Abstract

A 4.3 dB stimulated Brillouin scattering (SBS) threshold suppression is measured in a passive Al-doped acoustically anti-guiding single mode optical fiber relative to that of a Ge-doped acoustically guiding single mode optical fiber. Stimulated scattering is generated by the electrostrictive acoustic wave generated in the fiber core. This acoustic excitation has a decay length Ld related to the sound absorption decay length Labs and the acoustic waveguide decay length Lwg by: Ld −1= Labs −1+ Lwg −1. The acoustic waveguide decay length Lwg is associated with the diffraction, refraction and reflection of the acoustic wave in the elastically inhomogeneous optical fiber cores. The SBS gain is proportional to the net acoustic decay length Ld and the relative SBS suppression is proportional to the ratio of the net decay lengths of the Al and Ge doped cores (LAl/ LGe). An acoustic beam propagation model is used to calculate the evolution of the complex acoustic excitations in the optical cores and determine the acoustic wave decay lengths Lwg. Model predictions for the relative SBS suppression for the two fibers are in good agreement with experimental values obtained from Stokes power and optical heterodyne linewidth measurements.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Cotter, “Stimulated Brillouin scattering in monomode optical fibers,” J. Opt. Commun. 4, 10–19 (1983).
    [CrossRef]
  2. D. A. Fishman and J. A. Nagel, “Degradations due to stimulated Brillouin scattering in multigigabit intensity-modulated fiber-optic systems,” J. Lightwave Technol. 11(11), 1721–1728 (1993).
    [CrossRef]
  3. G. Kulcsar, Y. Jaouen, G. Canat, E. Olmedo, and G. Debarge, “Multi-Stokes stimulated Brillouin scattering generated in pulsed high-power double cladding Er-Yb codoped fiber amplifiers,” IEEE Photon. Technol. Lett. 15(6), 801–803 (2003).
    [CrossRef]
  4. Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped fiber master oscillator power amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
    [CrossRef]
  5. Y. Feng, L. Taylor, and D. Bonaccini Calia, “Multiwatts narrow linewidth fiber Raman amplifiers,” Opt. Express 16(15), 10927–10932 (2008).
    [CrossRef] [PubMed]
  6. K. Shiraki, M. Ohashi, and M. Tateda, “SBS threshold of a fiber with a Brillouin frequency shift distribution,” J. Lightwave Technol. 14(1), 50–57 (1996).
    [CrossRef]
  7. T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photon. Technol. Lett. 1(5), 107–108 (1989).
    [CrossRef]
  8. J. Hansryd, F. Dross, M. Westlund, P. A. Andrekson, and S. N. Knudsen, “Increase of the SBS threshold in short highly nonlinear fiber by applying a temperature distribution,” J. Lightwave Technol. 19(11), 1691–1697 (2001).
    [CrossRef]
  9. M. D. Mermelstein, A. D. Yablon and C. Headley, “Suppression of Stimulated Brillouin Scattering in Er-Yb Fiber Amplifiers Utilizing Temperature-Segmentation,” Optical Amplifiers and Their Applications, paper TuD3 (2005).
  10. P. D. Dragic, “Acoustical-optical fibers for control of stimulated Brillouin scattering,” in 2006 Digest of the LEOS Summer Topical Meeting, 3–4 (2006).
  11. M. J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, and L. A. Zenteno., “Al/Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express 15(13), 8290–8299 (2007).
    [CrossRef] [PubMed]
  12. M. D. Mermelstein, M. J. Andrejco, J. Fini, A. Yablon, C. Headley, D. G. DiGiovanni, and A. H. McCurdy, “11.2 dB SBS gain suppression in large mode area Yb-doped optical fiber,” Proc. SPIE 6873, U63–U69 (2008).
  13. S. Yoo, J. K. Sahu, and J. Nilsson, “Optimized acoustic refractive index profiles for suppression of stimulated Brillouin scattering in large core fibers,” in Optical Fiber Communication Conference (Optical Society of America, Washington, DC, 2008).
  14. B. G. Ward and J. B. Spring, “Brillouin gain in optical fibers with inhomogeneous acoustic velocity,” Proc. SPIE 7195, 71951H (2009).
    [CrossRef]
  15. G. P. Agrawal, Non-Linear Optics, (Academic Press, San Diego, 1995).
  16. B. Ya. Zel’dovich, N. F. Pilipetsky, and V. V. Shkunov, Principles of Phase Conjugation, (Springer Verlag, New York, 1985).
  17. M. D. Mermelstein, S. Ramachandran, J. M. Fini, and S. Ghalmi, “SBS gain efficiency and modeling in 1714 μm2 effective area LP08 higher-order mode optical fiber,” Opt. Express 15(24), 15952–15963 (2007).
    [CrossRef] [PubMed]
  18. M. O. van Deventer and A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single-mode fibers,” J. Lightwave Technol. 12(4), 585–590 (1994).
    [CrossRef]
  19. R. G. Smith, “Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering,” Appl. Opt. 11(11), 2489–2494 (1972).
    [CrossRef] [PubMed]
  20. I. L. Fabelinskii, Molecular Scattering of Light,”(Plenum Press, 1968).
  21. H. Z. Cummins, and P. Schoen, Linear scattering from thermal fluctuations, in Laser Handbook (North Holland, Amsterdam 1971).
  22. E.-G. Neumann, Single Mode Fibers, (Springer Verlag, New York, 1985).
  23. R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
    [CrossRef] [PubMed]
  24. R. W. Boyd, Non-linear Optics, (Academic Press, New York, 2003).
  25. G. Barton, Elements of Green’s Functions and Propagation, (Oxford University Press, New York, 1989).
  26. J. Yamauchi, Y. Akimoto, M. Nibe, and H. Nakano, “Wide-angle propagating beam analysis for circularly symmetric waveguides: comparison between FD-BPM and FD-BPM,” IEEE Photon. Technol. Lett. 8(2), 236–238 (1996).
    [CrossRef]
  27. Y. Koyamada, S. Sato, S. Nakamura, H. Sotobayashi, and W. Chujo, “Simulating and Designing Brillouin gain spectra in single mode fibers,” J. Lightwave Technol. 22(2), 631–639 (2004).
    [CrossRef]
  28. P. D. Dragic, “SBS-suppressed single mode Yb-doped fiber amplifiers,” Proc. OFC-NFOEC,2009, JThA10.

