Abstract

STED microscopes are commonly built using separate optical paths for the excitation and the STED beam. As a result, the beams must be co-aligned and can be subject to mechanical drift. Here, we present a single-path STED microscope whose beams are aligned by design and hence is insensitive to mechanical drift. The design of a phase plate is described which selectively modulates the STED beam but leaves the excitation beam unaffected. The performance of the single-beam setup is on par with previous dual-beam designs.

© 2009 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
    [CrossRef]
  2. T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97(15), 8206–8210 (2000).
    [CrossRef]
  3. V. Westphal and S. W. Hell, “Nanoscale Resolution in the Focal Plane of an Optical Microscope,” Phys. Rev. Lett. 94(14), 143903–143904 (2005).
    [CrossRef]
  4. G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A. 103(31), 11440–11445 (2006).
    [CrossRef]
  5. S. W. Hell, “Far-Field Optical Nanoscopy,” Science 316(5828), 1153–1158 (2007).
    [CrossRef]
  6. B. Harke, J. Keller, C. K. Ullal, V. Westphal, A. Schönle, and S. W. Hell, “Resolution scaling in STED microscopy,” Opt. Express 16(6), 4154–4162 (2008).
    [CrossRef]
  7. D. Wildanger, E. Rittweger, L. Kastrup, and S. W. Hell, “STED microscopy with a supercontinuum laser source,” Opt. Express 16(13), 9614–9621 (2008).
    [CrossRef]
  8. D. Wildanger, R. Medda, L. Kastrup, and S. W. Hell, “A compact STED microscope providing 3D nanoscale resolution,” J. Microsc. (2009), doi:.
    [CrossRef]
  9. H.-Y. Tsai, H. I. Smith, and R. Menon, “Reduction of focal-spot size using dichromats in absorbance modulation,” Opt. Lett. 33(24), 2916–2918 (2008).
    [CrossRef]
  10. R. Menon, P. Rogge, and H.-Y. Tsai, “Design of diffractive lenses that generate optical nulls without phase singularities,” J. Opt. Soc. Am. A 26(2), 297–304 (2009).
    [CrossRef]
  11. L. Kastrup, and V. Westphal, “Wavelength or polarisation sensitive optical assembly and use thereof,” German Patent DE102007025688A1, 2007/06/01.
  12. J. Keller, A. Schönle, and S. W. Hell, “Efficient fluorescence inhibition patterns for RESOLFT microscopy,” Opt. Express 15(6), 3361–3371 (2007).
    [CrossRef]
  13. V. V. Kotlyar, A. A. Almazov, S. N. Khonina, V. A. Soifer, H. Elfstrom, and J. Turunen, “Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate,” J. Opt. Soc. Am. A 22(5), 849–861 (2005).
    [CrossRef]
  14. G.-H. Kim, J.-H. Jeon, K.-H. Ko, H.-J. Moon, J.-H. Lee, and J.-S. Chang, “Optical vortices produced with a nonspiral phase plate,” Appl. Opt. 36(33), 8614–8621 (1997).
    [CrossRef]
  15. V. G. Shvedov, Y. V. Izdebskaya, A. N. Alekseev, and A. V. Volyar, “The formation of optical vortices in the course of light diffraction on a dielectric wedge,” Tech. Phys. Lett. 28(3), 256–259 (2002).
    [CrossRef]
  16. X.-C. Yuan, B. P. S. Ahluwalia, S. H. Tao, W. C. Cheong, L. S. Zhang, J. Lin, J. Bu, and R. E. Burge, “Wavelength-scalable micro-fabricated wedge for generation of optical vortex beam in optical manipulation,” Appl. Phys. B 86(2), 209–213 (2007).
    [CrossRef]
  17. I. Gregor and J. Enderlein, “Focusing astigmatic Gaussian beams through optical systems with a high numerical aperture,” Opt. Lett. 30(19), 2527–2529 (2005).
    [CrossRef]

2009

D. Wildanger, R. Medda, L. Kastrup, and S. W. Hell, “A compact STED microscope providing 3D nanoscale resolution,” J. Microsc. (2009), doi:.
[CrossRef]

