Abstract

We demonstrate that beam size manipulation plays an important role in dispersion compensation. With expanded beam, the maximal negative group delay dispersion (GDD) provided by angular elements increases by an order of magnitude compared with original beam. Both calculation and experimental results show that a modest 2 × and 4 × expanded beams can improve dispersion compensation capability of prisms or acousto-optical deflectors: the restored minimal pulse width decreases by 50% and the corresponding distance between angular elements is shortened more than 70 cm. These findings will be helpful for designing dispersion compensation schemes for femtosecond pulse laser application systems such as multiphoton microscopy or laser micromachining.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow, and T. Tschudi, “Semiconductor saturable-absorber mirror assisted Kerr-lens mode-locked Ti:sapphire laser producing pulses in the two-cycle regime,” Opt. Lett. 24(9), 631–633 (1999).
    [CrossRef]
  2. S. H. Cho, B. E. Bouma, E. P. Ippen, and J. G. Fujimoto, “Low-repetition-rate high-peak-power Kerr-lens mode-locked TiAl(2)O(3) laser with a multiple-pass cavity,” Opt. Lett. 24(6), 417–419 (1999).
    [CrossRef]
  3. J. C. Diels, and W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic, San Diego, Calif., 1996).
  4. M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793–2795 (1996).
    [CrossRef]
  5. I. Walmsley, L. Waxer, and C. Dorrer, “The role of dispersion in ultrafast optics,” Rev. Sci. Instrum. 72(1), 1–29 (2001).
    [CrossRef]
  6. B. K. A. Ngoi, K. Venkatakrishnan, L. E. Lim, B. Tan, and L. E. N. Lim, “Angular dispersion compensation for acousto-optic devices used for ultrashort-pulsed laser micromachining,” Opt. Express 9(4), 200–206 (2001).
    [CrossRef] [PubMed]
  7. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
    [CrossRef] [PubMed]
  8. W. Denk, D. W. Piston, and W. W. Webb, Handbook of Biological Confocal Microscopy, J. B. Pawley ed. (Plenum, New York, 1995).
  9. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21, 1369–1377 (2003).
    [CrossRef] [PubMed]
  10. W. Denk and K. Svoboda, “Photon upmanship: why multiphoton imaging is more than a gimmick,” Neuron 18(3), 351–357 (1997).
    [CrossRef] [PubMed]
  11. P. Saggau, “New methods and uses for fast optical scanning,” Curr. Opin. Neurobiol. 16(5), 543–550 (2006).
    [CrossRef] [PubMed]
  12. J. D. Lechleiter, D. T. Lin, and I. Sieneart, “Multi-photon laser scanning microscopy using an acoustic optical deflector,” Biophys. J. 83(4), 2292–2299 (2002).
    [CrossRef] [PubMed]
  13. V. Iyer, T. M. Hoogland, and P. Saggau, “Fast functional imaging of single neurons using random-access multiphoton (RAMP) microscopy,” J. Neurophysiol. 95(1), 535–545 (2005).
    [CrossRef] [PubMed]
  14. S. Zeng, X. Lv, C. Zhan, W. R. Chen, W. Xiong, S. L. Jacques, and Q. Luo, “Simultaneous compensation for spatial and temporal dispersion of acousto-optical deflectors for two-dimensional scanning with a single prism,” Opt. Lett. 31(8), 1091–1093 (2006).
    [CrossRef] [PubMed]
  15. X. Lv, C. Zhan, S. Zeng, W. R. Chen, and Q. Luo, “Construction of multiphoton laser scanning microscope based on dual-axis acousto-optic deflector,” Rev. Sci. Instrum. 77(4), 046101 (2006).
    [CrossRef]
  16. R. L. Fork, O. E. Martinez, and J. P. Gordon, “Negative dispersion using pairs of prisms,” Opt. Lett. 9(5), 150–152 (1984).
    [CrossRef] [PubMed]
  17. E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. QE-5(9), 454–458 (1969).
    [CrossRef]
  18. V. Iyer, B. E. Losavio, and P. Saggau, “Compensation of spatial and temporal dispersion for acousto-optic multiphoton laser-scanning microscopy,” J. Biomed. Opt. 8(3), 460–471 (2003).
    [CrossRef] [PubMed]
  19. M. Nakazawa, T. Nakashima, and H. Kubota, “Optical pulse compression using a TeO2 acousto-optical light deflector,” Opt. Lett. 13(2), 120–122 (1988).
    [CrossRef] [PubMed]
  20. Y. Kremer, J. F. Léger, R. Lapole, N. Honnorat, Y. Candela, S. Dieudonné, and L. Bourdieu, “A spatio-temporally compensated acousto-optic scanner for two-photon microscopy providing large field of view,” Opt. Express 16(14), 10066–10076 (2008).
    [CrossRef] [PubMed]
  21. S. Zeng, D. Li, X. Lv, J. Liu, and Q. Luo, “Pulse broadening of the femtosecond pulses in a Gaussian beam passing an angular disperser,” Opt. Lett. 32(9), 1180–1182 (2007).
    [CrossRef] [PubMed]
  22. D. Li, S. Zeng, X. Lv, J. Liu, R. Du, R. Jiang, W. R. Chen, and Q. Luo, “Dispersion characteristics of acousto-optic deflector for scanning Gaussian laser beam of femtosecond pulses,” Opt. Express 15(8), 4726–4734 (2007).
    [CrossRef] [PubMed]
  23. O. E. Martinez, “Grating and prism compressors in the case of finite beam size,” J. Opt. Soc. Am. B 3(7), 929–934 (1986).
    [CrossRef]
  24. K. Varjú, A. P. Kovács, K. Osvay, and G. Kurdi, “Angular dispersion of femtosecond pulses in a Gaussian beam,” Opt. Lett. 27(22), 2034–2036 (2002).
    [CrossRef]
  25. X. Gu, S. Akturk, and R. Trebino, “Spatial chirp in ultrafast optics,” Opt. Commun. 242(4-6), 599–604 (2004).
    [CrossRef]

