Abstract

We demonstrated two-section reflective semiconductor optical amplifier (RSOA) with dramatic improvement of small-signal modulation bandwidth above 10 GHz as colorless source for wavelength division multiplexed-passive optical network (WDM-PON). The device provides the fiber-to-fiber gain of 22.8 dB, 3-dB amplified spontaneous emission (ASE) bandwidth of 30 nm, and ripple of 1.5 dB. Good performance at 2.5 Gbps was obtained with an extinction ratio of 8 dB and a power penalty of 2 dB at a 10−9 bit error rate (BER) up to 20 km transmission.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Park, Y. Choi, J. Oh, S. Koo, and D. Lee, “An Evolution scenario of a broadband access network using R-SOA-based WDM-PON technologies,” J. Lightwave Technol. 25(11), 3479–3487 (2007).
    [CrossRef]
  2. J. S. Lee, Y. C. Chung, and D. J. DiGiovanni, “Spectrum-sliced fiber amplifier light source for multichannel WDM application,” IEEE Photon. Technol. Lett. 5(12), 1458–1461 (2006).
    [CrossRef]
  3. X. Cheng, Y. J. Wen, Y. Dong, Z. Xu, X. Shao, Y. Wang, and C. Lu, “Optimization of spectrum-sliced ASE source for injection-locking a Fabry-Perot laser diode,” IEEE Photon. Technol. Lett. 18(18), 1961–1963 (2006).
    [CrossRef]
  4. W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
    [CrossRef]
  5. S. Park, G. Kim, and T. Park, “WDM-PON system based on the laser light injected reflective semiconductor optical amplifier,” Opt. Fiber Technol. 12(2), 162–169 (2006).
    [CrossRef]
  6. S. C. Lin, S. L. Lee, and C. K. Liu, “Simple approach for bidirectional performance enhancement on WDM-PONs with directmodulation lasers and RSOAs,” Opt. Express 16(6), 3636–3643 (2008).
    [CrossRef] [PubMed]
  7. C. H. Yeh, C. W. Chow, C. H. Wang, F. Y. Shih, H. C. Chien, and S. Chi, “A self-protected colorless WDM-PONs with 2.5 Gb/s upstream signal based on RSOA,” Opt. Express 16(16), 12296–12301 (2008).
    [CrossRef] [PubMed]
  8. M. Omella, I. Papagiannakis, B. Schrenk, D. Klonidis, J. A. Lázaro, A. N. Birbas, J. Kikidis, J. Prat, and I. Tomkos, “10 Gb/s full-duplex bidirectional transmission with RSOA-based ONU using detuned optical filtering and decision feedback equalization,” Opt. Express 17(7), 5008–5013 (2009).
    [CrossRef] [PubMed]
  9. N. Storkfelt, B. Mikkelsen, D. S. Olesen, M. Yamaguchi, and K. E. Stubkjaer, “Measurement of carrier lifetime and linewidth enhancement factor for 1.5-μm ridge-waveguide laser amplifier,” IEEE Photon. Technol. Lett. 3(7), 632–634 (1991).
    [CrossRef]
  10. K. Sato and H. Toba, “Reduction of mode partition noise by using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 7(2), 328–333 (2001).
    [CrossRef]
  11. F. Koyama, T. Yamatoya, and K. Iga, “Highly Gain-saturated GaInAsP/InP SOA modulator for incoherent spectrum-sliced light source,” in Indium Phosphide and Related Materials (IPRM), (2000), 439–442.
  12. J. Kang, Y. Won, S. Lee, and S. Han, “Modulation characteristics of RSOA in hybrid WDM/SCM-PON optical link,” in Optical Fiber Communications Conference (OFC), (2006), Paper JThB6.

