Abstract

We demonstrated two-section reflective semiconductor optical amplifier (RSOA) with dramatic improvement of small-signal modulation bandwidth above 10 GHz as colorless source for wavelength division multiplexed-passive optical network (WDM-PON). The device provides the fiber-to-fiber gain of 22.8 dB, 3-dB amplified spontaneous emission (ASE) bandwidth of 30 nm, and ripple of 1.5 dB. Good performance at 2.5 Gbps was obtained with an extinction ratio of 8 dB and a power penalty of 2 dB at a 10−9 bit error rate (BER) up to 20 km transmission.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Park, Y. Choi, J. Oh, S. Koo, and D. Lee, “An Evolution scenario of a broadband access network using R-SOA-based WDM-PON technologies,” J. Lightwave Technol. 25(11), 3479–3487 (2007).
    [CrossRef]
  2. J. S. Lee, Y. C. Chung, and D. J. DiGiovanni, “Spectrum-sliced fiber amplifier light source for multichannel WDM application,” IEEE Photon. Technol. Lett. 5(12), 1458–1461 (2006).
    [CrossRef]
  3. X. Cheng, Y. J. Wen, Y. Dong, Z. Xu, X. Shao, Y. Wang, and C. Lu, “Optimization of spectrum-sliced ASE source for injection-locking a Fabry-Perot laser diode,” IEEE Photon. Technol. Lett. 18(18), 1961–1963 (2006).
    [CrossRef]
  4. W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
    [CrossRef]
  5. S. Park, G. Kim, and T. Park, “WDM-PON system based on the laser light injected reflective semiconductor optical amplifier,” Opt. Fiber Technol. 12(2), 162–169 (2006).
    [CrossRef]
  6. S. C. Lin, S. L. Lee, and C. K. Liu, “Simple approach for bidirectional performance enhancement on WDM-PONs with directmodulation lasers and RSOAs,” Opt. Express 16(6), 3636–3643 (2008).
    [CrossRef] [PubMed]
  7. C. H. Yeh, C. W. Chow, C. H. Wang, F. Y. Shih, H. C. Chien, and S. Chi, “A self-protected colorless WDM-PONs with 2.5 Gb/s upstream signal based on RSOA,” Opt. Express 16(16), 12296–12301 (2008).
    [CrossRef] [PubMed]
  8. M. Omella, I. Papagiannakis, B. Schrenk, D. Klonidis, J. A. Lázaro, A. N. Birbas, J. Kikidis, J. Prat, and I. Tomkos, “10 Gb/s full-duplex bidirectional transmission with RSOA-based ONU using detuned optical filtering and decision feedback equalization,” Opt. Express 17(7), 5008–5013 (2009).
    [CrossRef] [PubMed]
  9. N. Storkfelt, B. Mikkelsen, D. S. Olesen, M. Yamaguchi, and K. E. Stubkjaer, “Measurement of carrier lifetime and linewidth enhancement factor for 1.5-μm ridge-waveguide laser amplifier,” IEEE Photon. Technol. Lett. 3(7), 632–634 (1991).
    [CrossRef]
  10. K. Sato and H. Toba, “Reduction of mode partition noise by using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 7(2), 328–333 (2001).
    [CrossRef]
  11. F. Koyama, T. Yamatoya, and K. Iga, “Highly Gain-saturated GaInAsP/InP SOA modulator for incoherent spectrum-sliced light source,” in Indium Phosphide and Related Materials (IPRM), (2000), 439–442.
  12. J. Kang, Y. Won, S. Lee, and S. Han, “Modulation characteristics of RSOA in hybrid WDM/SCM-PON optical link,” in Optical Fiber Communications Conference (OFC), (2006), Paper JThB6.