2008 (1)

2007 (2)

2006 (3)

S. Zeng, X. Lv, C. Zhan, W. R. Chen, W. Xiong, S. L. Jacques, and Q. Luo, “Simultaneous compensation for spatial and temporal dispersion of acousto-optical deflectors for two-dimensional scanning with a single prism,” Opt. Lett. 31(8), 1091–1093 (2006).
[CrossRef] [PubMed]

P. Saggau, “New methods and uses for fast optical scanning,” Curr. Opin. Neurobiol. 16(5), 543–550 (2006).
[CrossRef] [PubMed]

X. Lv, C. Zhan, S. Zeng, W. R. Chen, and Q. Luo, “Construction of multiphoton laser scanning microscope based on dual-axis acousto-optic deflector,” Rev. Sci. Instrum. 77(4), 046101 (2006).
[CrossRef]

2005 (1)

V. Iyer, T. M. Hoogland, and P. Saggau, “Fast functional imaging of single neurons using random-access multiphoton (RAMP) microscopy,” J. Neurophysiol. 95(1), 535–545 (2005).
[CrossRef] [PubMed]

2004 (1)

X. Gu, S. Akturk, and R. Trebino, “Spatial chirp in ultrafast optics,” Opt. Commun. 242(4-6), 599–604 (2004).
[CrossRef]

2003 (2)

V. Iyer, B. E. Losavio, and P. Saggau, “Compensation of spatial and temporal dispersion for acousto-optic multiphoton laser-scanning microscopy,” J. Biomed. Opt. 8(3), 460–471 (2003).
[CrossRef] [PubMed]

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21, 1369–1377 (2003).
[CrossRef] [PubMed]

2002 (2)

J. D. Lechleiter, D. T. Lin, and I. Sieneart, “Multi-photon laser scanning microscopy using an acoustic optical deflector,” Biophys. J. 83(4), 2292–2299 (2002).
[CrossRef] [PubMed]

K. Varjú, A. P. Kovács, K. Osvay, and G. Kurdi, “Angular dispersion of femtosecond pulses in a Gaussian beam,” Opt. Lett. 27(22), 2034–2036 (2002).
[CrossRef]

2001 (2)

1999 (2)

1997 (1)

W. Denk and K. Svoboda, “Photon upmanship: why multiphoton imaging is more than a gimmick,” Neuron 18(3), 351–357 (1997).
[CrossRef] [PubMed]

1996 (1)

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793–2795 (1996).
[CrossRef]

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

1988 (1)

1986 (1)

1984 (1)

1969 (1)

E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. QE-5(9), 454–458 (1969).
[CrossRef]

Akturk, S.

X. Gu, S. Akturk, and R. Trebino, “Spatial chirp in ultrafast optics,” Opt. Commun. 242(4-6), 599–604 (2004).
[CrossRef]

Angelow, G.

Bouma, B. E.

Bourdieu, L.

Candela, Y.

Chen, W. R.

Cho, S. H.

De Silvestri, S.

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793–2795 (1996).
[CrossRef]

Denk, W.

W. Denk and K. Svoboda, “Photon upmanship: why multiphoton imaging is more than a gimmick,” Neuron 18(3), 351–357 (1997).
[CrossRef] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Dieudonné, S.

Dorrer, C.

