Abstract

Generation of subpicosecond terahertz pulses is observed when graphite surfaces are illuminated with femtosecond near-infrared laser pulses. The nonlinear optical generation of THz pulses from graphite is unexpected since, in principle, the material possesses a centre of inversion symmetry. Experiments with highly oriented pyrolytic graphite crystals suggest that the THz radiation is generated by a transient photocurrent in a direction normal to the graphene planes, along the c-axis of the crystal. This is supported by magnetic-field induced changes in the THz electric-field polarization, and consequently, the direction of the photocurrent. We show that other forms of graphite, such as a pencil drawing on paper, are also capable of emitting THz pulses.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Brumfiel, “Graphene gets ready for the big time,” Nature 458(7237), 390–391 (2009).
    [PubMed]
  2. K. S. Krishnan and N. Ganguly, “Large anisotropy of the electrical conductivity of graphite,” Nature 144(3650), 667 (1939).
  3. M. Zanini, D. Grubisic, and J. E. Fischer, “Optical anisotropy of highly oriented pyrolytic graphite,” Phys. Status Solidi, B Basic Res. 90(1), 151–156 (1978).
  4. B. T. Kelly, “Physics of graphite,” Applied Science Publishers Ltd., Essex (1981).
  5. W. N. Reynolds, “Physical properties of graphite,” Elsevier Publishing Co. Ltd., Amsterdam (1968).
  6. M. Breusing, C. Ropers, and T. Elsaesser, “Ultrafast carrier dynamics in graphite,” Phys. Rev. Lett. 102(8), 086809 (2009).
    [PubMed]
  7. K. Seibert, G. C. Cho, W. Kütt, H. Kurz, D. H. Reitze, J. I. Dadap, H. Ahn, M. C. Downer, and A. M. Malvezzi, “Femtosecond carrier dynamics in graphite,” Phys. Rev. B 42(5), 2842–2851 (1990).
  8. G. M. Mikheev, R. G. Zonov, A. N. Obraztov, and Yu. P. Svirko, “Giant optical rectification effect in nanocarbon films,” Appl. Phys. Lett. 84(24), 4854–4856 (2004).
  9. R. W. Newson, J.-M. Ménard, C. Sames, M. Betz, and H. M. van Driel, “Coherently controlled ballistic charge currents injected in single-walled carbon nanotubes and graphite,” Nano Lett. 8(6), 1586–1589 (2008).
    [PubMed]
  10. N. C. J. van der Valk, W. Th. Wenckebach, and P. C. M. Planken, “Full mathematical description of electro-optic detection in optically isotropic crystals,” J. Opt. Soc. Am. B 21(3), 622–631 (2004).
  11. G. Zhao, R. N. Schouten, N. van der Valk, W. Th. Wenckebach, and P. C. M. Planken, “Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter,” Rev. Sci. Instrum. 73(4), 1715–1719 (2002).
  12. http://www.optigraph.fta-berlin.de/
  13. H. Legall, H. Stiel, A. Antonov, I. Grigorieva, V. Arkadiev, and A. Bjeoumikhov, “A new generation of X-ray optics based on pyrolytic graphite,” in Proceedings of 28th International Free Electron Laser conference, (BESSY, Berlin, Germany, 2006) pp. 798–801.
  14. N. C. J. van der Valk, P. C. M. Planken, A. N. Buijserd, and H. J. Bakker, “Influence of pump wavelength and crystal length on the phase matching of optical rectification,” J. Opt. Soc. Am. B 22(8), 1714–1718 (2005).
  15. X.-C. Zhang, Y. Jin, L. E. Kingsley, and M. Weiner, “Influence of electric and magnetic fields on THz radiation,” Appl. Phys. Lett. 62(20), 2477–2479 (1993).
  16. N. Sarukura, H. Ohtake, S. Izumida, and Z. Liu, “High average-power THz radiation from femtosecond laser-irradiated InAs in a magnetic field and its elliptical polarization characteristics,” J. Appl. Phys. 84(1), 654–656 (1998).
  17. J. Shan, C. Weiss, R. Wallenstein, R. Beigang, and T. F. Heinz, “Origin of magnetic field enhancement in the generation of terahertz radiation from semiconductor surfaces,” Opt. Lett. 26(11), 849–851 (2001).
  18. M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Theory of magnetic-field enhancement of surface-field terahertz emission,” J. Appl. Phys. 91, 2104–2106 (2002).
  19. A. D. Modestov, J. Gun, and O. Lev, “Graphite photochemistry 2. Photochemical studies of highly oriented pyrolitic graphite,” J. Electroanal. Chem. 476(2), 118–131 (1999).
  20. J.-P. Randin and E. Yeager, “Differential capacitance studies on the basal plane of stress-annealed pyrolytic graphite,” J. Electroanal. Chem. 36(2), 257–276 (1972).
  21. H. Dember, “Photoelectromotive force in cuprous oxide crystals,” Phys. Z. 32, 554–556 (1931).
  22. M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65(16), 165301 (2002).
  23. S. R. Snyder, T. Foecke, H. S. White, and W. W. Gerberich, “Imaging of stacking faults in highly oriented pyrolytic graphite using scanning tunneling microscopy,” J. Mater. Res. 7(2), 341–344 (1992).
  24. Y. Lu, M. Muñoz, C. S. Steplecaru, C. Hao, M. Bai, N. Garcia, K. Schindler, and P. Esquinazi, “Electrostatic force microscopy on oriented graphite surfaces: coexistence of insulating and conducting behaviors,” Phys. Rev. Lett. 97(7), 076805 (2006).
    [PubMed]
  25. S. Banerjee, M. Sardar, N. Gayathri, A. K. Thyagi, and B. Raj, “Conductivity landscape of highly oriented pyrolytic graphite surfaces containing ribbons and edges,” Phys. Rev. B 72(7), 075418 (2005).
  26. G. D. Metcalfe, H. Shen, M. Wraback, A. Hirai, F. Wu, and J. S. Speck, “Enhanced terahertz radiation from high stacking fault density nonpolar GaN,” Appl. Phys. Lett. 92(24), 241106 (2008).
  27. E. Abraham, A. Younus, A. El Fatimy, J. C. Delagnes, E. Nguéma, and P. Mounaix, “Broadband terahertz imaging of documents written with lead pencils,” Opt. Commun. 282(15), 3104–3107 (2009).

