Abstract

A large-mode area polarization maintaining single-mode ytterbium-doped fiber amplifier with distributed narrow passband filtering is demonstrated. The fiber passband is 40nm wide and centered at 1070nm for efficient filtering of both short- and long-wavelength amplified spontaneous emission as well as stimulated raman scattering and four-wave-mixing. The fiber shows reduced bend sensitivity, has a mode field diameter of 27μm and exhibits a slope efficiency of more than 65%.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. D. Brooks and F. Di Teodoro, “Multi-megawatt peak-power, single-transverse-mode operation of a 100 µm core diameter, Yb-doped rod-like photonic crystal fiber amplifier,” Appl. Phys. Lett. 89(11), 111119–111121 (2006).
    [CrossRef]
  2. J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, “Extended single-mode photonic crystal fiber lasers,” Opt. Express 14(7), 2715–2720 (2006).
    [CrossRef] [PubMed]
  3. L. Dong, H. A. McKay, L. Fu, M. Ohta, A. Marcinkevicius, S. Suzuki, and M. E. Fermann, “Ytterbium-doped all glass leakage channel fibers with highly fluorine-doped silica pump cladding,” Opt. Express 17(11), 8962–8969 (2009).
    [CrossRef] [PubMed]
  4. A. Galvanauskas, M. Y. Cheng, K. C. Hou, and K. H. Liao, “High peak power pulse amplification in large core Yb-doped fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 559–566 (2007).
    [CrossRef]
  5. J. P. Fève, “Phase-matching and mitigation of four-wave mixing in fibers with positive gain,” Opt. Express 15(2), 577–582 (2007).
    [CrossRef] [PubMed]
  6. J.-P. Fève, P. E. Schrader, R. L. Farrow, and D. A. V. Kliner, “Four-wave mixing in nanosecond pulsed fiber amplifiers,” Opt. Express 15(8), 4647–4662 (2007).
    [CrossRef] [PubMed]
  7. V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92(6), 061113 (2008), http://dx.doi.org/10.1063/1.2857464 .
    [CrossRef]
  8. A. Shirakawa, H. Maruyama, K. Ueda, C. B. Olausson, J. K. Lyngsø, and J. Broeng, “High-power Yb-doped photonic bandgap fiber amplifier at 1150-1200 nm,” Opt. Express 17(2), 447–454 (2009).
    [CrossRef] [PubMed]
  9. A. Cerqueira S, F. Luan, C. M. B. Cordeiro, A. K. George, and J. C. Knight, “Hybrid photonic crystal fiber,” Opt. Express 14(2), 926–931 (2006).
    [CrossRef] [PubMed]
  10. R. Goto, K. Takenaga, K. Okada, M. Kashiwagi, T. Kitabayashi, S. Tanigawa, K. Shima, S. Matsuo, and K. Himeno, “Cladding-Pumped Yb-Doped Solid Photonic Bandgap Fiber for ASE Suppression in ShorterWavelength Region,” in Proceedings of Conference on Optical Fiber communication/National Fiber Optic Engineers Conference (Optical Society of America, 2008), paper OTuJ5 (2008).
  11. R. Goto, S. D. Jackson, S. Fleming, B. T. Kuhlmey, B. J. Eggleton, and K. Himeno, “Birefringent all-solid hybrid microstructured fiber,” Opt. Express 16(23), 18752–18763 (2008).
    [CrossRef]
  12. J. Kim, P. Dupriez, C. Codemard, J. Nilsson, and J. K. Sahu, “Suppression of stimulated Raman scattering in a high power Yb-doped fiber amplifier using a W-type core with fundamental mode cut-off,” Opt. Express 14(12), 5103–5113 (2006).
    [CrossRef] [PubMed]
  13. N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express 11(10), 1243–1251 (2003).
    [CrossRef] [PubMed]
  14. K. Saitoh, Y. Tsuchida, M. Koshiba, and N. A. Mortensen, “Endlessly single-mode holey fibers: the influence of core design,” Opt. Express 13(26), 10833–10839 (2005).
    [CrossRef] [PubMed]
  15. T. A. Birks, F. Luan, G. J. Pearce, A. Wang, J. C. Knight, and D. M. Bird, “Bend loss in all-solid bandgap fibres,” Opt. Express 14(12), 5688–5698 (2006).
    [CrossRef] [PubMed]

2009

2008

R. Goto, S. D. Jackson, S. Fleming, B. T. Kuhlmey, B. J. Eggleton, and K. Himeno, “Birefringent all-solid hybrid microstructured fiber,” Opt. Express 16(23), 18752–18763 (2008).
[CrossRef]

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92(6), 061113 (2008), http://dx.doi.org/10.1063/1.2857464 .
[CrossRef]

2007

2006

2005

2003

Bigot, L.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92(6), 061113 (2008), http://dx.doi.org/10.1063/1.2857464 .
[CrossRef]

Bird, D. M.

Birks, T. A.