I. Walmsley, L. Waxer, and C. Dorrer, “The role of dispersion in ultrafast optics,” Rev. Sci. Instrum. 72(1), 1–29 (2001).
[CrossRef]

Du, R.

Fork, R. L.

Fujimoto, J. G.

Gallmann, L.

Gordon, J. P.

Gu, X.

X. Gu, S. Akturk, and R. Trebino, “Spatial chirp in ultrafast optics,” Opt. Commun. 242(4-6), 599–604 (2004).
[CrossRef]

Honnorat, N.

Hoogland, T. M.

V. Iyer, T. M. Hoogland, and P. Saggau, “Fast functional imaging of single neurons using random-access multiphoton (RAMP) microscopy,” J. Neurophysiol. 95(1), 535–545 (2005).
[CrossRef] [PubMed]

Ippen, E. P.

Iyer, V.

V. Iyer, T. M. Hoogland, and P. Saggau, “Fast functional imaging of single neurons using random-access multiphoton (RAMP) microscopy,” J. Neurophysiol. 95(1), 535–545 (2005).
[CrossRef] [PubMed]

V. Iyer, B. E. Losavio, and P. Saggau, “Compensation of spatial and temporal dispersion for acousto-optic multiphoton laser-scanning microscopy,” J. Biomed. Opt. 8(3), 460–471 (2003).
[CrossRef] [PubMed]

Jacques, S. L.

Jiang, R.

Keller, U.

Kovács, A. P.

Kremer, Y.

Kubota, H.

Kurdi, G.

Lapole, R.

Lechleiter, J. D.

J. D. Lechleiter, D. T. Lin, and I. Sieneart, “Multi-photon laser scanning microscopy using an acoustic optical deflector,” Biophys. J. 83(4), 2292–2299 (2002).
[CrossRef] [PubMed]

Léger, J. F.

Li, D.

Lim, L. E.

Lim, L. E. N.

Lin, D. T.

J. D. Lechleiter, D. T. Lin, and I. Sieneart, “Multi-photon laser scanning microscopy using an acoustic optical deflector,” Biophys. J. 83(4), 2292–2299 (2002).
[CrossRef] [PubMed]

Liu, J.

Losavio, B. E.

V. Iyer, B. E. Losavio, and P. Saggau, “Compensation of spatial and temporal dispersion for acousto-optic multiphoton laser-scanning microscopy,” J. Biomed. Opt. 8(3), 460–471 (2003).
[CrossRef] [PubMed]

Luo, Q.

Lv, X.

Martinez, O. E.

Matuschek, N.

Morier-Genoud, F.

Nakashima, T.

Nakazawa, M.

Ngoi, B. K. A.

Nisoli, M.

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793–2795 (1996).
[CrossRef]

Osvay, K.

Saggau, P.

P. Saggau, “New methods and uses for fast optical scanning,” Curr. Opin. Neurobiol. 16(5), 543–550 (2006).
[CrossRef] [PubMed]

V. Iyer, T. M. Hoogland, and P. Saggau, “Fast functional imaging of single neurons using random-access multiphoton (RAMP) microscopy,” J. Neurophysiol. 95(1), 535–545 (2005).
[CrossRef] [PubMed]

V. Iyer, B. E. Losavio, and P. Saggau, “Compensation of spatial and temporal dispersion for acousto-optic multiphoton laser-scanning microscopy,” J. Biomed. Opt. 8(3), 460–471 (2003).
[CrossRef] [PubMed]

Scheuer, V.

Sieneart, I.

J. D. Lechleiter, D. T. Lin, and I. Sieneart, “Multi-photon laser scanning microscopy using an acoustic optical deflector,” Biophys. J. 83(4), 2292–2299 (2002).
[CrossRef] [PubMed]

Steinmeyer, G.

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Sutter, D. H.

Svelto, O.

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793–2795 (1996).
[CrossRef]

Svoboda, K.

W. Denk and K. Svoboda, “Photon upmanship: why multiphoton imaging is more than a gimmick,” Neuron 18(3), 351–357 (1997).
[CrossRef] [PubMed]

Tan, B.

Treacy, E. B.

E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. QE-5(9), 454–458 (1969).
[CrossRef]

Trebino, R.

X. Gu, S. Akturk, and R. Trebino, “Spatial chirp in ultrafast optics,” Opt. Commun. 242(4-6), 599–604 (2004).
[CrossRef]

Tschudi, T.

Varjú, K.

Venkatakrishnan, K.

Walmsley, I.

I. Walmsley, L. Waxer, and C. Dorrer, “The role of dispersion in ultrafast optics,” Rev. Sci. Instrum. 72(1), 1–29 (2001).
[CrossRef]

Waxer, L.