2009 (3)

G. Brumfiel, “Graphene gets ready for the big time,” Nature 458(7237), 390–391 (2009).
[PubMed]

M. Breusing, C. Ropers, and T. Elsaesser, “Ultrafast carrier dynamics in graphite,” Phys. Rev. Lett. 102(8), 086809 (2009).
[PubMed]

E. Abraham, A. Younus, A. El Fatimy, J. C. Delagnes, E. Nguéma, and P. Mounaix, “Broadband terahertz imaging of documents written with lead pencils,” Opt. Commun. 282(15), 3104–3107 (2009).

2008 (2)

R. W. Newson, J.-M. Ménard, C. Sames, M. Betz, and H. M. van Driel, “Coherently controlled ballistic charge currents injected in single-walled carbon nanotubes and graphite,” Nano Lett. 8(6), 1586–1589 (2008).
[PubMed]

G. D. Metcalfe, H. Shen, M. Wraback, A. Hirai, F. Wu, and J. S. Speck, “Enhanced terahertz radiation from high stacking fault density nonpolar GaN,” Appl. Phys. Lett. 92(24), 241106 (2008).

2006 (1)

Y. Lu, M. Muñoz, C. S. Steplecaru, C. Hao, M. Bai, N. Garcia, K. Schindler, and P. Esquinazi, “Electrostatic force microscopy on oriented graphite surfaces: coexistence of insulating and conducting behaviors,” Phys. Rev. Lett. 97(7), 076805 (2006).
[PubMed]

2005 (2)

S. Banerjee, M. Sardar, N. Gayathri, A. K. Thyagi, and B. Raj, “Conductivity landscape of highly oriented pyrolytic graphite surfaces containing ribbons and edges,” Phys. Rev. B 72(7), 075418 (2005).

N. C. J. van der Valk, P. C. M. Planken, A. N. Buijserd, and H. J. Bakker, “Influence of pump wavelength and crystal length on the phase matching of optical rectification,” J. Opt. Soc. Am. B 22(8), 1714–1718 (2005).

2004 (2)

N. C. J. van der Valk, W. Th. Wenckebach, and P. C. M. Planken, “Full mathematical description of electro-optic detection in optically isotropic crystals,” J. Opt. Soc. Am. B 21(3), 622–631 (2004).

G. M. Mikheev, R. G. Zonov, A. N. Obraztov, and Yu. P. Svirko, “Giant optical rectification effect in nanocarbon films,” Appl. Phys. Lett. 84(24), 4854–4856 (2004).

2002 (3)

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65(16), 165301 (2002).

G. Zhao, R. N. Schouten, N. van der Valk, W. Th. Wenckebach, and P. C. M. Planken, “Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter,” Rev. Sci. Instrum. 73(4), 1715–1719 (2002).

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Theory of magnetic-field enhancement of surface-field terahertz emission,” J. Appl. Phys. 91, 2104–2106 (2002).

2001 (1)

1999 (1)

A. D. Modestov, J. Gun, and O. Lev, “Graphite photochemistry 2. Photochemical studies of highly oriented pyrolitic graphite,” J. Electroanal. Chem. 476(2), 118–131 (1999).