2009 (1)

B. G. Ward and J. B. Spring, “Brillouin gain in optical fibers with inhomogeneous acoustic velocity,” Proc. SPIE 7195, 71951H (2009).
[CrossRef]

2008 (2)

M. D. Mermelstein, M. J. Andrejco, J. Fini, A. Yablon, C. Headley, D. G. DiGiovanni, and A. H. McCurdy, “11.2 dB SBS gain suppression in large mode area Yb-doped optical fiber,” Proc. SPIE 6873, U63–U69 (2008).

Y. Feng, L. Taylor, and D. Bonaccini Calia, “Multiwatts narrow linewidth fiber Raman amplifiers,” Opt. Express 16(15), 10927–10932 (2008).
[CrossRef] [PubMed]

2007 (3)

2004 (1)

2003 (1)

G. Kulcsar, Y. Jaouen, G. Canat, E. Olmedo, and G. Debarge, “Multi-Stokes stimulated Brillouin scattering generated in pulsed high-power double cladding Er-Yb codoped fiber amplifiers,” IEEE Photon. Technol. Lett. 15(6), 801–803 (2003).
[CrossRef]

2001 (1)

1996 (2)

K. Shiraki, M. Ohashi, and M. Tateda, “SBS threshold of a fiber with a Brillouin frequency shift distribution,” J. Lightwave Technol. 14(1), 50–57 (1996).
[CrossRef]

J. Yamauchi, Y. Akimoto, M. Nibe, and H. Nakano, “Wide-angle propagating beam analysis for circularly symmetric waveguides: comparison between FD-BPM and FD-BPM,” IEEE Photon. Technol. Lett. 8(2), 236–238 (1996).
[CrossRef]

1994 (1)

M. O. van Deventer and A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single-mode fibers,” J. Lightwave Technol. 12(4), 585–590 (1994).
[CrossRef]

1993 (1)

D. A. Fishman and J. A. Nagel, “Degradations due to stimulated Brillouin scattering in multigigabit intensity-modulated fiber-optic systems,” J. Lightwave Technol. 11(11), 1721–1728 (1993).
[CrossRef]

1990 (1)

R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
[CrossRef] [PubMed]

1989 (1)

T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photon. Technol. Lett. 1(5), 107–108 (1989).
[CrossRef]

1983 (1)

D. Cotter, “Stimulated Brillouin scattering in monomode optical fibers,” J. Opt. Commun. 4, 10–19 (1983).
[CrossRef]

1972 (1)

Akimoto, Y.

