-Vidal, S. R. Andrews, and S. A. Maier, “Spoof surface plasmon polariton modes propagating along periodically corrugated wires,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1515–1521 (2008).
[CrossRef]

Malloy, K. J.

W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced infrared transmission through subwavelength coaxial metallic arrays,” Phys. Rev. Lett. 94(3), 033902 (2005).
[CrossRef] [PubMed]

Martín-Moreno, L.

A. I. Fernández-Domínguez, L. Martín-Moreno, F. J. García-Vidal, S. R. Andrews, and S. A. Maier, “Spoof surface plasmon polariton modes propagating along periodically corrugated wires,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1515–1521 (2008).
[CrossRef]

Melo, A. M.

Minhas, B.

W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced infrared transmission through subwavelength coaxial metallic arrays,” Phys. Rev. Lett. 94(3), 033902 (2005).
[CrossRef] [PubMed]

Miyamaru, F.

F. Miyamaru and M. Hangyo, “Finite size effect of transmission property for metal hole arrays in subterahertz region,” Appl. Phys. Lett. 84(15), 2742–2744 (2004).
[CrossRef]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Munk, B. A.

B. A. Munk, R. J. Luebbers, and R. D. Fulton, “Transmission through a two-layer array of loaded slots,” IEEE Trans. Antenn. Propag. 22(6), 804–809 (1974).
[CrossRef]

Padilla, W. J.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[CrossRef] [PubMed]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Piazzetta, M. H.

Poglitsch, A.

Ramakrishna, S. A.

S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68(2), 449–521 (2005).
[CrossRef]

Ray, S.

J. Han, W. Zhang, W. Chen, S. Ray, J. Zhang, M. He, A. Azad, and Z. Zhu, “Terahertz dielectric properties and low-frequency phonon resonances of Zno nanostructures,” J. Phys. Chem. C 111(35), 13000–13006 (2007).
[CrossRef]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Smith, D. R.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[CrossRef] [PubMed]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Tian, Z.

Vier, D. C.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[CrossRef] [PubMed]

Wegener, M.

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313(5786), 502–504 (2006).
[CrossRef] [PubMed]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Yen, T. J.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[CrossRef] [PubMed]

Zakia, M. B.

Zhang, J.

J. Han, W. Zhang, W. Chen, S. Ray, J. Zhang, M. He, A. Azad, and Z. Zhu, “Terahertz dielectric properties and low-frequency phonon resonances of Zno nanostructures,” J. Phys. Chem. C 111(35), 13000–13006 (2007).
[CrossRef]

Zhang, S.

W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced infrared transmission through subwavelength coaxial metallic arrays,” Phys. Rev. Lett. 94(3), 033902 (2005).
[CrossRef] [PubMed]

Zhang, W.

J. Han, A. Lakhtakia, Z. Tian, X. Lu, and W. Zhang, “Magnetic and magnetothermal tunabilities of subwavelength-hole arrays in a semiconductor sheet,” Opt. Lett. 34(9), 1465–1467 (2009).
[CrossRef] [PubMed]

J. Han, X. Lu, and W. Zhang, “Terahertz transmission in subwavelength holes of asymmetric metal-dielectric interfaces: the effect of a dielectric layer,” J. Appl. Phys. 103(3), 033108 (2008).
[CrossRef]

X. Lu, J. Han, and W. Zhang, “Resonant terahertz reflection of periodic arrays of subwavelength metallic rectangles,” Appl. Phys. Lett. 92(12), 121103 (2008).
[CrossRef]

J. Han, W. Zhang, W. Chen, S. Ray, J. Zhang, M. He, A. Azad, and Z. Zhu, “Terahertz dielectric properties and low-frequency phonon resonances of Zno nanostructures,” J. Phys. Chem. C 111(35), 13000–13006 (2007).
[CrossRef]

A. K. Azad, Y. Zhao, W. Zhang, and M. He, “Effect of dielectric properties of metals on terahertz transmission subwavelength hole arrays,” Opt. Lett. 31(17), 2637–2639 (2006).
[CrossRef] [PubMed]

Zhang, X.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[CrossRef] [PubMed]

Zhang, X.-C.

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[CrossRef]

Zhao, Y.

Zhu, Z.

J. Han, W. Zhang, W. Chen, S. Ray, J. Zhang, M. He, A. Azad, and Z. Zhu, “Terahertz dielectric properties and low-frequency phonon resonances of Zno nanostructures,” J. Phys. Chem. C 111(35), 13000–13006 (2007).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

X. Lu, J. Han, and W. Zhang, “Resonant terahertz reflection of periodic arrays of subwavelength metallic rectangles,” Appl. Phys. Lett. 92(12), 121103 (2008).
[CrossRef]

F. Miyamaru and M. Hangyo, “Finite size effect of transmission property for metal hole arrays in subterahertz region,” Appl. Phys. Lett. 84(15), 2742–2744 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. I. Fernández-Domínguez, L. Martín-Moreno, F. J. García-Vidal, S. R. Andrews, and S. A. Maier, “Spoof surface plasmon polariton modes propagating along periodically corrugated wires,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1515–1521 (2008).
[CrossRef]

IEEE Trans. Antenn. Propag. (1)

B. A. Munk, R. J. Luebbers, and R. D. Fulton, “Transmission through a two-layer array of loaded slots,” IEEE Trans. Antenn. Propag. 22(6), 804–809 (1974).
[CrossRef]

J. Appl. Phys. (1)

J. Han, X. Lu, and W. Zhang, “Terahertz transmission in subwavelength holes of asymmetric metal-dielectric interfaces: the effect of a dielectric layer,” J. Appl. Phys. 103(3), 033108 (2008).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (1)

J. Han, W. Zhang, W. Chen, S. Ray, J. Zhang, M. He, A. Azad, and Z. Zhu, “Terahertz dielectric properties and low-frequency phonon resonances of Zno nanostructures,” J. Phys. Chem. C 111(35), 13000–13006 (2007).
[CrossRef]

Nat. Mater. (1)

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[CrossRef]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. Lett. (2)

W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced infrared transmission through subwavelength coaxial metallic arrays,” Phys. Rev. Lett. 94(3), 033902 (2005).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Rep. Prog. Phys. (1)

S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68(2), 449–521 (2005).
[CrossRef]

Science (3)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[CrossRef] [PubMed]

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313(5786), 502–504 (2006).
[CrossRef] [PubMed]

Other (3)

B. A. Munk, Frequency selected surfaces: theory and design (John-Wily and Sons, New York, 2000).

L. Shafai, “Wideband Microstrip Antennas,” in Antenna Engineering Handbook, J. Volakis, ed. (McGraw-Hill, New York, 2007).

J. Gu, et al., “A close-ring pair metamaterial resonating at terahertz frequencies,” unpublished.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) The unit cell of the sandwich metal-dielectric-metal structure with normal incident electromagnetic field. (b) Schematic of a square array of square-loop-shaped slots with a period of P, linewidth W and length L. The thickness of the middle dielectric substrate is d.

Fig. 2
Fig. 2

(a) Comparison of the transmission spectra of the chosen MDM with the MD structure of only one single metallic layer, as well as the sandwich patch array. The parameters are: L = 100 μm, P = 120 μm, W = 20 μm, d = 21 μm and ε d = 2.89. The metal is Aluminum of thickness 200 nm. (b) and (c) are electric field distributions at lower resonance frequency for the MD and MDM structures, respectively.

Fig. 3
Fig. 3

(a) Computed transmission spectra of MDM structure with P = 120 μm, L = 100 μm, W = 20 μm, and ε d = 2.89 for various d. (b) Δf and center resonant frequency f 0 as a function of d. The solid line is the fitting. (c) and (d) are effect on the transmission using different linewidth W of the slot, where other parameters are fixed as: P = 120 μm, L = 100 μm, d = 50 μm, and ε d = 1.50. (e) and (f) are effect of various L on the transmission of the MDM structure with P = 120 μm, W = 20 μm, d = 50 μm, and ε d = 1.50.

Fig. 4
Fig. 4

(a) Computed transmission spectra for various permittivity ε d of the middle dielectric substrate. (b) Dependence of the simulated values of the center resonance frequency f 0 with corresponding Δf on ε d. The solid line shows the fitting result.

Fig. 5
Fig. 5

The 3D profile of simulated transmission response for various incident angles θ in (a) TE polarization and (b) TM polarization, respectively. The parameters are: P = 120 μm, L = 100 μm, W = 20 μm, d = 50 μm, and ε d = 1.50.

Fig. 6
Fig. 6

(a) Effect on the transmission response using various MDM layers. (b) Comparison of the MDM structure with its complementary structure. The used dimensional parameters are as same as those in Fig. 5.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

f0=cξ(P,L,W)εeff.
ξ(P,L,W)=iβiζi+Δζ,
εeff=εddλd+εair(1dλd),

Metrics