R. Menon, P. Rogge, and H.-Y. Tsai, “Design of diffractive lenses that generate optical nulls without phase singularities,” J. Opt. Soc. Am. A 26(2), 297–304 (2009).
[CrossRef]

2008

2007

J. Keller, A. Schönle, and S. W. Hell, “Efficient fluorescence inhibition patterns for RESOLFT microscopy,” Opt. Express 15(6), 3361–3371 (2007).
[CrossRef]

X.-C. Yuan, B. P. S. Ahluwalia, S. H. Tao, W. C. Cheong, L. S. Zhang, J. Lin, J. Bu, and R. E. Burge, “Wavelength-scalable micro-fabricated wedge for generation of optical vortex beam in optical manipulation,” Appl. Phys. B 86(2), 209–213 (2007).
[CrossRef]

S. W. Hell, “Far-Field Optical Nanoscopy,” Science 316(5828), 1153–1158 (2007).
[CrossRef]

2006

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A. 103(31), 11440–11445 (2006).
[CrossRef]

2005

2002

V. G. Shvedov, Y. V. Izdebskaya, A. N. Alekseev, and A. V. Volyar, “The formation of optical vortices in the course of light diffraction on a dielectric wedge,” Tech. Phys. Lett. 28(3), 256–259 (2002).
[CrossRef]

2000

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97(15), 8206–8210 (2000).
[CrossRef]

1997

1994

Ahluwalia, B. P. S.

X.-C. Yuan, B. P. S. Ahluwalia, S. H. Tao, W. C. Cheong, L. S. Zhang, J. Lin, J. Bu, and R. E. Burge, “Wavelength-scalable micro-fabricated wedge for generation of optical vortex beam in optical manipulation,” Appl. Phys. B 86(2), 209–213 (2007).
[CrossRef]

Alekseev, A. N.

V. G. Shvedov, Y. V. Izdebskaya, A. N. Alekseev, and A. V. Volyar, “The formation of optical vortices in the course of light diffraction on a dielectric wedge,” Tech. Phys. Lett. 28(3), 256–259 (2002).
[CrossRef]

Almazov, A. A.

Andrei, M. A.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A. 103(31), 11440–11445 (2006).
[CrossRef]

Bu, J.

X.-C. Yuan, B. P. S. Ahluwalia, S. H. Tao, W. C. Cheong, L. S. Zhang, J. Lin, J. Bu, and R. E. Burge, “Wavelength-scalable micro-fabricated wedge for generation of optical vortex beam in optical manipulation,” Appl. Phys. B 86(2), 209–213 (2007).
[CrossRef]

Burge, R. E.

X.-C. Yuan, B. P. S. Ahluwalia, S. H. Tao, W. C. Cheong, L. S. Zhang, J. Lin, J. Bu, and R. E. Burge, “Wavelength-scalable micro-fabricated wedge for generation of optical vortex beam in optical manipulation,” Appl. Phys. B 86(2), 209–213 (2007).
[CrossRef]

Chang, J.-S.

Cheong, W. C.

X.-C. Yuan, B. P. S. Ahluwalia, S. H. Tao, W. C. Cheong, L. S. Zhang, J. Lin, J. Bu, and R. E. Burge, “Wavelength-scalable micro-fabricated wedge for generation of optical vortex beam in optical manipulation,” Appl. Phys. B 86(2), 209–213 (2007).
[CrossRef]

Donnert, G.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A. 103(31), 11440–11445 (2006).
[CrossRef]

Dyba, M.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97(15), 8206–8210 (2000).
[CrossRef]

Eggeling, C.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A. 103(31), 11440–11445 (2006).
[CrossRef]

Egner, A.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97(15), 8206–8210 (2000).
[CrossRef]

Elfstrom, H.

Enderlein, J.

Gregor, I.

Harke, B.

Hell, S. W.