J. Yamauchi, Y. Akimoto, M. Nibe, and H. Nakano, “Wide-angle propagating beam analysis for circularly symmetric waveguides: comparison between FD-BPM and FD-BPM,” IEEE Photon. Technol. Lett. 8(2), 236–238 (1996).
[CrossRef]

Andrejco, M. J.

M. D. Mermelstein, M. J. Andrejco, J. Fini, A. Yablon, C. Headley, D. G. DiGiovanni, and A. H. McCurdy, “11.2 dB SBS gain suppression in large mode area Yb-doped optical fiber,” Proc. SPIE 6873, U63–U69 (2008).

Andrekson, P. A.

Bonaccini Calia, D.

Boot, A. J.

M. O. van Deventer and A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single-mode fibers,” J. Lightwave Technol. 12(4), 585–590 (1994).
[CrossRef]

Boyd, R. W.

R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
[CrossRef] [PubMed]

Canat, G.

G. Kulcsar, Y. Jaouen, G. Canat, E. Olmedo, and G. Debarge, “Multi-Stokes stimulated Brillouin scattering generated in pulsed high-power double cladding Er-Yb codoped fiber amplifiers,” IEEE Photon. Technol. Lett. 15(6), 801–803 (2003).
[CrossRef]

Chen, X.

Chujo, W.

Cotter, D.

D. Cotter, “Stimulated Brillouin scattering in monomode optical fibers,” J. Opt. Commun. 4, 10–19 (1983).
[CrossRef]

Crowley, A. M.

Debarge, G.

G. Kulcsar, Y. Jaouen, G. Canat, E. Olmedo, and G. Debarge, “Multi-Stokes stimulated Brillouin scattering generated in pulsed high-power double cladding Er-Yb codoped fiber amplifiers,” IEEE Photon. Technol. Lett. 15(6), 801–803 (2003).
[CrossRef]

Demeritt, J. A.

DiGiovanni, D. G.

M. D. Mermelstein, M. J. Andrejco, J. Fini, A. Yablon, C. Headley, D. G. DiGiovanni, and A. H. McCurdy, “11.2 dB SBS gain suppression in large mode area Yb-doped optical fiber,” Proc. SPIE 6873, U63–U69 (2008).

Dross, F.

Feng, Y.

Fini, J.

M. D. Mermelstein, M. J. Andrejco, J. Fini, A. Yablon, C. Headley, D. G. DiGiovanni, and A. H. McCurdy, “11.2 dB SBS gain suppression in large mode area Yb-doped optical fiber,” Proc. SPIE 6873, U63–U69 (2008).

Fini, J. M.

Fishman, D. A.

D. A. Fishman and J. A. Nagel, “Degradations due to stimulated Brillouin scattering in multigigabit intensity-modulated fiber-optic systems,” J. Lightwave Technol. 11(11), 1721–1728 (1993).
[CrossRef]

Ghalmi, S.

Gray, S.

Hansryd, J.

Headley, C.

M. D. Mermelstein, M. J. Andrejco, J. Fini, A. Yablon, C. Headley, D. G. DiGiovanni, and A. H. McCurdy, “11.2 dB SBS gain suppression in large mode area Yb-doped optical fiber,” Proc. SPIE 6873, U63–U69 (2008).

Hickey, L. M. B.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped fiber master oscillator power amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[CrossRef]

Horiguchi, T.

T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photon. Technol. Lett. 1(5), 107–108 (1989).
[CrossRef]

Horley, R.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped fiber master oscillator power amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[CrossRef]

Jaouen, Y.

G. Kulcsar, Y. Jaouen, G. Canat, E. Olmedo, and G. Debarge, “Multi-Stokes stimulated Brillouin scattering generated in pulsed high-power double cladding Er-Yb codoped fiber amplifiers,” IEEE Photon. Technol. Lett. 15(6), 801–803 (2003).
[CrossRef]

Jeong, Y.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped fiber master oscillator power amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[CrossRef]

Knudsen, S. N.

Koyamada, Y.

Kulcsar, G.

G. Kulcsar, Y. Jaouen, G. Canat, E. Olmedo, and G. Debarge, “Multi-Stokes stimulated Brillouin scattering generated in pulsed high-power double cladding Er-Yb codoped fiber amplifiers,” IEEE Photon. Technol. Lett. 15(6), 801–803 (2003).
[CrossRef]

Kurashima, T.

