Abstract

We present an optimal laser welding assembly sequence for butterfly laser packages: 1) initial shift, 2) front welding, 3) rear welding, 4) joint gripper releasing, 5) mechanical fine tuning of horizontal misalignment. This sequence has been optimized significantly by modeling the initial shift and experimental investigations of three assembly sequences. Our results show that misalignment from the Post-Weld-Shift (PWS) can be compensated by accurately estimating the initial shift in the vertical direction. Furthermore, the laser hammering procedure, to compensate for misalignment of the vertical direction, can be eliminated by proper package design. Using only final mechanical tuning for horizontal misalignments, optical coupling efficiencies of 73-99% have been achieved for lasers packaged in butterfly modules.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Jang, “Packaging of photonic devices using laser welding,” SPIE 2610, 138–149 (1996).
    [CrossRef]
  2. J. H. Song, H. N. J. Fernando, B. Roycroft, B. Corbett, and F. H. Peters, “Practical design of lensed fibers for semiconductor laser packaging using laser welding technique,” J. Lightwave Technol. 27(11), 1533–1539 (2009).
    [CrossRef]
  3. J. H. Song, B. Roycroft, B. Corbett, and F. H. Peters, Tyndall National Institute, Cork, Ireland, are preparing a manuscript to be called “Experimental investigation of laser welding assembling sequences for butterfly laser module packages.”
  4. K. S. Lee and F. S. Barnes, “Microlenses on the end of single-mode optical fibers for laser applications,” Appl. Opt. 24(19), 3134–3139 (1985).
    [CrossRef] [PubMed]
  5. Y.-C. Hsu, Y.-C. Tsai, J.-H. Kuang, M.-T. Sheen, P.-H. Hsu, and W.-H. Cheng, “A notch-saddle-compensation technique in butterfly-type laser module packages,” J. Lightwave Technol. 25(6), 1594–1601 (2007).
    [CrossRef]
  6. Y. Lin, W. Liu, and F. G. Shi, “Laser welding induced alignment distortion in butterfly laser module packages: effect of welding sequence,” IEEE Trans. Adv. Packag. 25(1), 73–78 (2002).
    [CrossRef]
  7. Y. Lin, C. Eichele, and F. G. Shi, “Effect of welding sequence on welding-induced-alignment-distortion in packaging of butterfly laser diode modules: simulation and experiment,” J. Lightwave Technol. 23(2), 615–623 (2005).
    [CrossRef]

2009 (1)

2007 (1)

2005 (1)

2002 (1)

Y. Lin, W. Liu, and F. G. Shi, “Laser welding induced alignment distortion in butterfly laser module packages: effect of welding sequence,” IEEE Trans. Adv. Packag. 25(1), 73–78 (2002).
[CrossRef]

1996 (1)

S. Jang, “Packaging of photonic devices using laser welding,” SPIE 2610, 138–149 (1996).
[CrossRef]

1985 (1)

Barnes, F. S.

Cheng, W.-H.

Corbett, B.

Eichele, C.

Fernando, H. N. J.

Hsu, P.-H.

Hsu, Y.-C.

Jang, S.

S. Jang, “Packaging of photonic devices using laser welding,” SPIE 2610, 138–149 (1996).
[CrossRef]

Kuang, J.-H.

Lee, K. S.

Lin, Y.

Y. Lin, C. Eichele, and F. G. Shi, “Effect of welding sequence on welding-induced-alignment-distortion in packaging of butterfly laser diode modules: simulation and experiment,” J. Lightwave Technol. 23(2), 615–623 (2005).
[CrossRef]

Y. Lin, W. Liu, and F. G. Shi, “Laser welding induced alignment distortion in butterfly laser module packages: effect of welding sequence,” IEEE Trans. Adv. Packag. 25(1), 73–78 (2002).
[CrossRef]

Liu, W.

Y. Lin, W. Liu, and F. G. Shi, “Laser welding induced alignment distortion in butterfly laser module packages: effect of welding sequence,” IEEE Trans. Adv. Packag. 25(1), 73–78 (2002).
[CrossRef]

Peters, F. H.

Roycroft, B.

Sheen, M.-T.

Shi, F. G.

Y. Lin, C. Eichele, and F. G. Shi, “Effect of welding sequence on welding-induced-alignment-distortion in packaging of butterfly laser diode modules: simulation and experiment,” J. Lightwave Technol. 23(2), 615–623 (2005).
[CrossRef]

Y. Lin, W. Liu, and F. G. Shi, “Laser welding induced alignment distortion in butterfly laser module packages: effect of welding sequence,” IEEE Trans. Adv. Packag. 25(1), 73–78 (2002).
[CrossRef]

Song, J. H.

Tsai, Y.-C.

Appl. Opt. (1)

IEEE Trans. Adv. Packag. (1)

Y. Lin, W. Liu, and F. G. Shi, “Laser welding induced alignment distortion in butterfly laser module packages: effect of welding sequence,” IEEE Trans. Adv. Packag. 25(1), 73–78 (2002).
[CrossRef]

J. Lightwave Technol. (3)

SPIE (1)

S. Jang, “Packaging of photonic devices using laser welding,” SPIE 2610, 138–149 (1996).
[CrossRef]

Other (1)

J. H. Song, B. Roycroft, B. Corbett, and F. H. Peters, Tyndall National Institute, Cork, Ireland, are preparing a manuscript to be called “Experimental investigation of laser welding assembling sequences for butterfly laser module packages.”

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Coupling efficiency vs. divergence angles using an 11-µm-radius lensed fiber.

Fig. 2
Fig. 2

Optimum longitudinal offset and lateral tolerance as a function of fiber lens radius.

Fig. 3
Fig. 3

Maximum coupling efficiency as a function of the radius of R with ~10° × 15° divergence angled laser (@ 1/e 2).

Fig. 4
Fig. 4

Experimental X, Y, and Z tolerances with simulated angular tolerance between 11-µm-radius lensed fiber and ~10° × 15° divergence angled laser (@ 1/e 2). Solid and dotted lines indicate X- and Y- directions, respectively.

Fig. 5
Fig. 5

Configuration of joining weld clip and metal ferrule.

Fig. 6
Fig. 6

Vertical misalignment vs. initial shift.

Fig. 7
Fig. 7

Structures of Type A and Type B used in the experiments.

Fig. 8
Fig. 8

Misalignment analysis after performing procedure #4. Blue dotted-lines and x-marks indicate the range of misalignments.

Fig. 9
Fig. 9

Micrograph of an assembled module. Inset shows well-aligned lensed fiber and laser using optimal assembly sequence S3.

Tables (5)

Tables Icon

Table 1 Sequences used in the experiments.

Tables Icon

Table 2 Summary of results for laser modules using S1.

Tables Icon

Table 3 Summary of results for laser modules using S2.

Tables Icon

Table 4 Summary of results for laser modules using S3.

Tables Icon

Table 5 Comparison of each procedure using S1, S2, and S3.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

ΔX=|Δxi+Δx+Ltan(Δθx)|
ΔY=|Δyi+Δyf_net+Δyr_net+Δyrelease|   .
Δyf_weld=Δyf_net+Δyrelease1
Δyf_net=Δyi_f+Lgrippertan(Δθy_gripper)
Δyr_weld=Δyr_net+Δyrelease2
Δyr_net=Δyi_r+Lpivottan(Δθy_pivot1)
Δyrelease=Δyrelease1+Δyrelease2Lpivottan(Δθy_pivot2)
Δyi=Δyi_f+Δyi_r
Δyinitial=ΔY

Metrics