2009

2008

2007

2006

J. S. Lee, Y. C. Chung, and D. J. DiGiovanni, “Spectrum-sliced fiber amplifier light source for multichannel WDM application,” IEEE Photon. Technol. Lett. 5(12), 1458–1461 (2006).
[CrossRef]

X. Cheng, Y. J. Wen, Y. Dong, Z. Xu, X. Shao, Y. Wang, and C. Lu, “Optimization of spectrum-sliced ASE source for injection-locking a Fabry-Perot laser diode,” IEEE Photon. Technol. Lett. 18(18), 1961–1963 (2006).
[CrossRef]

S. Park, G. Kim, and T. Park, “WDM-PON system based on the laser light injected reflective semiconductor optical amplifier,” Opt. Fiber Technol. 12(2), 162–169 (2006).
[CrossRef]

2005

W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[CrossRef]

2001

K. Sato and H. Toba, “Reduction of mode partition noise by using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 7(2), 328–333 (2001).
[CrossRef]

1991

N. Storkfelt, B. Mikkelsen, D. S. Olesen, M. Yamaguchi, and K. E. Stubkjaer, “Measurement of carrier lifetime and linewidth enhancement factor for 1.5-μm ridge-waveguide laser amplifier,” IEEE Photon. Technol. Lett. 3(7), 632–634 (1991).
[CrossRef]

Birbas, A. N.

Cheng, X.

X. Cheng, Y. J. Wen, Y. Dong, Z. Xu, X. Shao, Y. Wang, and C. Lu, “Optimization of spectrum-sliced ASE source for injection-locking a Fabry-Perot laser diode,” IEEE Photon. Technol. Lett. 18(18), 1961–1963 (2006).
[CrossRef]

Chi, S.

Chien, H. C.

Cho, S. H.

W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[CrossRef]

Choi, Y.

Chow, C. W.

Chung, Y. C.

J. S. Lee, Y. C. Chung, and D. J. DiGiovanni, “Spectrum-sliced fiber amplifier light source for multichannel WDM application,” IEEE Photon. Technol. Lett. 5(12), 1458–1461 (2006).
[CrossRef]

DiGiovanni, D. J.

J. S. Lee, Y. C. Chung, and D. J. DiGiovanni, “Spectrum-sliced fiber amplifier light source for multichannel WDM application,” IEEE Photon. Technol. Lett. 5(12), 1458–1461 (2006).
[CrossRef]

Dong, Y.

X. Cheng, Y. J. Wen, Y. Dong, Z. Xu, X. Shao, Y. Wang, and C. Lu, “Optimization of spectrum-sliced ASE source for injection-locking a Fabry-Perot laser diode,” IEEE Photon. Technol. Lett. 18(18), 1961–1963 (2006).
[CrossRef]

Jeong, G.

W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[CrossRef]

Kikidis, J.

Kim, B. W.

W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[CrossRef]

Kim, C.

W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[CrossRef]

Kim, G.

S. Park, G. Kim, and T. Park, “WDM-PON system based on the laser light injected reflective semiconductor optical amplifier,” Opt. Fiber Technol. 12(2), 162–169 (2006).
[CrossRef]

Klonidis, D.

Koo, S.

Lázaro, J. A.

Lee, D.

Lee, J.

W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[CrossRef]

Lee, J. S.

J. S. Lee, Y. C. Chung, and D. J. DiGiovanni, “Spectrum-sliced fiber amplifier light source for multichannel WDM application,” IEEE Photon. Technol. Lett. 5(12), 1458–1461 (2006).
[CrossRef]

Lee, S. L.

Lee, W.

W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[CrossRef]

Lin, S. C.

Liu, C. K.

Lu, C.

X. Cheng, Y. J. Wen, Y. Dong, Z. Xu, X. Shao, Y. Wang, and C. Lu, “Optimization of spectrum-sliced ASE source for injection-locking a Fabry-Perot laser diode,” IEEE Photon. Technol. Lett. 18(18), 1961–1963 (2006).
[CrossRef]

Mikkelsen, B.

N. Storkfelt, B. Mikkelsen, D. S. Olesen, M. Yamaguchi, and K. E. Stubkjaer, “Measurement of carrier lifetime and linewidth enhancement factor for 1.5-μm ridge-waveguide laser amplifier,” IEEE Photon. Technol. Lett. 3(7), 632–634 (1991).
[CrossRef]

Oh, J.

Olesen, D. S.

N. Storkfelt, B. Mikkelsen, D. S. Olesen, M. Yamaguchi, and K. E. Stubkjaer, “Measurement of carrier lifetime and linewidth enhancement factor for 1.5-μm ridge-waveguide laser amplifier,” IEEE Photon. Technol. Lett. 3(7), 632–634 (1991).
[CrossRef]

Omella, M.

Papagiannakis, I.

Park, M. Y.

W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[CrossRef]

Park, S.

S. Park, Y. Choi, J. Oh, S. Koo, and D. Lee, “An Evolution scenario of a broadband access network using R-SOA-based WDM-PON technologies,” J. Lightwave Technol. 25(11), 3479–3487 (2007).
[CrossRef]

S. Park, G. Kim, and T. Park, “WDM-PON system based on the laser light injected reflective semiconductor optical amplifier,” Opt. Fiber Technol. 12(2), 162–169 (2006).
[CrossRef]

Park, T.

S. Park, G. Kim, and T. Park, “WDM-PON system based on the laser light injected reflective semiconductor optical amplifier,” Opt. Fiber Technol. 12(2), 162–169 (2006).
[CrossRef]

Prat, J.

Sato, K.

K. Sato and H. Toba, “Reduction of mode partition noise by using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 7(2), 328–333 (2001).
[CrossRef]

Schrenk, B.

Shao, X.

X. Cheng, Y. J. Wen, Y. Dong, Z. Xu, X. Shao, Y. Wang, and C. Lu, “Optimization of spectrum-sliced ASE source for injection-locking a Fabry-Perot laser diode,” IEEE Photon. Technol. Lett. 18(18), 1961–1963 (2006).
[CrossRef]

Shih, F. Y.

Storkfelt, N.

N. Storkfelt, B. Mikkelsen, D. S. Olesen, M. Yamaguchi, and K. E. Stubkjaer, “Measurement of carrier lifetime and linewidth enhancement factor for 1.5-μm ridge-waveguide laser amplifier,” IEEE Photon. Technol. Lett. 3(7), 632–634 (1991).
[CrossRef]

Stubkjaer, K. E.

N. Storkfelt, B. Mikkelsen, D. S. Olesen, M. Yamaguchi, and K. E. Stubkjaer, “Measurement of carrier lifetime and linewidth enhancement factor for 1.5-μm ridge-waveguide laser amplifier,” IEEE Photon. Technol. Lett. 3(7), 632–634 (1991).
[CrossRef]

Toba, H.

K. Sato and H. Toba, “Reduction of mode partition noise by using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 7(2), 328–333 (2001).
[CrossRef]

Tomkos, I.

Wang, C. H.

Wang, Y.

X. Cheng, Y. J. Wen, Y. Dong, Z. Xu, X. Shao, Y. Wang, and C. Lu, “Optimization of spectrum-sliced ASE source for injection-locking a Fabry-Perot laser diode,” IEEE Photon. Technol. Lett. 18(18), 1961–1963 (2006).
[CrossRef]

Wen, Y. J.

X. Cheng, Y. J. Wen, Y. Dong, Z. Xu, X. Shao, Y. Wang, and C. Lu, “Optimization of spectrum-sliced ASE source for injection-locking a Fabry-Perot laser diode,” IEEE Photon. Technol. Lett. 18(18), 1961–1963 (2006).
[CrossRef]

Xu, Z.

X. Cheng, Y. J. Wen, Y. Dong, Z. Xu, X. Shao, Y. Wang, and C. Lu, “Optimization of spectrum-sliced ASE source for injection-locking a Fabry-Perot laser diode,” IEEE Photon. Technol. Lett. 18(18), 1961–1963 (2006).
[CrossRef]

Yamaguchi, M.