I. Walmsley, L. Waxer, and C. Dorrer, “The role of dispersion in ultrafast optics,” Rev. Sci. Instrum. 72(1), 1–29 (2001).
[CrossRef]

Webb, W. W.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21, 1369–1377 (2003).
[CrossRef] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Williams, R. M.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21, 1369–1377 (2003).
[CrossRef] [PubMed]

Xiong, W.

Zeng, S.

Zhan, C.

S. Zeng, X. Lv, C. Zhan, W. R. Chen, W. Xiong, S. L. Jacques, and Q. Luo, “Simultaneous compensation for spatial and temporal dispersion of acousto-optical deflectors for two-dimensional scanning with a single prism,” Opt. Lett. 31(8), 1091–1093 (2006).
[CrossRef] [PubMed]

X. Lv, C. Zhan, S. Zeng, W. R. Chen, and Q. Luo, “Construction of multiphoton laser scanning microscope based on dual-axis acousto-optic deflector,” Rev. Sci. Instrum. 77(4), 046101 (2006).
[CrossRef]

Zipfel, W. R.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21, 1369–1377 (2003).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793–2795 (1996).
[CrossRef]

Biophys. J. (1)

J. D. Lechleiter, D. T. Lin, and I. Sieneart, “Multi-photon laser scanning microscopy using an acoustic optical deflector,” Biophys. J. 83(4), 2292–2299 (2002).
[CrossRef] [PubMed]

Curr. Opin. Neurobiol. (1)

P. Saggau, “New methods and uses for fast optical scanning,” Curr. Opin. Neurobiol. 16(5), 543–550 (2006).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. QE-5(9), 454–458 (1969).
[CrossRef]

J. Biomed. Opt. (1)

V. Iyer, B. E. Losavio, and P. Saggau, “Compensation of spatial and temporal dispersion for acousto-optic multiphoton laser-scanning microscopy,” J. Biomed. Opt. 8(3), 460–471 (2003).
[CrossRef] [PubMed]

J. Neurophysiol. (1)

V. Iyer, T. M. Hoogland, and P. Saggau, “Fast functional imaging of single neurons using random-access multiphoton (RAMP) microscopy,” J. Neurophysiol. 95(1), 535–545 (2005).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

Nat. Biotechnol. (1)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21, 1369–1377 (2003).
[CrossRef] [PubMed]

Neuron (1)

W. Denk and K. Svoboda, “Photon upmanship: why multiphoton imaging is more than a gimmick,” Neuron 18(3), 351–357 (1997).
[CrossRef] [PubMed]

Opt. Commun. (1)

X. Gu, S. Akturk, and R. Trebino, “Spatial chirp in ultrafast optics,” Opt. Commun. 242(4-6), 599–604 (2004).
[CrossRef]

Opt. Express (3)

Opt. Lett. (7)

Rev. Sci. Instrum. (2)

I. Walmsley, L. Waxer, and C. Dorrer, “The role of dispersion in ultrafast optics,” Rev. Sci. Instrum. 72(1), 1–29 (2001).
[CrossRef]

X. Lv, C. Zhan, S. Zeng, W. R. Chen, and Q. Luo, “Construction of multiphoton laser scanning microscope based on dual-axis acousto-optic deflector,” Rev. Sci. Instrum. 77(4), 046101 (2006).
[CrossRef]

Science (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Other (2)

W. Denk, D. W. Piston, and W. W. Webb, Handbook of Biological Confocal Microscopy, J. B. Pawley ed. (Plenum, New York, 1995).

J. C. Diels, and W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic, San Diego, Calif., 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the prism pair with the configuration of the expanded beam for GDD compensation. The lenses F1 and F2, having the focal lengths of f 1 and f 2 respectively, constitute a beam expander with the magnification coefficient M = f 2 / f 1. L is the distance between BW1 and F1 .d is the distance between BW2 and the first prism. z is the inter-prism distance.

Fig. 2
Fig. 2

Enhancement of GDD as a function of z with different beam sizes. Enhancement of GDD is defined as the ratio of the GDDa after the beam expansion to the GDDa with the original beam size. The inset shows the actual GDDa with different beam sizes.

Fig. 3
Fig. 3

Measured and calculated pulse widths as a function of z when to compensate for the positive GDD introduced by the Tellurium oxide (TeO2) with different beam sizes.

Fig. 4
Fig. 4

Measured and calculated pulse widths as a function of the distance between the acousto-optic deflector pair with different beam sizes.

Fig. 5
Fig. 5

Compression ratio as a function of inter-prism distance with different U and GDDa parameters.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

w2=Mw11+(Lλπw12)2,
GDDa=kβ2z(d+α2z)d+(πw22/λ)2(d+α2z)2+(πw22/λ)2,

Metrics