T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photon. Technol. Lett. 1(5), 107–108 (1989).
[CrossRef]

Li, M. J.

Liu, A.

McCurdy, A. H.

M. D. Mermelstein, M. J. Andrejco, J. Fini, A. Yablon, C. Headley, D. G. DiGiovanni, and A. H. McCurdy, “11.2 dB SBS gain suppression in large mode area Yb-doped optical fiber,” Proc. SPIE 6873, U63–U69 (2008).

Mermelstein, M. D.

M. D. Mermelstein, M. J. Andrejco, J. Fini, A. Yablon, C. Headley, D. G. DiGiovanni, and A. H. McCurdy, “11.2 dB SBS gain suppression in large mode area Yb-doped optical fiber,” Proc. SPIE 6873, U63–U69 (2008).

M. D. Mermelstein, S. Ramachandran, J. M. Fini, and S. Ghalmi, “SBS gain efficiency and modeling in 1714 μm2 effective area LP08 higher-order mode optical fiber,” Opt. Express 15(24), 15952–15963 (2007).
[CrossRef] [PubMed]

Nagel, J. A.

D. A. Fishman and J. A. Nagel, “Degradations due to stimulated Brillouin scattering in multigigabit intensity-modulated fiber-optic systems,” J. Lightwave Technol. 11(11), 1721–1728 (1993).
[CrossRef]

Nakamura, S.

Nakano, H.

J. Yamauchi, Y. Akimoto, M. Nibe, and H. Nakano, “Wide-angle propagating beam analysis for circularly symmetric waveguides: comparison between FD-BPM and FD-BPM,” IEEE Photon. Technol. Lett. 8(2), 236–238 (1996).
[CrossRef]

Narum, P.

R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
[CrossRef] [PubMed]

Nibe, M.

J. Yamauchi, Y. Akimoto, M. Nibe, and H. Nakano, “Wide-angle propagating beam analysis for circularly symmetric waveguides: comparison between FD-BPM and FD-BPM,” IEEE Photon. Technol. Lett. 8(2), 236–238 (1996).
[CrossRef]

Nilsson, J.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped fiber master oscillator power amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[CrossRef]

Ohashi, M.

K. Shiraki, M. Ohashi, and M. Tateda, “SBS threshold of a fiber with a Brillouin frequency shift distribution,” J. Lightwave Technol. 14(1), 50–57 (1996).
[CrossRef]

Olmedo, E.

G. Kulcsar, Y. Jaouen, G. Canat, E. Olmedo, and G. Debarge, “Multi-Stokes stimulated Brillouin scattering generated in pulsed high-power double cladding Er-Yb codoped fiber amplifiers,” IEEE Photon. Technol. Lett. 15(6), 801–803 (2003).
[CrossRef]

Payne, D. N.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped fiber master oscillator power amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[CrossRef]

Ramachandran, S.

Ruffin, A. B.

Rzaewski, K.

R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
[CrossRef] [PubMed]

Sahu, J. K.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped fiber master oscillator power amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[CrossRef]

Sato, S.

Shiraki, K.

K. Shiraki, M. Ohashi, and M. Tateda, “SBS threshold of a fiber with a Brillouin frequency shift distribution,” J. Lightwave Technol. 14(1), 50–57 (1996).
[CrossRef]

Smith, R. G.

Sotobayashi, H.

Spring, J. B.

B. G. Ward and J. B. Spring, “Brillouin gain in optical fibers with inhomogeneous acoustic velocity,” Proc. SPIE 7195, 71951H (2009).
[CrossRef]

Tateda, M.

K. Shiraki, M. Ohashi, and M. Tateda, “SBS threshold of a fiber with a Brillouin frequency shift distribution,” J. Lightwave Technol. 14(1), 50–57 (1996).
[CrossRef]

T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photon. Technol. Lett. 1(5), 107–108 (1989).
[CrossRef]

Taylor, L.

Turner, P. W.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped fiber master oscillator power amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[CrossRef]

van Deventer, M. O.

M. O. van Deventer and A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single-mode fibers,” J. Lightwave Technol. 12(4), 585–590 (1994).
[CrossRef]

Walton, D. T.

Wang, J.

Ward, B. G.

B. G. Ward and J. B. Spring, “Brillouin gain in optical fibers with inhomogeneous acoustic velocity,” Proc. SPIE 7195, 71951H (2009).
[CrossRef]

Westlund, M.

Yablon, A.

M. D. Mermelstein, M. J. Andrejco, J. Fini, A. Yablon, C. Headley, D. G. DiGiovanni, and A. H. McCurdy, “11.2 dB SBS gain suppression in large mode area Yb-doped optical fiber,” Proc. SPIE 6873, U63–U69 (2008).

Yamauchi, J.

J. Yamauchi, Y. Akimoto, M. Nibe, and H. Nakano, “Wide-angle propagating beam analysis for circularly symmetric waveguides: comparison between FD-BPM and FD-BPM,” IEEE Photon. Technol. Lett. 8(2), 236–238 (1996).
[CrossRef]

Zenteno., L. A.

Appl. Opt. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped fiber master oscillator power amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photon. Technol. Lett. 1(5), 107–108 (1989).
[CrossRef]

G. Kulcsar, Y. Jaouen, G. Canat, E. Olmedo, and G. Debarge, “Multi-Stokes stimulated Brillouin scattering generated in pulsed high-power double cladding Er-Yb codoped fiber amplifiers,” IEEE Photon. Technol. Lett. 15(6), 801–803 (2003).
[CrossRef]

J. Yamauchi, Y. Akimoto, M. Nibe, and H. Nakano, “Wide-angle propagating beam analysis for circularly symmetric waveguides: comparison between FD-BPM and FD-BPM,” IEEE Photon. Technol. Lett. 8(2), 236–238 (1996).
[CrossRef]

J. Lightwave Technol. (5)

Y. Koyamada, S. Sato, S. Nakamura, H. Sotobayashi, and W. Chujo, “Simulating and Designing Brillouin gain spectra in single mode fibers,” J. Lightwave Technol. 22(2), 631–639 (2004).
[CrossRef]

K. Shiraki, M. Ohashi, and M. Tateda, “SBS threshold of a fiber with a Brillouin frequency shift distribution,” J. Lightwave Technol. 14(1), 50–57 (1996).
[CrossRef]

M. O. van Deventer and A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single-mode fibers,” J. Lightwave Technol. 12(4), 585–590 (1994).
[CrossRef]

J. Hansryd, F. Dross, M. Westlund, P. A. Andrekson, and S. N. Knudsen, “Increase of the SBS threshold in short highly nonlinear fiber by applying a temperature distribution,” J. Lightwave Technol. 19(11), 1691–1697 (2001).
[CrossRef]

D. A. Fishman and J. A. Nagel, “Degradations due to stimulated Brillouin scattering in multigigabit intensity-modulated fiber-optic systems,” J. Lightwave Technol. 11(11), 1721–1728 (1993).
[CrossRef]

J. Opt. Commun. (1)

D. Cotter, “Stimulated Brillouin scattering in monomode optical fibers,” J. Opt. Commun. 4, 10–19 (1983).
[CrossRef]

Opt. Express (3)

Phys. Rev. A (1)

R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
[CrossRef] [PubMed]

Proc. SPIE (2)

M. D. Mermelstein, M. J. Andrejco, J. Fini, A. Yablon, C. Headley, D. G. DiGiovanni, and A. H. McCurdy, “11.2 dB SBS gain suppression in large mode area Yb-doped optical fiber,” Proc. SPIE 6873, U63–U69 (2008).

B. G. Ward and J. B. Spring, “Brillouin gain in optical fibers with inhomogeneous acoustic velocity,” Proc. SPIE 7195, 71951H (2009).
[CrossRef]

Other (11)

G. P. Agrawal, Non-Linear Optics, (Academic Press, San Diego, 1995).

B. Ya. Zel’dovich, N. F. Pilipetsky, and V. V. Shkunov, Principles of Phase Conjugation, (Springer Verlag, New York, 1985).

S. Yoo, J. K. Sahu, and J. Nilsson, “Optimized acoustic refractive index profiles for suppression of stimulated Brillouin scattering in large core fibers,” in Optical Fiber Communication Conference (Optical Society of America, Washington, DC, 2008).

M. D. Mermelstein, A. D. Yablon and C. Headley, “Suppression of Stimulated Brillouin Scattering in Er-Yb Fiber Amplifiers Utilizing Temperature-Segmentation,” Optical Amplifiers and Their Applications, paper TuD3 (2005).

P. D. Dragic, “Acoustical-optical fibers for control of stimulated Brillouin scattering,” in 2006 Digest of the LEOS Summer Topical Meeting, 3–4 (2006).

R. W. Boyd, Non-linear Optics, (Academic Press, New York, 2003).

G. Barton, Elements of Green’s Functions and Propagation, (Oxford University Press, New York, 1989).

P. D. Dragic, “SBS-suppressed single mode Yb-doped fiber amplifiers,” Proc. OFC-NFOEC,2009, JThA10.

I. L. Fabelinskii, Molecular Scattering of Light,”(Plenum Press, 1968).

H. Z. Cummins, and P. Schoen, Linear scattering from thermal fluctuations, in Laser Handbook (North Holland, Amsterdam 1971).

E.-G. Neumann, Single Mode Fibers, (Springer Verlag, New York, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Experimental arrangement for measurement of the SBS threshold and spectra in the FsUT (SF-single frequency, CW-continuous wave, LO-local oscillator).

Fig. 2
Fig. 2

High resolution (10 pm) OSA spectra of the Stokes growth in (a) an acoustically guiding Ge doped core SMF and (b) an acoustically anti-guiding Al doped core SMF.

Fig. 3
Fig. 3

Plot of SBS reflectivities as a function of pump power for the guiding and anti-guiding SMFs along with fitting parameters to Eq. (2).

Fig. 4
Fig. 4

Backscattered optical power PS as a function of the Brillouin pump power PP for the two fibers. The slanted dotted lines correspond to 1% and 10% SBS reflectivities. The curved dashed lines show numerical solutions to the coupled rate equations with ηβS and CB taken from Fig. 3.

Fig. 5
Fig. 5

Plot of κ versus RSBS for the guiding and anti-guiding SMFs.

Fig. 6
Fig. 6

Heterodyne rf power spectra of the SBS Stokes power for the two FsUT.

Fig. 7
Fig. 7

Schematic of the SBS process in the optical fiber.

Fig. 8
Fig. 8

Plot of the acoustic index N as a function of radial position in the fiber. The inset shows the optical intensity distribution in the fiber which is also the distribution of the electrostrictive density fluctuation source.

Fig. 9
Fig. 9

Plot of acoustic amplitude magnitude as a function of radius for an elastically homogeneous fiber, the acoustic guiding fiber and acoustic anti-guiding fiber at differing propagation distances. Blue shaded region highlights acoustic energy refracted from fiber core in the anti-guiding case. The window size for the BPM code is 50 μm in the radial direction and 62.5 μm in the longitudinal direction with a radial resolution of 0.2 μm and a longitudinal resolution of 0.25 μm.

Fig. 10
Fig. 10

Plot of the radial phase of the acoustic waves for the homogeneous elastic medium, acoustic guiding fiber and acoustic anti-guiding fiber at a propagation distance of 20 μm.

Fig. 11
Fig. 11

Plots of the magnitude squared of the transverse acoustic amplitude correlation function as a function of propagation distance z for various cases discussed in the text.

Tables (3)

Tables Icon

Table 1 Fiber parameters and measurement results.

Tables Icon

Table 2 SBS suppressions

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

gB=2πn7p122cλ2ρVcΔν.
RSBS=ηβSLeff[exp(CBPPLeff)1CBPPLeff]
Leff=1eαLα
Aeff=E(r)22E(r)4.
gB[Al]gB[Ge]=CB[Al]CB[Ge]Aeff[Al]Aeff[Ge].
Pth=κAeffgBLeff
κ=ln[RSBSηβSCBPth].
gB[Al]gB[Ge]=Pth[Ge]Pth[Al]Leff[Ge]Leff[Al]κ[Al]κ[Ge]Aeff[Al]Aeff[Ge].
R=π2kBTn8p1222Eλ4
Δν=ΔνGGln(2)
gB[Al]gB[Ge]=νB[Ge]Δν[Ge]νB[Al]Δν[Al]
E(r,z;t)=A1f(r)cos(ω1tβ1z)+A2f(r)cos(ω2t+β2z)
Δρe=ρCγEEt8π
Δρe(r,z;t)=Af(r)2cos(ΩmtQmz)
N[Ge]=1.00+5.235Δn[Ge]N[Al]=1.003.512Δn[Al]
γ(z)=Δρe(r,z)*Δρe(r,0)|Δρ(r,0)|2
1Ld=1Labs+1Lwg.
gB[Al]gB[Ge]=νB[Ge]2νB[Al]2Ld[Al]Ld[Ge].

Metrics