Bouwmans, G.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92(6), 061113 (2008), http://dx.doi.org/10.1063/1.2857464 .
[CrossRef]

Broeng, J.

Brooks, C. D.

C. D. Brooks and F. Di Teodoro, “Multi-megawatt peak-power, single-transverse-mode operation of a 100 µm core diameter, Yb-doped rod-like photonic crystal fiber amplifier,” Appl. Phys. Lett. 89(11), 111119–111121 (2006).
[CrossRef]

Cerqueira S, A.

Cheng, M. Y.

A. Galvanauskas, M. Y. Cheng, K. C. Hou, and K. H. Liao, “High peak power pulse amplification in large core Yb-doped fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 559–566 (2007).
[CrossRef]

Codemard, C.

Cordeiro, C. M. B.

de Sterke, C. M.

Di Teodoro, F.

C. D. Brooks and F. Di Teodoro, “Multi-megawatt peak-power, single-transverse-mode operation of a 100 µm core diameter, Yb-doped rod-like photonic crystal fiber amplifier,” Appl. Phys. Lett. 89(11), 111119–111121 (2006).
[CrossRef]

Dong, L.

Douay, M.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92(6), 061113 (2008), http://dx.doi.org/10.1063/1.2857464 .
[CrossRef]

Dunn, S. C.

Dupriez, P.

Eggleton, B. J.

Ermeneux, S.

Farrow, R. L.

Fermann, M. E.

Fève, J. P.

Fève, J.-P.

Fleming, S.

Fu, L.

Galvanauskas, A.

A. Galvanauskas, M. Y. Cheng, K. C. Hou, and K. H. Liao, “High peak power pulse amplification in large core Yb-doped fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 559–566 (2007).
[CrossRef]

George, A. K.

Goto, R.

Himeno, K.

Hou, K. C.

A. Galvanauskas, M. Y. Cheng, K. C. Hou, and K. H. Liao, “High peak power pulse amplification in large core Yb-doped fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 559–566 (2007).
[CrossRef]

Jackson, S. D.

Jaouen, Y.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92(6), 061113 (2008), http://dx.doi.org/10.1063/1.2857464 .
[CrossRef]

Kim, J.

Kliner, D. A. V.

Knight, J. C.

Koshiba, M.

Kuhlmey, B. T.

Liao, K. H.

A. Galvanauskas, M. Y. Cheng, K. C. Hou, and K. H. Liao, “High peak power pulse amplification in large core Yb-doped fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 559–566 (2007).
[CrossRef]

Limpert, J.

Litchinitser, N. M.

Luan, F.

Lyngsø, J. K.

Marcinkevicius, A.

Maruyama, H.

McKay, H. A.

McPhedran, R. C.

Mortensen, N. A.

Nilsson, J.

Ohta, M.

Olausson, C. B.

Pearce, G. J.

Pureur, V.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92(6), 061113 (2008), http://dx.doi.org/10.1063/1.2857464 .
[CrossRef]

Quiquempois, Y.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92(6), 061113 (2008), http://dx.doi.org/10.1063/1.2857464 .
[CrossRef]

Röser, F.

Rothhardt, J.

Sahu, J. K.

Saitoh, K.

Salin, F.

Schmidt, O.

Schrader, P. E.

Schreiber, T.

Shirakawa, A.

Suzuki, S.

Tsuchida, Y.

Tünnermann, A.

Ueda, K.

Usner, B.

Wang, A.

White, T. P.

Yvernault, P.

Appl. Phys. Lett.

C. D. Brooks and F. Di Teodoro, “Multi-megawatt peak-power, single-transverse-mode operation of a 100 µm core diameter, Yb-doped rod-like photonic crystal fiber amplifier,” Appl. Phys. Lett. 89(11), 111119–111121 (2006).
[CrossRef]

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92(6), 061113 (2008), http://dx.doi.org/10.1063/1.2857464 .
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

A. Galvanauskas, M. Y. Cheng, K. C. Hou, and K. H. Liao, “High peak power pulse amplification in large core Yb-doped fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 559–566 (2007).
[CrossRef]

Opt. Express

J. P. Fève, “Phase-matching and mitigation of four-wave mixing in fibers with positive gain,” Opt. Express 15(2), 577–582 (2007).
[CrossRef] [PubMed]

J.-P. Fève, P. E. Schrader, R. L. Farrow, and D. A. V. Kliner, “Four-wave mixing in nanosecond pulsed fiber amplifiers,” Opt. Express 15(8), 4647–4662 (2007).
[CrossRef] [PubMed]

J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, “Extended single-mode photonic crystal fiber lasers,” Opt. Express 14(7), 2715–2720 (2006).
[CrossRef] [PubMed]

L. Dong, H. A. McKay, L. Fu, M. Ohta, A. Marcinkevicius, S. Suzuki, and M. E. Fermann, “Ytterbium-doped all glass leakage channel fibers with highly fluorine-doped silica pump cladding,” Opt. Express 17(11), 8962–8969 (2009).
[CrossRef] [PubMed]

A. Shirakawa, H. Maruyama, K. Ueda, C. B. Olausson, J. K. Lyngsø, and J. Broeng, “High-power Yb-doped photonic bandgap fiber amplifier at 1150-1200 nm,” Opt. Express 17(2), 447–454 (2009).
[CrossRef] [PubMed]

A. Cerqueira S, F. Luan, C. M. B. Cordeiro, A. K. George, and J. C. Knight, “Hybrid photonic crystal fiber,” Opt. Express 14(2), 926–931 (2006).
[CrossRef] [PubMed]

R. Goto, S. D. Jackson, S. Fleming, B. T. Kuhlmey, B. J. Eggleton, and K. Himeno, “Birefringent all-solid hybrid microstructured fiber,” Opt. Express 16(23), 18752–18763 (2008).
[CrossRef]

J. Kim, P. Dupriez, C. Codemard, J. Nilsson, and J. K. Sahu, “Suppression of stimulated Raman scattering in a high power Yb-doped fiber amplifier using a W-type core with fundamental mode cut-off,” Opt. Express 14(12), 5103–5113 (2006).
[CrossRef] [PubMed]

N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express 11(10), 1243–1251 (2003).
[CrossRef] [PubMed]

K. Saitoh, Y. Tsuchida, M. Koshiba, and N. A. Mortensen, “Endlessly single-mode holey fibers: the influence of core design,” Opt. Express 13(26), 10833–10839 (2005).
[CrossRef] [PubMed]

T. A. Birks, F. Luan, G. J. Pearce, A. Wang, J. C. Knight, and D. M. Bird, “Bend loss in all-solid bandgap fibres,” Opt. Express 14(12), 5688–5698 (2006).
[CrossRef] [PubMed]

Other

R. Goto, K. Takenaga, K. Okada, M. Kashiwagi, T. Kitabayashi, S. Tanigawa, K. Shima, S. Matsuo, and K. Himeno, “Cladding-Pumped Yb-Doped Solid Photonic Bandgap Fiber for ASE Suppression in ShorterWavelength Region,” in Proceedings of Conference on Optical Fiber communication/National Fiber Optic Engineers Conference (Optical Society of America, 2008), paper OTuJ5 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1

Optical micrograph of the fabricated anti-symmetric P2 fiber. The ratio between the diameter of the right (smallest) and left (largest) row of germanium rods is 0.88. The pitch is 9.8μm and d/Λ~0.15.

Fig. 2
Fig. 2

Transmission spectrum for P1 (red) and P3 (green)

Fig. 3
Fig. 3

Transmission spectrum for P1 (red), P2 (blue) and P3 (green)

Fig. 4
Fig. 4

Near field image of the fundamental mode of P2 at 1064nm wavelength.

Fig. 5
Fig. 5

Simulated near fields of the core guided modes at wavelengths close to the short-wavelength passband edge (left) and close to the long-wavelength passband edge (right).

Fig. 6
Fig. 6

Simulated near fields of HOMs leaking out through the largest resonant structure near the short-wavelength edge of the passband

Fig. 7
Fig. 7

Near field images at 1064nm of a straight section of P3 fiber when the launch beam is adjusted in x and y direction. No HOMs could be excited.

Fig. 8
Fig. 8

Transmission spectrum (blue), polarization beat spectrum (red) and group birefringence (green) of the P2 fiber.

Fig. 9
Fig. 9

Transmission spectrum for the P2 fiber with parallel (red) and crossed (blue) polarizers.

Fig. 10
Fig. 10

Transmission spectra of the P2 fiber for various coil diameters when the fiber is oriented with the smallest resonant structure away from the coil center. Spectra measured with input polarization aligned parallel to the coil plane.

Fig. 12
Fig. 12

Transmission spectra of the P2 fiber for various coil diameters when the fiber is oriented with the resonant structure orthogonal to the bend plane. Spectra measured with input polarization aligned orthogonal to the coil plane.

Fig. 11
Fig. 11

Transmission spectra of the P2 fiber for various coil diameters when the fiber is oriented with the smallest resonant structure oriented towards the coil center. Spectra measured with input polarization aligned parallel to the coil plane.

Fig. 13
Fig. 13

Co-pump propagating ASE spectrum from the active A1 fiber

Fig. 14
Fig. 14

Output power vs. coupled pump power for CW operation.

Fig. 15
Fig. 15

Near field at 1064nm of the A1 fiber amplifier without any gain

Fig. 16
Fig. 16

Input and amplified output spectrum of the 5ns, 50kHz pulsed signal.

Fig. 17
Fig. 17

Signal output power vs. coupled pump power for 5ns, 50kHz Gaussian pulses.

Fig. 18
Fig. 18

Input pulse (left) and the output pulse (right) at 8W output power.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λc=2dNAm+1/2

Metrics