Abstract

We report on the simulation of stimulated Raman scattering inhibition by lumped spectral filters both in passive optical transport fibers and in fiber amplifiers. The paper includes a detailed theoretical study that reveals the parameters that have the strongest influence on the suppression of the Raman scattering, such as the filter distribution and the insertion losses at the signal wavelength. This study provides guidelines for the use of spectral filtering elements, such as long period gratings, for Raman scattering inhibition in real-world high power fiber amplifiers.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Kim, P. Dupriez, C. Codemard, J. Nilsson, and J. K. Sahu, “Suppression of stimulated Raman scattering in a high power Yb-doped fiber amplifier using a W-type core with fundamental mode cut-off,” Opt. Express 14(12), 5103–5113 (2006).
    [CrossRef] [PubMed]
  2. L. Zenteno, J. Wang, D. Walton, B. Ruffin, M. Li, S. Gray, A. Crowley, and X. Chen, “Suppression of Raman gain in single-transverse-mode dual-hole-assisted fiber,” Opt. Express 13(22), 8921–8926 (2005).
    [CrossRef] [PubMed]
  3. T. H. Russell, “Laser intensity scaling through stimulated scattering in optical fibers”, Air Force Institute of Technology, dissertation (2001).
  4. F. Jansen, C. Jauregui, D. Nodop, J. Limpert, and A. Tünnermann, “Modeling the suppression of stimulated Raman scattering in active and passive fibers by lumped spectral filtering elements”, presented at the Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, Munich, Germany, 14–19 June 2009, CJ.P.15.
  5. J. M. Fini, M. D. Mermelstein, M. F. Yan, R. T. Bise, A. D. Yablon, P. W. Wisk, and M. J. Andrejco, “Distributed suppression of stimulated Raman scattering in an Yb-doped filter-fiber amplifier,” Opt. Lett. 31(17), 2550–2552 (2006).
    [CrossRef] [PubMed]
  6. A. Shirakawa, H. Maruyama, K. Ueda, C. B. Olausson, J. K. Lyngsø, and J. Broeng, “High-power Yb-doped photonic bandgap fiber amplifier at 1150-1200 nm,” Opt. Express 17(2), 447–454 (2009).
    [CrossRef] [PubMed]
  7. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
    [CrossRef]
  8. V. Grubsky and J. Feinberg, “Fabrication of axially symmetric long-period gratings with a carbon dioxide laser,” IEEE Photon. Technol. Lett. 18(21), 2296–2298 (2006).
    [CrossRef]
  9. D. Nodop, S. Linke, F. Jansen, J. Limpert, A. Tünnermann, and L. Rindorf, “Long period gratings written in large-mode area photonic crystal fiber,” Appl. Phys. B 92(4), 509–512 (2008).
    [CrossRef]
  10. H. M. Chan, F. Alhassen, I. V. Tomov, and H. P. Lee, “Fabrication and mode identification of compact long-period gratings written by CO2 laser,” IEEE Photon. Technol. Lett. 20(8), 611–613 (2008).
    [CrossRef]
  11. G. Rego, O. Okhotnikov, E. Dianov, and V. Sulimov, “High-temperature stability of long-period fiber gratings produced using an electric arc,” J. Lightwave Technol. 19(10), 1574 (2001).
    [CrossRef]
  12. Y. Wang, C. Q. Xu, and H. Po, “Analysis of Raman and thermal effects in kilowatt fiber lasers,” Opt. Commun. 242(4-6), 487–502 (2004).
    [CrossRef]
  13. G. P. Agrawal, “Nonlinear Fiber Optics”, Fourth Edition, Academic Press (2007).
  14. C. Jauregui, J. Limpert, and A. Tünnermann, “Derivation of Raman treshold formulas for CW double-clad fiber amplifiers,” Opt. Express 17(10), 8476–8490 (2009).
    [CrossRef] [PubMed]
  15. C. Jauregui, T. Eidam, D. N. Schimpf, J. Limpert, and A. Tünnermann, “Raman Threshold for CW Double-Clad Fiber Amplifiers”, Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper TuB27.
  16. S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
    [CrossRef]

2009 (2)

2008 (2)

D. Nodop, S. Linke, F. Jansen, J. Limpert, A. Tünnermann, and L. Rindorf, “Long period gratings written in large-mode area photonic crystal fiber,” Appl. Phys. B 92(4), 509–512 (2008).
[CrossRef]

H. M. Chan, F. Alhassen, I. V. Tomov, and H. P. Lee, “Fabrication and mode identification of compact long-period gratings written by CO2 laser,” IEEE Photon. Technol. Lett. 20(8), 611–613 (2008).
[CrossRef]

2006 (3)

2005 (1)

2004 (1)

Y. Wang, C. Q. Xu, and H. Po, “Analysis of Raman and thermal effects in kilowatt fiber lasers,” Opt. Commun. 242(4-6), 487–502 (2004).
[CrossRef]

2003 (1)

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
[CrossRef]

2001 (1)

1997 (1)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[CrossRef]

Alhassen, F.

H. M. Chan, F. Alhassen, I. V. Tomov, and H. P. Lee, “Fabrication and mode identification of compact long-period gratings written by CO2 laser,” IEEE Photon. Technol. Lett. 20(8), 611–613 (2008).
[CrossRef]

Andrejco, M. J.

Bise, R. T.

Broeng, J.

Chan, H. M.

H. M. Chan, F. Alhassen, I. V. Tomov, and H. P. Lee, “Fabrication and mode identification of compact long-period gratings written by CO2 laser,” IEEE Photon. Technol. Lett. 20(8), 611–613 (2008).
[CrossRef]

Chen, X.

Codemard, C.

Crowley, A.

Dianov, E.

Dupriez, P.

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[CrossRef]

Feinberg, J.

V. Grubsky and J. Feinberg, “Fabrication of axially symmetric long-period gratings with a carbon dioxide laser,” IEEE Photon. Technol. Lett. 18(21), 2296–2298 (2006).
[CrossRef]

Fini, J. M.

Gray, S.

Grubsky, V.

V. Grubsky and J. Feinberg, “Fabrication of axially symmetric long-period gratings with a carbon dioxide laser,” IEEE Photon. Technol. Lett. 18(21), 2296–2298 (2006).
[CrossRef]

James, S. W.

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
[CrossRef]

Jansen, F.

D. Nodop, S. Linke, F. Jansen, J. Limpert, A. Tünnermann, and L. Rindorf, “Long period gratings written in large-mode area photonic crystal fiber,” Appl. Phys. B 92(4), 509–512 (2008).
[CrossRef]

Jauregui, C.

Kim, J.

Lee, H. P.

H. M. Chan, F. Alhassen, I. V. Tomov, and H. P. Lee, “Fabrication and mode identification of compact long-period gratings written by CO2 laser,” IEEE Photon. Technol. Lett. 20(8), 611–613 (2008).
[CrossRef]

Li, M.

Limpert, J.

C. Jauregui, J. Limpert, and A. Tünnermann, “Derivation of Raman treshold formulas for CW double-clad fiber amplifiers,” Opt. Express 17(10), 8476–8490 (2009).
[CrossRef] [PubMed]

D. Nodop, S. Linke, F. Jansen, J. Limpert, A. Tünnermann, and L. Rindorf, “Long period gratings written in large-mode area photonic crystal fiber,” Appl. Phys. B 92(4), 509–512 (2008).
[CrossRef]

Linke, S.

D. Nodop, S. Linke, F. Jansen, J. Limpert, A. Tünnermann, and L. Rindorf, “Long period gratings written in large-mode area photonic crystal fiber,” Appl. Phys. B 92(4), 509–512 (2008).
[CrossRef]

Lyngsø, J. K.

Maruyama, H.

Mermelstein, M. D.

Nilsson, J.

Nodop, D.

D. Nodop, S. Linke, F. Jansen, J. Limpert, A. Tünnermann, and L. Rindorf, “Long period gratings written in large-mode area photonic crystal fiber,” Appl. Phys. B 92(4), 509–512 (2008).
[CrossRef]

Okhotnikov, O.

Olausson, C. B.

Po, H.

Y. Wang, C. Q. Xu, and H. Po, “Analysis of Raman and thermal effects in kilowatt fiber lasers,” Opt. Commun. 242(4-6), 487–502 (2004).
[CrossRef]

Rego, G.

Rindorf, L.

D. Nodop, S. Linke, F. Jansen, J. Limpert, A. Tünnermann, and L. Rindorf, “Long period gratings written in large-mode area photonic crystal fiber,” Appl. Phys. B 92(4), 509–512 (2008).
[CrossRef]

Ruffin, B.

Sahu, J. K.

Shirakawa, A.

Sulimov, V.

Tatam, R. P.

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
[CrossRef]

Tomov, I. V.

H. M. Chan, F. Alhassen, I. V. Tomov, and H. P. Lee, “Fabrication and mode identification of compact long-period gratings written by CO2 laser,” IEEE Photon. Technol. Lett. 20(8), 611–613 (2008).
[CrossRef]

Tünnermann, A.

C. Jauregui, J. Limpert, and A. Tünnermann, “Derivation of Raman treshold formulas for CW double-clad fiber amplifiers,” Opt. Express 17(10), 8476–8490 (2009).
[CrossRef] [PubMed]

D. Nodop, S. Linke, F. Jansen, J. Limpert, A. Tünnermann, and L. Rindorf, “Long period gratings written in large-mode area photonic crystal fiber,” Appl. Phys. B 92(4), 509–512 (2008).
[CrossRef]

Ueda, K.

Walton, D.

Wang, J.

Wang, Y.

Y. Wang, C. Q. Xu, and H. Po, “Analysis of Raman and thermal effects in kilowatt fiber lasers,” Opt. Commun. 242(4-6), 487–502 (2004).
[CrossRef]

Wisk, P. W.

Xu, C. Q.

Y. Wang, C. Q. Xu, and H. Po, “Analysis of Raman and thermal effects in kilowatt fiber lasers,” Opt. Commun. 242(4-6), 487–502 (2004).
[CrossRef]

Yablon, A. D.

Yan, M. F.

Zenteno, L.

Appl. Phys. B (1)

D. Nodop, S. Linke, F. Jansen, J. Limpert, A. Tünnermann, and L. Rindorf, “Long period gratings written in large-mode area photonic crystal fiber,” Appl. Phys. B 92(4), 509–512 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

H. M. Chan, F. Alhassen, I. V. Tomov, and H. P. Lee, “Fabrication and mode identification of compact long-period gratings written by CO2 laser,” IEEE Photon. Technol. Lett. 20(8), 611–613 (2008).
[CrossRef]

V. Grubsky and J. Feinberg, “Fabrication of axially symmetric long-period gratings with a carbon dioxide laser,” IEEE Photon. Technol. Lett. 18(21), 2296–2298 (2006).
[CrossRef]

J. Lightwave Technol. (2)

Meas. Sci. Technol. (1)

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
[CrossRef]

Opt. Commun. (1)

Y. Wang, C. Q. Xu, and H. Po, “Analysis of Raman and thermal effects in kilowatt fiber lasers,” Opt. Commun. 242(4-6), 487–502 (2004).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Other (4)

G. P. Agrawal, “Nonlinear Fiber Optics”, Fourth Edition, Academic Press (2007).

C. Jauregui, T. Eidam, D. N. Schimpf, J. Limpert, and A. Tünnermann, “Raman Threshold for CW Double-Clad Fiber Amplifiers”, Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper TuB27.

T. H. Russell, “Laser intensity scaling through stimulated scattering in optical fibers”, Air Force Institute of Technology, dissertation (2001).

F. Jansen, C. Jauregui, D. Nodop, J. Limpert, and A. Tünnermann, “Modeling the suppression of stimulated Raman scattering in active and passive fibers by lumped spectral filtering elements”, presented at the Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, Munich, Germany, 14–19 June 2009, CJ.P.15.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Evaluation of the optimum position of a single 20dB filter in a passive fiber and (b) increase of the Raman threshold with higher effective Raman attenuations per meter.

Fig. 2
Fig. 2

(a) Raman threshold increase for different fiber lengths. Each filter has an average Raman suppression of 20dB. (b) Raman threshold increase for different core diameters.

Fig. 3
Fig. 3

Raman threshold increase as a function of the number of filters for different signal transmissions per filter T. Each filter has 20dB Raman attenuation.

Fig. 4
Fig. 4

(a) Simulated optimum number of filters as a function of the filter transmission at the signal wavelength. Note that only discrete values are possible. (b) Corresponding Raman threshold increase factor.

Fig. 5
Fig. 5

Influence of the position of a single filter along the fiber on the Raman threshold in a 2m long Yb-doped fiber amplifier with 10µm core. All values are normalized to the maximum signal output power. The values at Position ‘0’ correspond to a fiber without filters. (a) Co-propagating amplifier. (b) Counter-propagating amplifier.

Fig. 6
Fig. 6

(a) Simulated increase of the Raman threshold as a function of the number of filters introduced in a co-propagating setup. (b) Simulated decrease of the amplifier efficiency caused by the insertion of spectral filters in a co-propagating fiber amplifier.

Fig. 7
Fig. 7

(a) Simulated increase of the Raman threshold as a function of the number of filters introduced in a counter-propagating setup. (b) Simulated decrease of the amplifier efficiency caused by the insertion of spectral filters in a counter-propagating amplifier.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Nopt=10.9560.921x1
Rinc=0.07+0.264Nopt

Metrics