D. Wildanger, R. Medda, L. Kastrup, and S. W. Hell, “A compact STED microscope providing 3D nanoscale resolution,” J. Microsc. (2009), doi:.
[CrossRef]

B. Harke, J. Keller, C. K. Ullal, V. Westphal, A. Schönle, and S. W. Hell, “Resolution scaling in STED microscopy,” Opt. Express 16(6), 4154–4162 (2008).
[CrossRef]

D. Wildanger, E. Rittweger, L. Kastrup, and S. W. Hell, “STED microscopy with a supercontinuum laser source,” Opt. Express 16(13), 9614–9621 (2008).
[CrossRef]

S. W. Hell, “Far-Field Optical Nanoscopy,” Science 316(5828), 1153–1158 (2007).
[CrossRef]

J. Keller, A. Schönle, and S. W. Hell, “Efficient fluorescence inhibition patterns for RESOLFT microscopy,” Opt. Express 15(6), 3361–3371 (2007).
[CrossRef]

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A. 103(31), 11440–11445 (2006).
[CrossRef]

V. Westphal and S. W. Hell, “Nanoscale Resolution in the Focal Plane of an Optical Microscope,” Phys. Rev. Lett. 94(14), 143903–143904 (2005).
[CrossRef]

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97(15), 8206–8210 (2000).
[CrossRef]

S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
[CrossRef]

Izdebskaya, Y. V.

V. G. Shvedov, Y. V. Izdebskaya, A. N. Alekseev, and A. V. Volyar, “The formation of optical vortices in the course of light diffraction on a dielectric wedge,” Tech. Phys. Lett. 28(3), 256–259 (2002).
[CrossRef]

Jahn, R.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A. 103(31), 11440–11445 (2006).
[CrossRef]

Jakobs, S.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97(15), 8206–8210 (2000).
[CrossRef]

Jeon, J.-H.

Kastrup, L.

D. Wildanger, R. Medda, L. Kastrup, and S. W. Hell, “A compact STED microscope providing 3D nanoscale resolution,” J. Microsc. (2009), doi:.
[CrossRef]

D. Wildanger, E. Rittweger, L. Kastrup, and S. W. Hell, “STED microscopy with a supercontinuum laser source,” Opt. Express 16(13), 9614–9621 (2008).
[CrossRef]

Keller, J.

B. Harke, J. Keller, C. K. Ullal, V. Westphal, A. Schönle, and S. W. Hell, “Resolution scaling in STED microscopy,” Opt. Express 16(6), 4154–4162 (2008).
[CrossRef]

J. Keller, A. Schönle, and S. W. Hell, “Efficient fluorescence inhibition patterns for RESOLFT microscopy,” Opt. Express 15(6), 3361–3371 (2007).
[CrossRef]

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A. 103(31), 11440–11445 (2006).
[CrossRef]

Khonina, S. N.

Kim, G.-H.

Klar, T. A.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97(15), 8206–8210 (2000).
[CrossRef]

Ko, K.-H.

Kotlyar, V. V.

Lee, J.-H.

Lin, J.

X.-C. Yuan, B. P. S. Ahluwalia, S. H. Tao, W. C. Cheong, L. S. Zhang, J. Lin, J. Bu, and R. E. Burge, “Wavelength-scalable micro-fabricated wedge for generation of optical vortex beam in optical manipulation,” Appl. Phys. B 86(2), 209–213 (2007).
[CrossRef]

Lührmann, R.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A. 103(31), 11440–11445 (2006).
[CrossRef]

Medda, R.

D. Wildanger, R. Medda, L. Kastrup, and S. W. Hell, “A compact STED microscope providing 3D nanoscale resolution,” J. Microsc. (2009), doi:.
[CrossRef]

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A. 103(31), 11440–11445 (2006).
[CrossRef]

Menon, R.

Moon, H.-J.

Rittweger, E.

Rizzoli, S. O.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A. 103(31), 11440–11445 (2006).
[CrossRef]

Rogge, P.

Schönle, A.

Shvedov, V. G.

V. G. Shvedov, Y. V. Izdebskaya, A. N. Alekseev, and A. V. Volyar, “The formation of optical vortices in the course of light diffraction on a dielectric wedge,” Tech. Phys. Lett. 28(3), 256–259 (2002).
[CrossRef]

Smith, H. I.