1998 (1)

N. Sarukura, H. Ohtake, S. Izumida, and Z. Liu, “High average-power THz radiation from femtosecond laser-irradiated InAs in a magnetic field and its elliptical polarization characteristics,” J. Appl. Phys. 84(1), 654–656 (1998).

1993 (1)

X.-C. Zhang, Y. Jin, L. E. Kingsley, and M. Weiner, “Influence of electric and magnetic fields on THz radiation,” Appl. Phys. Lett. 62(20), 2477–2479 (1993).

1992 (1)

S. R. Snyder, T. Foecke, H. S. White, and W. W. Gerberich, “Imaging of stacking faults in highly oriented pyrolytic graphite using scanning tunneling microscopy,” J. Mater. Res. 7(2), 341–344 (1992).

1990 (1)

K. Seibert, G. C. Cho, W. Kütt, H. Kurz, D. H. Reitze, J. I. Dadap, H. Ahn, M. C. Downer, and A. M. Malvezzi, “Femtosecond carrier dynamics in graphite,” Phys. Rev. B 42(5), 2842–2851 (1990).

1978 (1)

M. Zanini, D. Grubisic, and J. E. Fischer, “Optical anisotropy of highly oriented pyrolytic graphite,” Phys. Status Solidi, B Basic Res. 90(1), 151–156 (1978).

1972 (1)

J.-P. Randin and E. Yeager, “Differential capacitance studies on the basal plane of stress-annealed pyrolytic graphite,” J. Electroanal. Chem. 36(2), 257–276 (1972).

1939 (1)

K. S. Krishnan and N. Ganguly, “Large anisotropy of the electrical conductivity of graphite,” Nature 144(3650), 667 (1939).

1931 (1)

H. Dember, “Photoelectromotive force in cuprous oxide crystals,” Phys. Z. 32, 554–556 (1931).

Abraham, E.

E. Abraham, A. Younus, A. El Fatimy, J. C. Delagnes, E. Nguéma, and P. Mounaix, “Broadband terahertz imaging of documents written with lead pencils,” Opt. Commun. 282(15), 3104–3107 (2009).

Ahn, H.

K. Seibert, G. C. Cho, W. Kütt, H. Kurz, D. H. Reitze, J. I. Dadap, H. Ahn, M. C. Downer, and A. M. Malvezzi, “Femtosecond carrier dynamics in graphite,” Phys. Rev. B 42(5), 2842–2851 (1990).

Bai, M.

Y. Lu, M. Muñoz, C. S. Steplecaru, C. Hao, M. Bai, N. Garcia, K. Schindler, and P. Esquinazi, “Electrostatic force microscopy on oriented graphite surfaces: coexistence of insulating and conducting behaviors,” Phys. Rev. Lett. 97(7), 076805 (2006).
[PubMed]

Bakker, H. J.

Banerjee, S.

S. Banerjee, M. Sardar, N. Gayathri, A. K. Thyagi, and B. Raj, “Conductivity landscape of highly oriented pyrolytic graphite surfaces containing ribbons and edges,” Phys. Rev. B 72(7), 075418 (2005).

Beigang, R.

Betz, M.

R. W. Newson, J.-M. Ménard, C. Sames, M. Betz, and H. M. van Driel, “Coherently controlled ballistic charge currents injected in single-walled carbon nanotubes and graphite,” Nano Lett. 8(6), 1586–1589 (2008).
[PubMed]

Breusing, M.

M. Breusing, C. Ropers, and T. Elsaesser, “Ultrafast carrier dynamics in graphite,” Phys. Rev. Lett. 102(8), 086809 (2009).
[PubMed]

Brumfiel, G.

G. Brumfiel, “Graphene gets ready for the big time,” Nature 458(7237), 390–391 (2009).
[PubMed]

Buijserd, A. N.

Cho, G. C.

K. Seibert, G. C. Cho, W. Kütt, H. Kurz, D. H. Reitze, J. I. Dadap, H. Ahn, M. C. Downer, and A. M. Malvezzi, “Femtosecond carrier dynamics in graphite,” Phys. Rev. B 42(5), 2842–2851 (1990).

Corchia, A.

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Theory of magnetic-field enhancement of surface-field terahertz emission,” J. Appl. Phys. 91, 2104–2106 (2002).

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65(16), 165301 (2002).

Dadap, J. I.

K. Seibert, G. C. Cho, W. Kütt, H. Kurz, D. H. Reitze, J. I. Dadap, H. Ahn, M. C. Downer, and A. M. Malvezzi, “Femtosecond carrier dynamics in graphite,” Phys. Rev. B 42(5), 2842–2851 (1990).

Davies, A. G.

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65(16), 165301 (2002).