2009 (1)

2008 (2)

2007 (1)

2006 (3)

J. S. Lee, Y. C. Chung, and D. J. DiGiovanni, “Spectrum-sliced fiber amplifier light source for multichannel WDM application,” IEEE Photon. Technol. Lett. 5(12), 1458–1461 (2006).
[CrossRef]

X. Cheng, Y. J. Wen, Y. Dong, Z. Xu, X. Shao, Y. Wang, and C. Lu, “Optimization of spectrum-sliced ASE source for injection-locking a Fabry-Perot laser diode,” IEEE Photon. Technol. Lett. 18(18), 1961–1963 (2006).
[CrossRef]

S. Park, G. Kim, and T. Park, “WDM-PON system based on the laser light injected reflective semiconductor optical amplifier,” Opt. Fiber Technol. 12(2), 162–169 (2006).
[CrossRef]

2005 (1)

W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[CrossRef]

2001 (1)

K. Sato and H. Toba, “Reduction of mode partition noise by using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 7(2), 328–333 (2001).
[CrossRef]

1991 (1)

N. Storkfelt, B. Mikkelsen, D. S. Olesen, M. Yamaguchi, and K. E. Stubkjaer, “Measurement of carrier lifetime and linewidth enhancement factor for 1.5-μm ridge-waveguide laser amplifier,” IEEE Photon. Technol. Lett. 3(7), 632–634 (1991).
[CrossRef]

Birbas, A. N.

Cheng, X.

X. Cheng, Y. J. Wen, Y. Dong, Z. Xu, X. Shao, Y. Wang, and C. Lu, “Optimization of spectrum-sliced ASE source for injection-locking a Fabry-Perot laser diode,” IEEE Photon. Technol. Lett. 18(18), 1961–1963 (2006).
[CrossRef]

Chi, S.

Chien, H. C.

Cho, S. H.

W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[CrossRef]

Choi, Y.

Chow, C. W.

Chung, Y. C.

J. S. Lee, Y. C. Chung, and D. J. DiGiovanni, “Spectrum-sliced fiber amplifier light source for multichannel WDM application,” IEEE Photon. Technol. Lett. 5(12), 1458–1461 (2006).
[CrossRef]

DiGiovanni, D. J.

J. S. Lee, Y. C. Chung, and D. J. DiGiovanni, “Spectrum-sliced fiber amplifier light source for multichannel WDM application,” IEEE Photon. Technol. Lett. 5(12), 1458–1461 (2006).
[CrossRef]

Dong, Y.

X. Cheng, Y. J. Wen, Y. Dong, Z. Xu, X. Shao, Y. Wang, and C. Lu, “Optimization of spectrum-sliced ASE source for injection-locking a Fabry-Perot laser diode,” IEEE Photon. Technol. Lett. 18(18), 1961–1963 (2006).
[CrossRef]

Jeong, G.

W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[CrossRef]

Kikidis, J.

Kim, B. W.

W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[CrossRef]

Kim, C.

W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[CrossRef]

Kim, G.

S. Park, G. Kim, and T. Park, “WDM-PON system based on the laser light injected reflective semiconductor optical amplifier,” Opt. Fiber Technol. 12(2), 162–169 (2006).
[CrossRef]

Klonidis, D.

Koo, S.

Lázaro, J. A.

Lee, D.

Lee, J.

W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[CrossRef]

Lee, J. S.

J. S. Lee, Y. C. Chung, and D. J. DiGiovanni, “Spectrum-sliced fiber amplifier light source for multichannel WDM application,” IEEE Photon. Technol. Lett. 5(12), 1458–1461 (2006).
[CrossRef]

Lee, S. L.

Lee, W.

W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[CrossRef]

Lin, S. C.

Liu, C. K.

Lu, C.

X. Cheng, Y. J. Wen, Y. Dong, Z. Xu, X. Shao, Y. Wang, and C. Lu, “Optimization of spectrum-sliced ASE source for injection-locking a Fabry-Perot laser diode,” IEEE Photon. Technol. Lett. 18(18), 1961–1963 (2006).
[CrossRef]

Mikkelsen, B.

N. Storkfelt, B. Mikkelsen, D. S. Olesen, M. Yamaguchi, and K. E. Stubkjaer, “Measurement of carrier lifetime and linewidth enhancement factor for 1.5-μm ridge-waveguide laser amplifier,” IEEE Photon. Technol. Lett. 3(7), 632–634 (1991).
[CrossRef]

Oh, J.

Olesen, D. S.

N. Storkfelt, B. Mikkelsen, D. S. Olesen, M. Yamaguchi, and K. E. Stubkjaer, “Measurement of carrier lifetime and linewidth enhancement factor for 1.5-μm ridge-waveguide laser amplifier,” IEEE Photon. Technol. Lett. 3(7), 632–634 (1991).
[CrossRef]

Omella, M.

Papagiannakis, I.

Park, M. Y.

W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[CrossRef]

Park, S.

S. Park, Y. Choi, J. Oh, S. Koo, and D. Lee, “An Evolution scenario of a broadband access network using R-SOA-based WDM-PON technologies,” J. Lightwave Technol. 25(11), 3479–3487 (2007).
[CrossRef]

S. Park, G. Kim, and T. Park, “WDM-PON system based on the laser light injected reflective semiconductor optical amplifier,” Opt. Fiber Technol. 12(2), 162–169 (2006).
[CrossRef]

Park, T.

S. Park, G. Kim, and T. Park, “WDM-PON system based on the laser light injected reflective semiconductor optical amplifier,” Opt. Fiber Technol. 12(2), 162–169 (2006).
[CrossRef]

Prat, J.

Sato, K.

K. Sato and H. Toba, “Reduction of mode partition noise by using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 7(2), 328–333 (2001).
[CrossRef]

Schrenk, B.

Shao, X.

X. Cheng, Y. J. Wen, Y. Dong, Z. Xu, X. Shao, Y. Wang, and C. Lu, “Optimization of spectrum-sliced ASE source for injection-locking a Fabry-Perot laser diode,” IEEE Photon. Technol. Lett. 18(18), 1961–1963 (2006).
[CrossRef]

Shih, F. Y.

Storkfelt, N.

N. Storkfelt, B. Mikkelsen, D. S. Olesen, M. Yamaguchi, and K. E. Stubkjaer, “Measurement of carrier lifetime and linewidth enhancement factor for 1.5-μm ridge-waveguide laser amplifier,” IEEE Photon. Technol. Lett. 3(7), 632–634 (1991).
[CrossRef]

Stubkjaer, K. E.

N. Storkfelt, B. Mikkelsen, D. S. Olesen, M. Yamaguchi, and K. E. Stubkjaer, “Measurement of carrier lifetime and linewidth enhancement factor for 1.5-μm ridge-waveguide laser amplifier,” IEEE Photon. Technol. Lett. 3(7), 632–634 (1991).
[CrossRef]

Toba, H.

K. Sato and H. Toba, “Reduction of mode partition noise by using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 7(2), 328–333 (2001).
[CrossRef]

Tomkos, I.

Wang, C. H.

Wang, Y.

X. Cheng, Y. J. Wen, Y. Dong, Z. Xu, X. Shao, Y. Wang, and C. Lu, “Optimization of spectrum-sliced ASE source for injection-locking a Fabry-Perot laser diode,” IEEE Photon. Technol. Lett. 18(18), 1961–1963 (2006).
[CrossRef]

Wen, Y. J.

X. Cheng, Y. J. Wen, Y. Dong, Z. Xu, X. Shao, Y. Wang, and C. Lu, “Optimization of spectrum-sliced ASE source for injection-locking a Fabry-Perot laser diode,” IEEE Photon. Technol. Lett. 18(18), 1961–1963 (2006).
[CrossRef]

Xu, Z.

X. Cheng, Y. J. Wen, Y. Dong, Z. Xu, X. Shao, Y. Wang, and C. Lu, “Optimization of spectrum-sliced ASE source for injection-locking a Fabry-Perot laser diode,” IEEE Photon. Technol. Lett. 18(18), 1961–1963 (2006).
[CrossRef]

Yamaguchi, M.

N. Storkfelt, B. Mikkelsen, D. S. Olesen, M. Yamaguchi, and K. E. Stubkjaer, “Measurement of carrier lifetime and linewidth enhancement factor for 1.5-μm ridge-waveguide laser amplifier,” IEEE Photon. Technol. Lett. 3(7), 632–634 (1991).
[CrossRef]

Yeh, C. H.

IEEE J. Sel. Top. Quantum Electron. (1)

K. Sato and H. Toba, “Reduction of mode partition noise by using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 7(2), 328–333 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

J. S. Lee, Y. C. Chung, and D. J. DiGiovanni, “Spectrum-sliced fiber amplifier light source for multichannel WDM application,” IEEE Photon. Technol. Lett. 5(12), 1458–1461 (2006).
[CrossRef]

X. Cheng, Y. J. Wen, Y. Dong, Z. Xu, X. Shao, Y. Wang, and C. Lu, “Optimization of spectrum-sliced ASE source for injection-locking a Fabry-Perot laser diode,” IEEE Photon. Technol. Lett. 18(18), 1961–1963 (2006).
[CrossRef]

W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[CrossRef]

N. Storkfelt, B. Mikkelsen, D. S. Olesen, M. Yamaguchi, and K. E. Stubkjaer, “Measurement of carrier lifetime and linewidth enhancement factor for 1.5-μm ridge-waveguide laser amplifier,” IEEE Photon. Technol. Lett. 3(7), 632–634 (1991).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (3)

Opt. Fiber Technol. (1)

S. Park, G. Kim, and T. Park, “WDM-PON system based on the laser light injected reflective semiconductor optical amplifier,” Opt. Fiber Technol. 12(2), 162–169 (2006).
[CrossRef]

Other (2)

F. Koyama, T. Yamatoya, and K. Iga, “Highly Gain-saturated GaInAsP/InP SOA modulator for incoherent spectrum-sliced light source,” in Indium Phosphide and Related Materials (IPRM), (2000), 439–442.

J. Kang, Y. Won, S. Lee, and S. Han, “Modulation characteristics of RSOA in hybrid WDM/SCM-PON optical link,” in Optical Fiber Communications Conference (OFC), (2006), Paper JThB6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Photograph of a fabricated 2S-RSOA chip.

Fig. 2
Fig. 2

Amplified spontaneous emission (ASE) spectrum of 2S-RSOA. The inset shows magnified view of ASE at central wavelength. The injection currents were applied at 30 mA of SOA1 and 50 mA of SOA2.

Fig. 3
Fig. 3

Far-field pattern of two-section RSOA

Fig. 4
Fig. 4

Fiber-to-fiber gain curves of 2S-RSOA as a function of SOA injection current. The solid and open symbols indicate TE and TM gain, respectively. The wavelength and power of input beam were 1550 nm and −20 dBm, respectively.

Fig. 5
Fig. 5

Small-signal electro/optical (E/O) response of 2S-RSOA and 400 μm long 1S-RSOA. The SOA1 of 2S-RSOA was injected with only DC-bias. And the SOA2 of 2S-RSOA was injected simultaneously with DC-bias and small-signal modulation bias. The 400 μm long 1S-RSOA was injected simultaneously with a fixed current of 50 mA and small-signal modulated bias; (a) small-signal E/O response curves as a function of SOA1 current. The SOA2 was injected simultaneously with a fixed current of 50 mA and small-signal modulation. The input power was fixed at −10 dBm (b) small-signal E/O response curves as a function of SOA2. The only DC-biased SOA1 current of 2S-RSOA was fixed at 30 mA. The input power was fixed at −20 dBm.

Fig. 6
Fig. 6

2.5 Gbps bit error rate (BER) measurement setup of 2S-RSOA.

Fig. 7
Fig. 7

Eye pattern of back-to-back (a) and BER curves at 2.5 Gbps up to 20 km transmission (b).

Metrics