Soifer, V. A.

Tao, S. H.

X.-C. Yuan, B. P. S. Ahluwalia, S. H. Tao, W. C. Cheong, L. S. Zhang, J. Lin, J. Bu, and R. E. Burge, “Wavelength-scalable micro-fabricated wedge for generation of optical vortex beam in optical manipulation,” Appl. Phys. B 86(2), 209–213 (2007).
[CrossRef]

Tsai, H.-Y.

Turunen, J.

Ullal, C. K.

Volyar, A. V.

V. G. Shvedov, Y. V. Izdebskaya, A. N. Alekseev, and A. V. Volyar, “The formation of optical vortices in the course of light diffraction on a dielectric wedge,” Tech. Phys. Lett. 28(3), 256–259 (2002).
[CrossRef]

Westphal, V.

B. Harke, J. Keller, C. K. Ullal, V. Westphal, A. Schönle, and S. W. Hell, “Resolution scaling in STED microscopy,” Opt. Express 16(6), 4154–4162 (2008).
[CrossRef]

V. Westphal and S. W. Hell, “Nanoscale Resolution in the Focal Plane of an Optical Microscope,” Phys. Rev. Lett. 94(14), 143903–143904 (2005).
[CrossRef]

Wichmann, J.

Wildanger, D.

D. Wildanger, R. Medda, L. Kastrup, and S. W. Hell, “A compact STED microscope providing 3D nanoscale resolution,” J. Microsc. (2009), doi:.
[CrossRef]

D. Wildanger, E. Rittweger, L. Kastrup, and S. W. Hell, “STED microscopy with a supercontinuum laser source,” Opt. Express 16(13), 9614–9621 (2008).
[CrossRef]

Yuan, X.-C.

X.-C. Yuan, B. P. S. Ahluwalia, S. H. Tao, W. C. Cheong, L. S. Zhang, J. Lin, J. Bu, and R. E. Burge, “Wavelength-scalable micro-fabricated wedge for generation of optical vortex beam in optical manipulation,” Appl. Phys. B 86(2), 209–213 (2007).
[CrossRef]

Zhang, L. S.

X.-C. Yuan, B. P. S. Ahluwalia, S. H. Tao, W. C. Cheong, L. S. Zhang, J. Lin, J. Bu, and R. E. Burge, “Wavelength-scalable micro-fabricated wedge for generation of optical vortex beam in optical manipulation,” Appl. Phys. B 86(2), 209–213 (2007).
[CrossRef]

Appl. Opt.

Appl. Phys. B

X.-C. Yuan, B. P. S. Ahluwalia, S. H. Tao, W. C. Cheong, L. S. Zhang, J. Lin, J. Bu, and R. E. Burge, “Wavelength-scalable micro-fabricated wedge for generation of optical vortex beam in optical manipulation,” Appl. Phys. B 86(2), 209–213 (2007).
[CrossRef]

J. Microsc.

D. Wildanger, R. Medda, L. Kastrup, and S. W. Hell, “A compact STED microscope providing 3D nanoscale resolution,” J. Microsc. (2009), doi:.
[CrossRef]

J. Opt. Soc. Am. A

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

V. Westphal and S. W. Hell, “Nanoscale Resolution in the Focal Plane of an Optical Microscope,” Phys. Rev. Lett. 94(14), 143903–143904 (2005).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A. 103(31), 11440–11445 (2006).
[CrossRef]

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97(15), 8206–8210 (2000).
[CrossRef]

Science

S. W. Hell, “Far-Field Optical Nanoscopy,” Science 316(5828), 1153–1158 (2007).
[CrossRef]

Tech. Phys. Lett.

V. G. Shvedov, Y. V. Izdebskaya, A. N. Alekseev, and A. V. Volyar, “The formation of optical vortices in the course of light diffraction on a dielectric wedge,” Tech. Phys. Lett. 28(3), 256–259 (2002).
[CrossRef]

Other

L. Kastrup, and V. Westphal, “Wavelength or polarisation sensitive optical assembly and use thereof,” German Patent DE102007025688A1, 2007/06/01.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics