Abstract

We present the application of THz plasmonics in imaging dielectric objects embedded in metal-filled media. By exploiting the time domain information from the transmitted pulse, signatures of the objects were observed. To enhance the low quality images acquired through THz time domain spectroscopy, a super-resolution image processing technique was applied. It is shown that pulse arrival time and phase magnitude information compared to the integrated instantaneous power of the transmitted pulse provides more detailed images of the embedded object.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20(16), 1716–1718 (1995).
    [CrossRef] [PubMed]
  2. K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11(20), 2549–2554 (2003).
    [CrossRef] [PubMed]
  3. Q. Song, Y. Zhao, A. Redo-Sanchez, C. Zhang, and X. Liu, “Fast continuous terahertz wave imaging system for security,” Opt. Commun. 282(10), 2019–2022 (2009).
    [CrossRef]
  4. A. G. Davies and ., “Terahertz spectroscopy of explosives and drugs,” Mater. Today 11(3), 18–26 (2008).
    [CrossRef]
  5. T. Rainsford, S. P. Mickan, and D. Abbott, “T-ray Sensing Applications: Review of Global Developments,” Proc. SPIE 5649, 826–838 (2005).
    [CrossRef]
  6. R. Bogue, “Terahertz imaging: a report on progress,” Sens. Rev. 29(1), 6–12 (2009).
    [CrossRef]
  7. H. Hoshina, A. Hayashi, N. Miyoshi, F. Miyamaru, and C. Otani, “Terahertz pulsed imaging of frozen biological tissues,” Appl. Phys. Lett. 94(12), 123901 (2009).
    [CrossRef]
  8. B. N. Behnken, G. Karunasiri, D. R. Chamberlin, P. R. Robrish, and J. Faist, “Real-time imaging using a 2.8 THz quantum cascade laser and uncooled infrared microbolometer camera,” Opt. Lett. 33(5), 440–442 (2008).
    [CrossRef] [PubMed]
  9. S. Wang and X. C. Zhang, “Pulsed terahertz tomography,” J. Phys. D Appl. Phys. 37(4), R1–R36 (2004).
    [CrossRef]
  10. W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
    [CrossRef]
  11. K. J. Chau and A. Y. Elezzabi, “Terahertz transmission through ensembles of subwavelength-size metallic particles,” Phys. Rev. B 72(7), 075110 (2005).
    [CrossRef]
  12. K. J. Chau, G. D. Dice, and A. Y. Elezzabi, “Coherent plasmonic enhanced terahertz transmission through random metallic media,” Phys. Rev. Lett. 94(17), 173904 (2005).
    [CrossRef] [PubMed]
  13. A. Y. Elezzabi, K. J. Chau, C. A. Baron, and P. Maraghechi, “A plasmonic random composite with atypical refractive index,” Opt. Express 17(2), 1016–1022 (2009).
    [CrossRef] [PubMed]
  14. A. Y. Elezzabi and S. Sederberg, “Optical activity in an artificial chiral media: a terahertz time-domain investigation of Karl F. Lindman’s 1920 pioneering experiment,” Opt. Express 17(8), 6600–6612 (2009).
    [CrossRef] [PubMed]
  15. H. Chang, D.-Y. Yeung, and Y. Xiong, “Super-resolution through neighbor embedding,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (Institute of Electrical and Electronics Engineers, Washington DC, 2004), pp. 275–282.
  16. R. C. Gonzalez, and R. E. Woods, Digital Image Processing Second Edition (Prentice Hall, Upper Saddle River, NJ, 2002).
  17. M. Irani and S. Peleg, “Motion analysis for image enhancement: resolution, occlusion and transparency,” J. Vis. Commun. Image Represent. 4(4), 324–335 (1993).
    [CrossRef]

2009 (5)

Q. Song, Y. Zhao, A. Redo-Sanchez, C. Zhang, and X. Liu, “Fast continuous terahertz wave imaging system for security,” Opt. Commun. 282(10), 2019–2022 (2009).
[CrossRef]

R. Bogue, “Terahertz imaging: a report on progress,” Sens. Rev. 29(1), 6–12 (2009).
[CrossRef]

H. Hoshina, A. Hayashi, N. Miyoshi, F. Miyamaru, and C. Otani, “Terahertz pulsed imaging of frozen biological tissues,” Appl. Phys. Lett. 94(12), 123901 (2009).
[CrossRef]

A. Y. Elezzabi, K. J. Chau, C. A. Baron, and P. Maraghechi, “A plasmonic random composite with atypical refractive index,” Opt. Express 17(2), 1016–1022 (2009).
[CrossRef] [PubMed]

A. Y. Elezzabi and S. Sederberg, “Optical activity in an artificial chiral media: a terahertz time-domain investigation of Karl F. Lindman’s 1920 pioneering experiment,” Opt. Express 17(8), 6600–6612 (2009).
[CrossRef] [PubMed]

2008 (2)

2007 (1)

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
[CrossRef]

2005 (3)

K. J. Chau and A. Y. Elezzabi, “Terahertz transmission through ensembles of subwavelength-size metallic particles,” Phys. Rev. B 72(7), 075110 (2005).
[CrossRef]

K. J. Chau, G. D. Dice, and A. Y. Elezzabi, “Coherent plasmonic enhanced terahertz transmission through random metallic media,” Phys. Rev. Lett. 94(17), 173904 (2005).
[CrossRef] [PubMed]

T. Rainsford, S. P. Mickan, and D. Abbott, “T-ray Sensing Applications: Review of Global Developments,” Proc. SPIE 5649, 826–838 (2005).
[CrossRef]

2004 (1)

S. Wang and X. C. Zhang, “Pulsed terahertz tomography,” J. Phys. D Appl. Phys. 37(4), R1–R36 (2004).
[CrossRef]

2003 (1)

1995 (1)

1993 (1)

M. Irani and S. Peleg, “Motion analysis for image enhancement: resolution, occlusion and transparency,” J. Vis. Commun. Image Represent. 4(4), 324–335 (1993).
[CrossRef]

Abbott, D.

T. Rainsford, S. P. Mickan, and D. Abbott, “T-ray Sensing Applications: Review of Global Developments,” Proc. SPIE 5649, 826–838 (2005).
[CrossRef]

Baron, C. A.

Behnken, B. N.

Bogue, R.

R. Bogue, “Terahertz imaging: a report on progress,” Sens. Rev. 29(1), 6–12 (2009).
[CrossRef]

Chamberlin, D. R.

Chan, W. L.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
[CrossRef]

Chau, K. J.

A. Y. Elezzabi, K. J. Chau, C. A. Baron, and P. Maraghechi, “A plasmonic random composite with atypical refractive index,” Opt. Express 17(2), 1016–1022 (2009).
[CrossRef] [PubMed]

K. J. Chau, G. D. Dice, and A. Y. Elezzabi, “Coherent plasmonic enhanced terahertz transmission through random metallic media,” Phys. Rev. Lett. 94(17), 173904 (2005).
[CrossRef] [PubMed]

K. J. Chau and A. Y. Elezzabi, “Terahertz transmission through ensembles of subwavelength-size metallic particles,” Phys. Rev. B 72(7), 075110 (2005).
[CrossRef]

Davies, A. G.

A. G. Davies and ., “Terahertz spectroscopy of explosives and drugs,” Mater. Today 11(3), 18–26 (2008).
[CrossRef]

Deibel, J.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
[CrossRef]

Dice, G. D.

K. J. Chau, G. D. Dice, and A. Y. Elezzabi, “Coherent plasmonic enhanced terahertz transmission through random metallic media,” Phys. Rev. Lett. 94(17), 173904 (2005).
[CrossRef] [PubMed]

Elezzabi, A. Y.

A. Y. Elezzabi, K. J. Chau, C. A. Baron, and P. Maraghechi, “A plasmonic random composite with atypical refractive index,” Opt. Express 17(2), 1016–1022 (2009).
[CrossRef] [PubMed]

A. Y. Elezzabi and S. Sederberg, “Optical activity in an artificial chiral media: a terahertz time-domain investigation of Karl F. Lindman’s 1920 pioneering experiment,” Opt. Express 17(8), 6600–6612 (2009).
[CrossRef] [PubMed]

K. J. Chau, G. D. Dice, and A. Y. Elezzabi, “Coherent plasmonic enhanced terahertz transmission through random metallic media,” Phys. Rev. Lett. 94(17), 173904 (2005).
[CrossRef] [PubMed]

K. J. Chau and A. Y. Elezzabi, “Terahertz transmission through ensembles of subwavelength-size metallic particles,” Phys. Rev. B 72(7), 075110 (2005).
[CrossRef]

Faist, J.

Hayashi, A.

H. Hoshina, A. Hayashi, N. Miyoshi, F. Miyamaru, and C. Otani, “Terahertz pulsed imaging of frozen biological tissues,” Appl. Phys. Lett. 94(12), 123901 (2009).
[CrossRef]

Hoshina, H.

H. Hoshina, A. Hayashi, N. Miyoshi, F. Miyamaru, and C. Otani, “Terahertz pulsed imaging of frozen biological tissues,” Appl. Phys. Lett. 94(12), 123901 (2009).
[CrossRef]

Hu, B. B.

Inoue, H.

Irani, M.

M. Irani and S. Peleg, “Motion analysis for image enhancement: resolution, occlusion and transparency,” J. Vis. Commun. Image Represent. 4(4), 324–335 (1993).
[CrossRef]

Karunasiri, G.

Kawase, K.

Liu, X.

Q. Song, Y. Zhao, A. Redo-Sanchez, C. Zhang, and X. Liu, “Fast continuous terahertz wave imaging system for security,” Opt. Commun. 282(10), 2019–2022 (2009).
[CrossRef]

Maraghechi, P.

Mickan, S. P.

T. Rainsford, S. P. Mickan, and D. Abbott, “T-ray Sensing Applications: Review of Global Developments,” Proc. SPIE 5649, 826–838 (2005).
[CrossRef]

Mittleman, D. M.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
[CrossRef]

Miyamaru, F.

H. Hoshina, A. Hayashi, N. Miyoshi, F. Miyamaru, and C. Otani, “Terahertz pulsed imaging of frozen biological tissues,” Appl. Phys. Lett. 94(12), 123901 (2009).
[CrossRef]

Miyoshi, N.

H. Hoshina, A. Hayashi, N. Miyoshi, F. Miyamaru, and C. Otani, “Terahertz pulsed imaging of frozen biological tissues,” Appl. Phys. Lett. 94(12), 123901 (2009).
[CrossRef]

Nuss, M. C.

Ogawa, Y.

Otani, C.

H. Hoshina, A. Hayashi, N. Miyoshi, F. Miyamaru, and C. Otani, “Terahertz pulsed imaging of frozen biological tissues,” Appl. Phys. Lett. 94(12), 123901 (2009).
[CrossRef]

Peleg, S.

M. Irani and S. Peleg, “Motion analysis for image enhancement: resolution, occlusion and transparency,” J. Vis. Commun. Image Represent. 4(4), 324–335 (1993).
[CrossRef]

Rainsford, T.

T. Rainsford, S. P. Mickan, and D. Abbott, “T-ray Sensing Applications: Review of Global Developments,” Proc. SPIE 5649, 826–838 (2005).
[CrossRef]

Redo-Sanchez, A.

Q. Song, Y. Zhao, A. Redo-Sanchez, C. Zhang, and X. Liu, “Fast continuous terahertz wave imaging system for security,” Opt. Commun. 282(10), 2019–2022 (2009).
[CrossRef]

Robrish, P. R.

Sederberg, S.

Song, Q.

Q. Song, Y. Zhao, A. Redo-Sanchez, C. Zhang, and X. Liu, “Fast continuous terahertz wave imaging system for security,” Opt. Commun. 282(10), 2019–2022 (2009).
[CrossRef]

Wang, S.

S. Wang and X. C. Zhang, “Pulsed terahertz tomography,” J. Phys. D Appl. Phys. 37(4), R1–R36 (2004).
[CrossRef]

Watanabe, Y.

Zhang, C.

Q. Song, Y. Zhao, A. Redo-Sanchez, C. Zhang, and X. Liu, “Fast continuous terahertz wave imaging system for security,” Opt. Commun. 282(10), 2019–2022 (2009).
[CrossRef]

Zhang, X. C.

S. Wang and X. C. Zhang, “Pulsed terahertz tomography,” J. Phys. D Appl. Phys. 37(4), R1–R36 (2004).
[CrossRef]

Zhao, Y.

Q. Song, Y. Zhao, A. Redo-Sanchez, C. Zhang, and X. Liu, “Fast continuous terahertz wave imaging system for security,” Opt. Commun. 282(10), 2019–2022 (2009).
[CrossRef]

Appl. Phys. Lett. (1)

H. Hoshina, A. Hayashi, N. Miyoshi, F. Miyamaru, and C. Otani, “Terahertz pulsed imaging of frozen biological tissues,” Appl. Phys. Lett. 94(12), 123901 (2009).
[CrossRef]

J. Phys. D Appl. Phys. (1)

S. Wang and X. C. Zhang, “Pulsed terahertz tomography,” J. Phys. D Appl. Phys. 37(4), R1–R36 (2004).
[CrossRef]

J. Vis. Commun. Image Represent. (1)

M. Irani and S. Peleg, “Motion analysis for image enhancement: resolution, occlusion and transparency,” J. Vis. Commun. Image Represent. 4(4), 324–335 (1993).
[CrossRef]

Mater. Today (1)

A. G. Davies and ., “Terahertz spectroscopy of explosives and drugs,” Mater. Today 11(3), 18–26 (2008).
[CrossRef]

Opt. Commun. (1)

Q. Song, Y. Zhao, A. Redo-Sanchez, C. Zhang, and X. Liu, “Fast continuous terahertz wave imaging system for security,” Opt. Commun. 282(10), 2019–2022 (2009).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. B (1)

K. J. Chau and A. Y. Elezzabi, “Terahertz transmission through ensembles of subwavelength-size metallic particles,” Phys. Rev. B 72(7), 075110 (2005).
[CrossRef]

Phys. Rev. Lett. (1)

K. J. Chau, G. D. Dice, and A. Y. Elezzabi, “Coherent plasmonic enhanced terahertz transmission through random metallic media,” Phys. Rev. Lett. 94(17), 173904 (2005).
[CrossRef] [PubMed]

Proc. SPIE (1)

T. Rainsford, S. P. Mickan, and D. Abbott, “T-ray Sensing Applications: Review of Global Developments,” Proc. SPIE 5649, 826–838 (2005).
[CrossRef]

Rep. Prog. Phys. (1)

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
[CrossRef]

Sens. Rev. (1)

R. Bogue, “Terahertz imaging: a report on progress,” Sens. Rev. 29(1), 6–12 (2009).
[CrossRef]

Other (2)

H. Chang, D.-Y. Yeung, and Y. Xiong, “Super-resolution through neighbor embedding,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (Institute of Electrical and Electronics Engineers, Washington DC, 2004), pp. 275–282.

R. C. Gonzalez, and R. E. Woods, Digital Image Processing Second Edition (Prentice Hall, Upper Saddle River, NJ, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Transmitted THz electric field through the metallic ensemble. (blue) free space time domain signal, (light blue) time domain signal through the Cu and (purple) time domain signal through Cu and Teflon.

Fig. 2
Fig. 2

(a,b) Pictures of the Teflon objects used in the experiment. (c) An illustration depicting the THz electric field (ETHz ) transmitted through the samples.

Fig. 3
Fig. 3

Acquired raw transmitted instantaneous power images of the embedded integrated over the duration of the pulse (a) 0.8 mm thick triangular-shaped object at a resolution of (16 × 13) pixels and (b) 1.1 mm thick polygon-shaped object at a resolution of (10 × 12) pixels. The dashed lines indicate the location of the embedded object.

Fig. 4
Fig. 4

The super-resolved images of those presented in Fig. 3. The high-resolution images are based on total transmitted instantaneous power with a 9-fold increase in spatial resolution for the original (a) (16 × 13) pixel triangular-shaped and (b) (10 × 12) pixel polygon-shaped Teflon objects. The dashed lines indicate the location of the embedded object.

Fig. 5
Fig. 5

Acquired raw 2D maps of the THz pulse arrival time of (a) 0.8 mm thick triangular-shaped object at a resolution of (16 × 13) pixels and (b) 1.1 mm thick polygon-shaped object at a resolution of (10 × 12) pixels. The dashed lines indicate the location of the embedded object.

Fig. 6
Fig. 6

Acquired raw 2D maps of the phase magnitude taken at 0.15 THz for the (a) 0.8 mm thick triangular-shaped object at a resolution of (16 × 13) pixels and (b) 1.1 mm thick polygon-shaped object at a resolution of (10 × 12) pixels.

Fig. 7
Fig. 7

The super-resolved images with a 9-fold increase in resolution for the acquired (a,c) pulse arrival time images and for (b,d) phase magnitude images. The dashed lines indicate the location of the embedded object.

Metrics