N. Storkfelt, B. Mikkelsen, D. S. Olesen, M. Yamaguchi, and K. E. Stubkjaer, “Measurement of carrier lifetime and linewidth enhancement factor for 1.5-μm ridge-waveguide laser amplifier,” IEEE Photon. Technol. Lett. 3(7), 632–634 (1991).
[CrossRef]

Yeh, C. H.

IEEE J. Sel. Top. Quantum Electron.

K. Sato and H. Toba, “Reduction of mode partition noise by using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 7(2), 328–333 (2001).
[CrossRef]

IEEE Photon. Technol. Lett.

J. S. Lee, Y. C. Chung, and D. J. DiGiovanni, “Spectrum-sliced fiber amplifier light source for multichannel WDM application,” IEEE Photon. Technol. Lett. 5(12), 1458–1461 (2006).
[CrossRef]

X. Cheng, Y. J. Wen, Y. Dong, Z. Xu, X. Shao, Y. Wang, and C. Lu, “Optimization of spectrum-sliced ASE source for injection-locking a Fabry-Perot laser diode,” IEEE Photon. Technol. Lett. 18(18), 1961–1963 (2006).
[CrossRef]

W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[CrossRef]

N. Storkfelt, B. Mikkelsen, D. S. Olesen, M. Yamaguchi, and K. E. Stubkjaer, “Measurement of carrier lifetime and linewidth enhancement factor for 1.5-μm ridge-waveguide laser amplifier,” IEEE Photon. Technol. Lett. 3(7), 632–634 (1991).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Fiber Technol.

S. Park, G. Kim, and T. Park, “WDM-PON system based on the laser light injected reflective semiconductor optical amplifier,” Opt. Fiber Technol. 12(2), 162–169 (2006).
[CrossRef]

Other

F. Koyama, T. Yamatoya, and K. Iga, “Highly Gain-saturated GaInAsP/InP SOA modulator for incoherent spectrum-sliced light source,” in Indium Phosphide and Related Materials (IPRM), (2000), 439–442.

J. Kang, Y. Won, S. Lee, and S. Han, “Modulation characteristics of RSOA in hybrid WDM/SCM-PON optical link,” in Optical Fiber Communications Conference (OFC), (2006), Paper JThB6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Photograph of a fabricated 2S-RSOA chip.

Fig. 2
Fig. 2

Amplified spontaneous emission (ASE) spectrum of 2S-RSOA. The inset shows magnified view of ASE at central wavelength. The injection currents were applied at 30 mA of SOA1 and 50 mA of SOA2.

Fig. 3
Fig. 3

Far-field pattern of two-section RSOA

Fig. 4
Fig. 4

Fiber-to-fiber gain curves of 2S-RSOA as a function of SOA injection current. The solid and open symbols indicate TE and TM gain, respectively. The wavelength and power of input beam were 1550 nm and −20 dBm, respectively.

Fig. 5
Fig. 5

Small-signal electro/optical (E/O) response of 2S-RSOA and 400 μm long 1S-RSOA. The SOA1 of 2S-RSOA was injected with only DC-bias. And the SOA2 of 2S-RSOA was injected simultaneously with DC-bias and small-signal modulation bias. The 400 μm long 1S-RSOA was injected simultaneously with a fixed current of 50 mA and small-signal modulated bias; (a) small-signal E/O response curves as a function of SOA1 current. The SOA2 was injected simultaneously with a fixed current of 50 mA and small-signal modulation. The input power was fixed at −10 dBm (b) small-signal E/O response curves as a function of SOA2. The only DC-biased SOA1 current of 2S-RSOA was fixed at 30 mA. The input power was fixed at −20 dBm.

Fig. 6
Fig. 6

2.5 Gbps bit error rate (BER) measurement setup of 2S-RSOA.

Fig. 7
Fig. 7

Eye pattern of back-to-back (a) and BER curves at 2.5 Gbps up to 20 km transmission (b).

Metrics