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Theory of magnetic-field enhancement of surface-field terahertz emission,” J. Appl. Phys. 91, 2104–2106 (2002).

Delagnes, J. C.

E. Abraham, A. Younus, A. El Fatimy, J. C. Delagnes, E. Nguéma, and P. Mounaix, “Broadband terahertz imaging of documents written with lead pencils,” Opt. Commun. 282(15), 3104–3107 (2009).

Dember, H.

H. Dember, “Photoelectromotive force in cuprous oxide crystals,” Phys. Z. 32, 554–556 (1931).

Downer, M. C.

K. Seibert, G. C. Cho, W. Kütt, H. Kurz, D. H. Reitze, J. I. Dadap, H. Ahn, M. C. Downer, and A. M. Malvezzi, “Femtosecond carrier dynamics in graphite,” Phys. Rev. B 42(5), 2842–2851 (1990).

El Fatimy, A.

E. Abraham, A. Younus, A. El Fatimy, J. C. Delagnes, E. Nguéma, and P. Mounaix, “Broadband terahertz imaging of documents written with lead pencils,” Opt. Commun. 282(15), 3104–3107 (2009).

Elsaesser, T.

M. Breusing, C. Ropers, and T. Elsaesser, “Ultrafast carrier dynamics in graphite,” Phys. Rev. Lett. 102(8), 086809 (2009).
[PubMed]

Esquinazi, P.

Y. Lu, M. Muñoz, C. S. Steplecaru, C. Hao, M. Bai, N. Garcia, K. Schindler, and P. Esquinazi, “Electrostatic force microscopy on oriented graphite surfaces: coexistence of insulating and conducting behaviors,” Phys. Rev. Lett. 97(7), 076805 (2006).
[PubMed]

Fischer, J. E.

M. Zanini, D. Grubisic, and J. E. Fischer, “Optical anisotropy of highly oriented pyrolytic graphite,” Phys. Status Solidi, B Basic Res. 90(1), 151–156 (1978).

Foecke, T.

S. R. Snyder, T. Foecke, H. S. White, and W. W. Gerberich, “Imaging of stacking faults in highly oriented pyrolytic graphite using scanning tunneling microscopy,” J. Mater. Res. 7(2), 341–344 (1992).

Ganguly, N.

K. S. Krishnan and N. Ganguly, “Large anisotropy of the electrical conductivity of graphite,” Nature 144(3650), 667 (1939).

Garcia, N.

Y. Lu, M. Muñoz, C. S. Steplecaru, C. Hao, M. Bai, N. Garcia, K. Schindler, and P. Esquinazi, “Electrostatic force microscopy on oriented graphite surfaces: coexistence of insulating and conducting behaviors,” Phys. Rev. Lett. 97(7), 076805 (2006).
[PubMed]

Gayathri, N.

S. Banerjee, M. Sardar, N. Gayathri, A. K. Thyagi, and B. Raj, “Conductivity landscape of highly oriented pyrolytic graphite surfaces containing ribbons and edges,” Phys. Rev. B 72(7), 075418 (2005).

Gerberich, W. W.

S. R. Snyder, T. Foecke, H. S. White, and W. W. Gerberich, “Imaging of stacking faults in highly oriented pyrolytic graphite using scanning tunneling microscopy,” J. Mater. Res. 7(2), 341–344 (1992).

Grubisic, D.

M. Zanini, D. Grubisic, and J. E. Fischer, “Optical anisotropy of highly oriented pyrolytic graphite,” Phys. Status Solidi, B Basic Res. 90(1), 151–156 (1978).

Gun, J.

A. D. Modestov, J. Gun, and O. Lev, “Graphite photochemistry 2. Photochemical studies of highly oriented pyrolitic graphite,” J. Electroanal. Chem. 476(2), 118–131 (1999).

Hao, C.

Y. Lu, M. Muñoz, C. S. Steplecaru, C. Hao, M. Bai, N. Garcia, K. Schindler, and P. Esquinazi, “Electrostatic force microscopy on oriented graphite surfaces: coexistence of insulating and conducting behaviors,” Phys. Rev. Lett. 97(7), 076805 (2006).
[PubMed]

Heinz, T. F.

Hirai, A.

G. D. Metcalfe, H. Shen, M. Wraback, A. Hirai, F. Wu, and J. S. Speck, “Enhanced terahertz radiation from high stacking fault density nonpolar GaN,” Appl. Phys. Lett. 92(24), 241106 (2008).

Izumida, S.

N. Sarukura, H. Ohtake, S. Izumida, and Z. Liu, “High average-power THz radiation from femtosecond laser-irradiated InAs in a magnetic field and its elliptical polarization characteristics,” J. Appl. Phys. 84(1), 654–656 (1998).

Jin, Y.

X.-C. Zhang, Y. Jin, L. E. Kingsley, and M. Weiner, “Influence of electric and magnetic fields on THz radiation,” Appl. Phys. Lett. 62(20), 2477–2479 (1993).

Johnston, M. B.

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65(16), 165301 (2002).

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Theory of magnetic-field enhancement of surface-field terahertz emission,” J. Appl. Phys. 91, 2104–2106 (2002).

Kingsley, L. E.

X.-C. Zhang, Y. Jin, L. E. Kingsley, and M. Weiner, “Influence of electric and magnetic fields on THz radiation,” Appl. Phys. Lett. 62(20), 2477–2479 (1993).

Krishnan, K. S.

K. S. Krishnan and N. Ganguly, “Large anisotropy of the electrical conductivity of graphite,” Nature 144(3650), 667 (1939).

Kurz, H.

K. Seibert, G. C. Cho, W. Kütt, H. Kurz, D. H. Reitze, J. I. Dadap, H. Ahn, M. C. Downer, and A. M. Malvezzi, “Femtosecond carrier dynamics in graphite,” Phys. Rev. B 42(5), 2842–2851 (1990).

Kütt, W.

K. Seibert, G. C. Cho, W. Kütt, H. Kurz, D. H. Reitze, J. I. Dadap, H. Ahn, M. C. Downer, and A. M. Malvezzi, “Femtosecond carrier dynamics in graphite,” Phys. Rev. B 42(5), 2842–2851 (1990).

Lev, O.

A. D. Modestov, J. Gun, and O. Lev, “Graphite photochemistry 2. Photochemical studies of highly oriented pyrolitic graphite,” J. Electroanal. Chem. 476(2), 118–131 (1999).

Linfield, E. H.

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Theory of magnetic-field enhancement of surface-field terahertz emission,” J. Appl. Phys. 91, 2104–2106 (2002).

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65(16), 165301 (2002).

Liu, Z.

N. Sarukura, H. Ohtake, S. Izumida, and Z. Liu, “High average-power THz radiation from femtosecond laser-irradiated InAs in a magnetic field and its elliptical polarization characteristics,” J. Appl. Phys. 84(1), 654–656 (1998).

Lu, Y.

Y. Lu, M. Muñoz, C. S. Steplecaru, C. Hao, M. Bai, N. Garcia, K. Schindler, and P. Esquinazi, “Electrostatic force microscopy on oriented graphite surfaces: coexistence of insulating and conducting behaviors,” Phys. Rev. Lett. 97(7), 076805 (2006).
[PubMed]

Malvezzi, A. M.

K. Seibert, G. C. Cho, W. Kütt, H. Kurz, D. H. Reitze, J. I. Dadap, H. Ahn, M. C. Downer, and A. M. Malvezzi, “Femtosecond carrier dynamics in graphite,” Phys. Rev. B 42(5), 2842–2851 (1990).

Ménard, J.-M.

R. W. Newson, J.-M. Ménard, C. Sames, M. Betz, and H. M. van Driel, “Coherently controlled ballistic charge currents injected in single-walled carbon nanotubes and graphite,” Nano Lett. 8(6), 1586–1589 (2008).
[PubMed]

Metcalfe, G. D.

G. D. Metcalfe, H. Shen, M. Wraback, A. Hirai, F. Wu, and J. S. Speck, “Enhanced terahertz radiation from high stacking fault density nonpolar GaN,” Appl. Phys. Lett. 92(24), 241106 (2008).

Mikheev, G. M.

G. M. Mikheev, R. G. Zonov, A. N. Obraztov, and Yu. P. Svirko, “Giant optical rectification effect in nanocarbon films,” Appl. Phys. Lett. 84(24), 4854–4856 (2004).

Modestov, A. D.

A. D. Modestov, J. Gun, and O. Lev, “Graphite photochemistry 2. Photochemical studies of highly oriented pyrolitic graphite,” J. Electroanal. Chem. 476(2), 118–131 (1999).

Mounaix, P.

E. Abraham, A. Younus, A. El Fatimy, J. C. Delagnes, E. Nguéma, and P. Mounaix, “Broadband terahertz imaging of documents written with lead pencils,” Opt. Commun. 282(15), 3104–3107 (2009).

Muñoz, M.

Y. Lu, M. Muñoz, C. S. Steplecaru, C. Hao, M. Bai, N. Garcia, K. Schindler, and P. Esquinazi, “Electrostatic force microscopy on oriented graphite surfaces: coexistence of insulating and conducting behaviors,” Phys. Rev. Lett. 97(7), 076805 (2006).
[PubMed]

Newson, R. W.

R. W. Newson, J.-M. Ménard, C. Sames, M. Betz, and H. M. van Driel, “Coherently controlled ballistic charge currents injected in single-walled carbon nanotubes and graphite,” Nano Lett. 8(6), 1586–1589 (2008).
[PubMed]

Nguéma, E.

E. Abraham, A. Younus, A. El Fatimy, J. C. Delagnes, E. Nguéma, and P. Mounaix, “Broadband terahertz imaging of documents written with lead pencils,” Opt. Commun. 282(15), 3104–3107 (2009).

Obraztov, A. N.

G. M. Mikheev, R. G. Zonov, A. N. Obraztov, and Yu. P. Svirko, “Giant optical rectification effect in nanocarbon films,” Appl. Phys. Lett. 84(24), 4854–4856 (2004).

Ohtake, H.

N. Sarukura, H. Ohtake, S. Izumida, and Z. Liu, “High average-power THz radiation from femtosecond laser-irradiated InAs in a magnetic field and its elliptical polarization characteristics,” J. Appl. Phys. 84(1), 654–656 (1998).

Planken, P. C. M.

Raj, B.

S. Banerjee, M. Sardar, N. Gayathri, A. K. Thyagi, and B. Raj, “Conductivity landscape of highly oriented pyrolytic graphite surfaces containing ribbons and edges,” Phys. Rev. B 72(7), 075418 (2005).

Randin, J.-P.

J.-P. Randin and E. Yeager, “Differential capacitance studies on the basal plane of stress-annealed pyrolytic graphite,” J. Electroanal. Chem. 36(2), 257–276 (1972).

Reitze, D. H.

K. Seibert, G. C. Cho, W. Kütt, H. Kurz, D. H. Reitze, J. I. Dadap, H. Ahn, M. C. Downer, and A. M. Malvezzi, “Femtosecond carrier dynamics in graphite,” Phys. Rev. B 42(5), 2842–2851 (1990).

Ropers, C.

M. Breusing, C. Ropers, and T. Elsaesser, “Ultrafast carrier dynamics in graphite,” Phys. Rev. Lett. 102(8), 086809 (2009).
[PubMed]

Sames, C.

R. W. Newson, J.-M. Ménard, C. Sames, M. Betz, and H. M. van Driel, “Coherently controlled ballistic charge currents injected in single-walled carbon nanotubes and graphite,” Nano Lett. 8(6), 1586–1589 (2008).
[PubMed]

Sardar, M.

S. Banerjee, M. Sardar, N. Gayathri, A. K. Thyagi, and B. Raj, “Conductivity landscape of highly oriented pyrolytic graphite surfaces containing ribbons and edges,” Phys. Rev. B 72(7), 075418 (2005).

Sarukura, N.

N. Sarukura, H. Ohtake, S. Izumida, and Z. Liu, “High average-power THz radiation from femtosecond laser-irradiated InAs in a magnetic field and its elliptical polarization characteristics,” J. Appl. Phys. 84(1), 654–656 (1998).

Schindler, K.

Y. Lu, M. Muñoz, C. S. Steplecaru, C. Hao, M. Bai, N. Garcia, K. Schindler, and P. Esquinazi, “Electrostatic force microscopy on oriented graphite surfaces: coexistence of insulating and conducting behaviors,” Phys. Rev. Lett. 97(7), 076805 (2006).
[PubMed]

Schouten, R. N.

G. Zhao, R. N. Schouten, N. van der Valk, W. Th. Wenckebach, and P. C. M. Planken, “Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter,” Rev. Sci. Instrum. 73(4), 1715–1719 (2002).

Seibert, K.

K. Seibert, G. C. Cho, W. Kütt, H. Kurz, D. H. Reitze, J. I. Dadap, H. Ahn, M. C. Downer, and A. M. Malvezzi, “Femtosecond carrier dynamics in graphite,” Phys. Rev. B 42(5), 2842–2851 (1990).

Shan, J.

Shen, H.

G. D. Metcalfe, H. Shen, M. Wraback, A. Hirai, F. Wu, and J. S. Speck, “Enhanced terahertz radiation from high stacking fault density nonpolar GaN,” Appl. Phys. Lett. 92(24), 241106 (2008).

Snyder, S. R.

S. R. Snyder, T. Foecke, H. S. White, and W. W. Gerberich, “Imaging of stacking faults in highly oriented pyrolytic graphite using scanning tunneling microscopy,” J. Mater. Res. 7(2), 341–344 (1992).

Speck, J. S.

G. D. Metcalfe, H. Shen, M. Wraback, A. Hirai, F. Wu, and J. S. Speck, “Enhanced terahertz radiation from high stacking fault density nonpolar GaN,” Appl. Phys. Lett. 92(24), 241106 (2008).

Steplecaru, C. S.

Y. Lu, M. Muñoz, C. S. Steplecaru, C. Hao, M. Bai, N. Garcia, K. Schindler, and P. Esquinazi, “Electrostatic force microscopy on oriented graphite surfaces: coexistence of insulating and conducting behaviors,” Phys. Rev. Lett. 97(7), 076805 (2006).
[PubMed]

Svirko, Yu. P.

G. M. Mikheev, R. G. Zonov, A. N. Obraztov, and Yu. P. Svirko, “Giant optical rectification effect in nanocarbon films,” Appl. Phys. Lett. 84(24), 4854–4856 (2004).

Thyagi, A. K.

S. Banerjee, M. Sardar, N. Gayathri, A. K. Thyagi, and B. Raj, “Conductivity landscape of highly oriented pyrolytic graphite surfaces containing ribbons and edges,” Phys. Rev. B 72(7), 075418 (2005).

van der Valk, N.

G. Zhao, R. N. Schouten, N. van der Valk, W. Th. Wenckebach, and P. C. M. Planken, “Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter,” Rev. Sci. Instrum. 73(4), 1715–1719 (2002).

van der Valk, N. C. J.

van Driel, H. M.

R. W. Newson, J.-M. Ménard, C. Sames, M. Betz, and H. M. van Driel, “Coherently controlled ballistic charge currents injected in single-walled carbon nanotubes and graphite,” Nano Lett. 8(6), 1586–1589 (2008).
[PubMed]

Wallenstein, R.

Weiner, M.

X.-C. Zhang, Y. Jin, L. E. Kingsley, and M. Weiner, “Influence of electric and magnetic fields on THz radiation,” Appl. Phys. Lett. 62(20), 2477–2479 (1993).

Weiss, C.

Wenckebach, W. Th.

N. C. J. van der Valk, W. Th. Wenckebach, and P. C. M. Planken, “Full mathematical description of electro-optic detection in optically isotropic crystals,” J. Opt. Soc. Am. B 21(3), 622–631 (2004).

G. Zhao, R. N. Schouten, N. van der Valk, W. Th. Wenckebach, and P. C. M. Planken, “Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter,” Rev. Sci. Instrum. 73(4), 1715–1719 (2002).

White, H. S.

S. R. Snyder, T. Foecke, H. S. White, and W. W. Gerberich, “Imaging of stacking faults in highly oriented pyrolytic graphite using scanning tunneling microscopy,” J. Mater. Res. 7(2), 341–344 (1992).

Whittaker, D. M.

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65(16), 165301 (2002).

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Theory of magnetic-field enhancement of surface-field terahertz emission,” J. Appl. Phys. 91, 2104–2106 (2002).

Wraback, M.

G. D. Metcalfe, H. Shen, M. Wraback, A. Hirai, F. Wu, and J. S. Speck, “Enhanced terahertz radiation from high stacking fault density nonpolar GaN,” Appl. Phys. Lett. 92(24), 241106 (2008).

Wu, F.

G. D. Metcalfe, H. Shen, M. Wraback, A. Hirai, F. Wu, and J. S. Speck, “Enhanced terahertz radiation from high stacking fault density nonpolar GaN,” Appl. Phys. Lett. 92(24), 241106 (2008).

Yeager, E.

J.-P. Randin and E. Yeager, “Differential capacitance studies on the basal plane of stress-annealed pyrolytic graphite,” J. Electroanal. Chem. 36(2), 257–276 (1972).

Younus, A.

E. Abraham, A. Younus, A. El Fatimy, J. C. Delagnes, E. Nguéma, and P. Mounaix, “Broadband terahertz imaging of documents written with lead pencils,” Opt. Commun. 282(15), 3104–3107 (2009).

Zanini, M.

M. Zanini, D. Grubisic, and J. E. Fischer, “Optical anisotropy of highly oriented pyrolytic graphite,” Phys. Status Solidi, B Basic Res. 90(1), 151–156 (1978).

Zhang, X.-C.

X.-C. Zhang, Y. Jin, L. E. Kingsley, and M. Weiner, “Influence of electric and magnetic fields on THz radiation,” Appl. Phys. Lett. 62(20), 2477–2479 (1993).

Zhao, G.

G. Zhao, R. N. Schouten, N. van der Valk, W. Th. Wenckebach, and P. C. M. Planken, “Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter,” Rev. Sci. Instrum. 73(4), 1715–1719 (2002).

Zonov, R. G.

G. M. Mikheev, R. G. Zonov, A. N. Obraztov, and Yu. P. Svirko, “Giant optical rectification effect in nanocarbon films,” Appl. Phys. Lett. 84(24), 4854–4856 (2004).

Appl. Phys. Lett. (3)

G. M. Mikheev, R. G. Zonov, A. N. Obraztov, and Yu. P. Svirko, “Giant optical rectification effect in nanocarbon films,” Appl. Phys. Lett. 84(24), 4854–4856 (2004).

X.-C. Zhang, Y. Jin, L. E. Kingsley, and M. Weiner, “Influence of electric and magnetic fields on THz radiation,” Appl. Phys. Lett. 62(20), 2477–2479 (1993).

G. D. Metcalfe, H. Shen, M. Wraback, A. Hirai, F. Wu, and J. S. Speck, “Enhanced terahertz radiation from high stacking fault density nonpolar GaN,” Appl. Phys. Lett. 92(24), 241106 (2008).

J. Appl. Phys. (2)

N. Sarukura, H. Ohtake, S. Izumida, and Z. Liu, “High average-power THz radiation from femtosecond laser-irradiated InAs in a magnetic field and its elliptical polarization characteristics,” J. Appl. Phys. 84(1), 654–656 (1998).

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Theory of magnetic-field enhancement of surface-field terahertz emission,” J. Appl. Phys. 91, 2104–2106 (2002).

J. Electroanal. Chem. (2)

A. D. Modestov, J. Gun, and O. Lev, “Graphite photochemistry 2. Photochemical studies of highly oriented pyrolitic graphite,” J. Electroanal. Chem. 476(2), 118–131 (1999).

J.-P. Randin and E. Yeager, “Differential capacitance studies on the basal plane of stress-annealed pyrolytic graphite,” J. Electroanal. Chem. 36(2), 257–276 (1972).

J. Mater. Res. (1)

S. R. Snyder, T. Foecke, H. S. White, and W. W. Gerberich, “Imaging of stacking faults in highly oriented pyrolytic graphite using scanning tunneling microscopy,” J. Mater. Res. 7(2), 341–344 (1992).

J. Opt. Soc. Am. B (2)

Nano Lett. (1)

R. W. Newson, J.-M. Ménard, C. Sames, M. Betz, and H. M. van Driel, “Coherently controlled ballistic charge currents injected in single-walled carbon nanotubes and graphite,” Nano Lett. 8(6), 1586–1589 (2008).
[PubMed]

Nature (2)

G. Brumfiel, “Graphene gets ready for the big time,” Nature 458(7237), 390–391 (2009).
[PubMed]

K. S. Krishnan and N. Ganguly, “Large anisotropy of the electrical conductivity of graphite,” Nature 144(3650), 667 (1939).

Opt. Commun. (1)

E. Abraham, A. Younus, A. El Fatimy, J. C. Delagnes, E. Nguéma, and P. Mounaix, “Broadband terahertz imaging of documents written with lead pencils,” Opt. Commun. 282(15), 3104–3107 (2009).

Opt. Lett. (1)

Phys. Rev. B (3)

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65(16), 165301 (2002).

S. Banerjee, M. Sardar, N. Gayathri, A. K. Thyagi, and B. Raj, “Conductivity landscape of highly oriented pyrolytic graphite surfaces containing ribbons and edges,” Phys. Rev. B 72(7), 075418 (2005).

K. Seibert, G. C. Cho, W. Kütt, H. Kurz, D. H. Reitze, J. I. Dadap, H. Ahn, M. C. Downer, and A. M. Malvezzi, “Femtosecond carrier dynamics in graphite,” Phys. Rev. B 42(5), 2842–2851 (1990).

Phys. Rev. Lett. (2)

M. Breusing, C. Ropers, and T. Elsaesser, “Ultrafast carrier dynamics in graphite,” Phys. Rev. Lett. 102(8), 086809 (2009).
[PubMed]

Y. Lu, M. Muñoz, C. S. Steplecaru, C. Hao, M. Bai, N. Garcia, K. Schindler, and P. Esquinazi, “Electrostatic force microscopy on oriented graphite surfaces: coexistence of insulating and conducting behaviors,” Phys. Rev. Lett. 97(7), 076805 (2006).
[PubMed]

Phys. Status Solidi, B Basic Res. (1)

M. Zanini, D. Grubisic, and J. E. Fischer, “Optical anisotropy of highly oriented pyrolytic graphite,” Phys. Status Solidi, B Basic Res. 90(1), 151–156 (1978).

Phys. Z. (1)

H. Dember, “Photoelectromotive force in cuprous oxide crystals,” Phys. Z. 32, 554–556 (1931).

Rev. Sci. Instrum. (1)

G. Zhao, R. N. Schouten, N. van der Valk, W. Th. Wenckebach, and P. C. M. Planken, “Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter,” Rev. Sci. Instrum. 73(4), 1715–1719 (2002).

Other (4)

http://www.optigraph.fta-berlin.de/

H. Legall, H. Stiel, A. Antonov, I. Grigorieva, V. Arkadiev, and A. Bjeoumikhov, “A new generation of X-ray optics based on pyrolytic graphite,” in Proceedings of 28th International Free Electron Laser conference, (BESSY, Berlin, