Abstract

A method of line-defect calibration for line-scanning projection display is developed to accomplish acceptable display uniformity. The line scanning display uses a line modulating imaging and scanning device to construct a two-dimensional image. The inherent line-defects in an imaging device and optical lenses are the most fatal performance-degrading factor that should be overcome to reach the basic display uniformity level. Since the human eye recognizes line defects very easily, a method that perfectly removes line defects is required. Most line imaging devices are diffractive optical devices that require a coherent light source. This particular requirement makes the calibration method of sequential single pixel measurement and correction insufficient to take out the line defects distributed on screen due to optical crosstalk. In this report, we present a calibration method using a recursively converging algorithm that successfully transforms the unacceptable line-defected images into a uniform display image.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. I. Trisnadi, C. B. Carlisle, and R. Monteverde, "Overview and applications of Grating Light ValveTM based optical write engines for high-speed digital imaging," Proc. SPIE 5348, 52-64 (2004).
    [CrossRef]
  2. S. K. Yun, J. Song, T.-W. Lee, I. Yeo, Y. Choi, Y. Lee, S. An, K. Han, Y. Victor, H.-W. Park, C. Park, H. Kim, J. Yang, J. Cheong, S. Ryu, K. Oh, H. Yang, Y. Hong, S. Hong, S. Yoon, J. Jang, J. Kyoung, O. Lim, C. Kim, A. Lapchuk, S. Ihar, S. Lee, S. Kim, Y. Hwang, K. Woo, S. Shin, J. Kang and D.-H. Park, "Spatial Optical Modulator (SOM): Samsung’s Light Modulator for the Next Generation Laser Display," IMID/IDMC '06 DIGEST (Proceeding of Society for Information Display - SID. August, 2006), 29-1, 551-555.</other>
  3. M. W. Kowarz, J. C. Brazas and J. G. Phalen, "Conformal Grating Electromechanical system (GEMS) for High-Speed Digital Light Modulation," IEEE, 15th Int. MEMS Conf. Digest, 568-573 (2002).
  4. L. A. Yoder, "An Introduction to the Digital Light Processing Technology," (Texas Instruments). http://dlp.com/tech/what.aspx.
  5. B. T. Teipen and D. L. MacFarlane, "Liquid-crystal-display projector-based modulation transfer function measurements of charge-coupled-device video camera systems," Appl. Opt. 39, 515-525 (2000).
    [CrossRef]
  6. S. Lee, M. Sullivan, C. Mao and K. M. Johnson, "High-contrast, fast-switching liquid-crystal-on-silicon microdisplay with a frame buffer pixel array," Opt. Lett. 29, 751-753 (2004).
    [CrossRef] [PubMed]
  7. R. W. Corrigan, D. T. Amm, P. A. Alioshin, B. Staker, D. A. LeHoty, K. P. Gross and B. R. Lang, "Calibration of a Scanned Linear Grating Light ValueTM Projection System," in SID 99 Digest (Society for Information Display, San Jose, Calif., 1999), 200-223 (1999).
  8. J. Kang, J. Kim, S. Kim, J. Song, O. Kyong, Y. Lee, C. Park, K. Kwon, W. Choi, S. Yun, I. Yeo, K. Han, T. Kim and S. Park, "10-bit Driver IC Using 3-bit DAC Embedded Operational Amplifier for Spatial Optical Modulator," IEEE J. Solid-state Circuits 42, 2913-2922 (2007).
    [CrossRef]
  9. J. Dijon and A. Fournier, "6" Colour FED Demonstrator with High Peak Brightness," in SID 2007, 1313-1316 (2007).
    [CrossRef]
  10. M. Young, "Scratch-and-dig standard revisited," Appl. Opt. 25, 1922-1929 (1986).
    [CrossRef] [PubMed]
  11. J. A. Hoffnagle and C. M. Jefferson, "Beam shaping with a plano-aspheric lens pair," Opt. Eng. 42, 3090-3099 (2003).
    [CrossRef]
  12. J. A. Hoffnagle and C. M. Jefferson, "Design and performance of a refractive optical system that converts a Gaussian to a flattop beam," Appl. Opt. 39, 5488-5499 (2000).
    [CrossRef]
  13. Q3. H. Lee and M. Yang, "Dwell time algorithm for computer-controlled polishing of small axis-symmetrical aspherical lens mold," Opt. Eng. 40, 1936-1943 (2001).
    [CrossRef]
  14. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 2005), Chap. 5.

2007 (1)

J. Kang, J. Kim, S. Kim, J. Song, O. Kyong, Y. Lee, C. Park, K. Kwon, W. Choi, S. Yun, I. Yeo, K. Han, T. Kim and S. Park, "10-bit Driver IC Using 3-bit DAC Embedded Operational Amplifier for Spatial Optical Modulator," IEEE J. Solid-state Circuits 42, 2913-2922 (2007).
[CrossRef]

2004 (2)

J. I. Trisnadi, C. B. Carlisle, and R. Monteverde, "Overview and applications of Grating Light ValveTM based optical write engines for high-speed digital imaging," Proc. SPIE 5348, 52-64 (2004).
[CrossRef]

S. Lee, M. Sullivan, C. Mao and K. M. Johnson, "High-contrast, fast-switching liquid-crystal-on-silicon microdisplay with a frame buffer pixel array," Opt. Lett. 29, 751-753 (2004).
[CrossRef] [PubMed]

2003 (1)

J. A. Hoffnagle and C. M. Jefferson, "Beam shaping with a plano-aspheric lens pair," Opt. Eng. 42, 3090-3099 (2003).
[CrossRef]

2001 (1)

Q3. H. Lee and M. Yang, "Dwell time algorithm for computer-controlled polishing of small axis-symmetrical aspherical lens mold," Opt. Eng. 40, 1936-1943 (2001).
[CrossRef]

2000 (2)

1986 (1)

Carlisle, C. B.

J. I. Trisnadi, C. B. Carlisle, and R. Monteverde, "Overview and applications of Grating Light ValveTM based optical write engines for high-speed digital imaging," Proc. SPIE 5348, 52-64 (2004).
[CrossRef]

Choi, W.

J. Kang, J. Kim, S. Kim, J. Song, O. Kyong, Y. Lee, C. Park, K. Kwon, W. Choi, S. Yun, I. Yeo, K. Han, T. Kim and S. Park, "10-bit Driver IC Using 3-bit DAC Embedded Operational Amplifier for Spatial Optical Modulator," IEEE J. Solid-state Circuits 42, 2913-2922 (2007).
[CrossRef]

Han, K.

J. Kang, J. Kim, S. Kim, J. Song, O. Kyong, Y. Lee, C. Park, K. Kwon, W. Choi, S. Yun, I. Yeo, K. Han, T. Kim and S. Park, "10-bit Driver IC Using 3-bit DAC Embedded Operational Amplifier for Spatial Optical Modulator," IEEE J. Solid-state Circuits 42, 2913-2922 (2007).
[CrossRef]

Hoffnagle, J. A.

Jefferson, C. M.

Johnson, K. M.

Kang, J.

J. Kang, J. Kim, S. Kim, J. Song, O. Kyong, Y. Lee, C. Park, K. Kwon, W. Choi, S. Yun, I. Yeo, K. Han, T. Kim and S. Park, "10-bit Driver IC Using 3-bit DAC Embedded Operational Amplifier for Spatial Optical Modulator," IEEE J. Solid-state Circuits 42, 2913-2922 (2007).
[CrossRef]

Kim, J.

J. Kang, J. Kim, S. Kim, J. Song, O. Kyong, Y. Lee, C. Park, K. Kwon, W. Choi, S. Yun, I. Yeo, K. Han, T. Kim and S. Park, "10-bit Driver IC Using 3-bit DAC Embedded Operational Amplifier for Spatial Optical Modulator," IEEE J. Solid-state Circuits 42, 2913-2922 (2007).
[CrossRef]

Kim, S.

J. Kang, J. Kim, S. Kim, J. Song, O. Kyong, Y. Lee, C. Park, K. Kwon, W. Choi, S. Yun, I. Yeo, K. Han, T. Kim and S. Park, "10-bit Driver IC Using 3-bit DAC Embedded Operational Amplifier for Spatial Optical Modulator," IEEE J. Solid-state Circuits 42, 2913-2922 (2007).
[CrossRef]

Kim, T.

J. Kang, J. Kim, S. Kim, J. Song, O. Kyong, Y. Lee, C. Park, K. Kwon, W. Choi, S. Yun, I. Yeo, K. Han, T. Kim and S. Park, "10-bit Driver IC Using 3-bit DAC Embedded Operational Amplifier for Spatial Optical Modulator," IEEE J. Solid-state Circuits 42, 2913-2922 (2007).
[CrossRef]

Kwon, K.

J. Kang, J. Kim, S. Kim, J. Song, O. Kyong, Y. Lee, C. Park, K. Kwon, W. Choi, S. Yun, I. Yeo, K. Han, T. Kim and S. Park, "10-bit Driver IC Using 3-bit DAC Embedded Operational Amplifier for Spatial Optical Modulator," IEEE J. Solid-state Circuits 42, 2913-2922 (2007).
[CrossRef]

Kyong, O.

J. Kang, J. Kim, S. Kim, J. Song, O. Kyong, Y. Lee, C. Park, K. Kwon, W. Choi, S. Yun, I. Yeo, K. Han, T. Kim and S. Park, "10-bit Driver IC Using 3-bit DAC Embedded Operational Amplifier for Spatial Optical Modulator," IEEE J. Solid-state Circuits 42, 2913-2922 (2007).
[CrossRef]

Lee, H.

Q3. H. Lee and M. Yang, "Dwell time algorithm for computer-controlled polishing of small axis-symmetrical aspherical lens mold," Opt. Eng. 40, 1936-1943 (2001).
[CrossRef]

Lee, S.

Lee, Y.

J. Kang, J. Kim, S. Kim, J. Song, O. Kyong, Y. Lee, C. Park, K. Kwon, W. Choi, S. Yun, I. Yeo, K. Han, T. Kim and S. Park, "10-bit Driver IC Using 3-bit DAC Embedded Operational Amplifier for Spatial Optical Modulator," IEEE J. Solid-state Circuits 42, 2913-2922 (2007).
[CrossRef]

MacFarlane, D. L.

Mao, C.

Monteverde, R.

J. I. Trisnadi, C. B. Carlisle, and R. Monteverde, "Overview and applications of Grating Light ValveTM based optical write engines for high-speed digital imaging," Proc. SPIE 5348, 52-64 (2004).
[CrossRef]

Park, C.

J. Kang, J. Kim, S. Kim, J. Song, O. Kyong, Y. Lee, C. Park, K. Kwon, W. Choi, S. Yun, I. Yeo, K. Han, T. Kim and S. Park, "10-bit Driver IC Using 3-bit DAC Embedded Operational Amplifier for Spatial Optical Modulator," IEEE J. Solid-state Circuits 42, 2913-2922 (2007).
[CrossRef]

Park, S.

J. Kang, J. Kim, S. Kim, J. Song, O. Kyong, Y. Lee, C. Park, K. Kwon, W. Choi, S. Yun, I. Yeo, K. Han, T. Kim and S. Park, "10-bit Driver IC Using 3-bit DAC Embedded Operational Amplifier for Spatial Optical Modulator," IEEE J. Solid-state Circuits 42, 2913-2922 (2007).
[CrossRef]

Song, J.

J. Kang, J. Kim, S. Kim, J. Song, O. Kyong, Y. Lee, C. Park, K. Kwon, W. Choi, S. Yun, I. Yeo, K. Han, T. Kim and S. Park, "10-bit Driver IC Using 3-bit DAC Embedded Operational Amplifier for Spatial Optical Modulator," IEEE J. Solid-state Circuits 42, 2913-2922 (2007).
[CrossRef]

Sullivan, M.

Teipen, B. T.

Trisnadi, J. I.

J. I. Trisnadi, C. B. Carlisle, and R. Monteverde, "Overview and applications of Grating Light ValveTM based optical write engines for high-speed digital imaging," Proc. SPIE 5348, 52-64 (2004).
[CrossRef]

Yang, M.

Q3. H. Lee and M. Yang, "Dwell time algorithm for computer-controlled polishing of small axis-symmetrical aspherical lens mold," Opt. Eng. 40, 1936-1943 (2001).
[CrossRef]

Yeo, I.

J. Kang, J. Kim, S. Kim, J. Song, O. Kyong, Y. Lee, C. Park, K. Kwon, W. Choi, S. Yun, I. Yeo, K. Han, T. Kim and S. Park, "10-bit Driver IC Using 3-bit DAC Embedded Operational Amplifier for Spatial Optical Modulator," IEEE J. Solid-state Circuits 42, 2913-2922 (2007).
[CrossRef]

Young, M.

Yun, S.

J. Kang, J. Kim, S. Kim, J. Song, O. Kyong, Y. Lee, C. Park, K. Kwon, W. Choi, S. Yun, I. Yeo, K. Han, T. Kim and S. Park, "10-bit Driver IC Using 3-bit DAC Embedded Operational Amplifier for Spatial Optical Modulator," IEEE J. Solid-state Circuits 42, 2913-2922 (2007).
[CrossRef]

Appl. Opt. (3)

IEEE J. Solid-state Circuits (1)

J. Kang, J. Kim, S. Kim, J. Song, O. Kyong, Y. Lee, C. Park, K. Kwon, W. Choi, S. Yun, I. Yeo, K. Han, T. Kim and S. Park, "10-bit Driver IC Using 3-bit DAC Embedded Operational Amplifier for Spatial Optical Modulator," IEEE J. Solid-state Circuits 42, 2913-2922 (2007).
[CrossRef]

Opt. Eng. (2)

J. A. Hoffnagle and C. M. Jefferson, "Beam shaping with a plano-aspheric lens pair," Opt. Eng. 42, 3090-3099 (2003).
[CrossRef]

Q3. H. Lee and M. Yang, "Dwell time algorithm for computer-controlled polishing of small axis-symmetrical aspherical lens mold," Opt. Eng. 40, 1936-1943 (2001).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (1)

J. I. Trisnadi, C. B. Carlisle, and R. Monteverde, "Overview and applications of Grating Light ValveTM based optical write engines for high-speed digital imaging," Proc. SPIE 5348, 52-64 (2004).
[CrossRef]

Other (6)

S. K. Yun, J. Song, T.-W. Lee, I. Yeo, Y. Choi, Y. Lee, S. An, K. Han, Y. Victor, H.-W. Park, C. Park, H. Kim, J. Yang, J. Cheong, S. Ryu, K. Oh, H. Yang, Y. Hong, S. Hong, S. Yoon, J. Jang, J. Kyoung, O. Lim, C. Kim, A. Lapchuk, S. Ihar, S. Lee, S. Kim, Y. Hwang, K. Woo, S. Shin, J. Kang and D.-H. Park, "Spatial Optical Modulator (SOM): Samsung’s Light Modulator for the Next Generation Laser Display," IMID/IDMC '06 DIGEST (Proceeding of Society for Information Display - SID. August, 2006), 29-1, 551-555.</other>

M. W. Kowarz, J. C. Brazas and J. G. Phalen, "Conformal Grating Electromechanical system (GEMS) for High-Speed Digital Light Modulation," IEEE, 15th Int. MEMS Conf. Digest, 568-573 (2002).

L. A. Yoder, "An Introduction to the Digital Light Processing Technology," (Texas Instruments). http://dlp.com/tech/what.aspx.

R. W. Corrigan, D. T. Amm, P. A. Alioshin, B. Staker, D. A. LeHoty, K. P. Gross and B. R. Lang, "Calibration of a Scanned Linear Grating Light ValueTM Projection System," in SID 99 Digest (Society for Information Display, San Jose, Calif., 1999), 200-223 (1999).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 2005), Chap. 5.

J. Dijon and A. Fournier, "6" Colour FED Demonstrator with High Peak Brightness," in SID 2007, 1313-1316 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Detailed schematics of the optic and imaging device is described. (a) Optical Modulation Scheme. (b) Principal scheme of line-scanning optics. (c) SOM device structure. (d) SOM displacement shape.

Fig. 2.
Fig. 2.

Image simulation to see the influence of defects on display depending on the imaging device. (a) Original image, no defect. (b) Simulated point defects of two dimensional imaging device, with defect STD=2% and deviation limit <±4.5%. (c) Simulated line defects of a linear imaging device, with defect STD=2% and deviation limit <±4.5%. (d) Simulated line defects of a linear imaging device, with defect STD=1% and deviation limit <±2.5%.

Fig. 3.
Fig. 3.

Image defect sources from the SOM device and optical lens. (a) Defects in SOM device. (b) Defects in optical lens.

Fig. 4.
Fig. 4.

Optical scheme of initial black and white calibration: (a) Pixel actuation during calibration; (b) Projective optics schematic. Only beams passing through the aperture are projected on the screen and detected by a photodiode. c) Shift of the calibration curve due to crosstalk effect. Blue solid line is the true curve and the red and green dotted lines are the shifted curves. Each Vmin and Vmax is the voltage of the black and white intensity, respectively. Nribbon =2.

Fig. 5.
Fig. 5.

Dependence of gray scale shift of calibration pixel on the shift in positions of all other pixels due to optical crosstalk for two different NA of the Schlieren stop and for two different pixel structures: (a) SOM having 2 grating pairs in one pixel; (b) SOM having 1 grating pair in one pixel.

Fig. 6.
Fig. 6.

Description of calibration process. (a) Flow diagram of recursive converging calibration algorithm. (b) Example of pixel intensity response vs. input drive voltage. (c) Example of initial and final LUT when calibration is finished.

Fig. 7.
Fig. 7.

Schematic diagram of experiment setup

Fig. 8.
Fig. 8.

Vertical line intensity profile difference for 255 gray level (white color) input image before and after calibration. (a) Vertical line intensity profile before calibration. (b) Intensity histogram of (a), standard deviation of line defects=5.9%, the deviation of line defects=±17.9%. (c) Vertical line intensity profile after calibration. (d) Intensity histogram of (c), standard deviation of line defects=0.4%, the deviation of line defects=±1.3%.

Fig. 9.
Fig. 9.

Display image quality difference before and after the calibration, as captured by CCD Camera. (a) Display image before calibration. (b) Display image after calibration.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

In=cos2[2πsnλ]
E=E0exp(2jkh) from the top mirror ,
E=E0 exp [2jk(hsn)] from the bottom reflector
F=(α) n=1NpixelFn (sn)
=an=1Npixel2exp(jksn)cos(ksn+αT/4)sin(αT/4)sin(αNribbonT/2)αsin(αT/2)exp[jα(nNribbonTNpixelNribbonT/2)]
[cos(ksn)cos(αT/4)sin(ksn)sin(αT/4)]
F(α)=exp(jks0)sin(αT/4)sin(αNpixel*NribbonT/2)αsin(αT/2) [cos(ks0)*cos(αT/4)sin(ks0)*sin(αT/4)]
+exp(jks) sin(αT/4)sin(αNribbonT/2)asin(aT/2) [cos(ks)*cos(aT/4)sin(ks)*sin(aT/4)]
exp(jks0sin(aT/4)sin(aNribbonT/2)asin(aT/2)[cos(ks0)*cos(aT/4)sin(ks0)*sin(aT/4)])
F(α)=n=1Npixel/21Fn(s0)+FNpixel/2(s)+n=Npixel/2+1NpixelFn(s0)=n=1NpixelFn(s0)+FNpixel/2(s)FNpixel/2(s0)
I(s,s0)=a k*NAk*NAF(α)F*(α)dα
=a(I0cos2(ks0)+I1sin2(ks0)+I2cos2(ks)+2(I3I2)cos(ks0)cos(k(ss0)cos(ks)
+I4(sin2(ks)2sin(ks0)cos(k(ss0))sin(ks))
I2=k*NAk*NA(sin(αT4)sin(αNribbonT2)αsin(αT2)cos(αT4))2dα
I3=k*NAk*NA(sin(αT4)sin(αNpixel*NribT2)αsin(αT2))2cos2(αT4)dα
I4=k*NAk*NA(sin(αT4)sin(αNribbonT2)αsin(αT2)sin(αT4))2 d α
I (s,s0)=C0+C1cos2(ks+φ)
dds=I (s,s0) =2ak(I2cos(ks)sin(ks)(I3I2)cos(ks0)(sin(k(ss0))cos(ks)+cos(k(ss0))sin(ks))+.
+I4(sin(ks)cos(ks)sin(ks0)cos(ks)cos(k(ss0)+sin(ks0)sin(ks)sin(k(ss0)))=0

Metrics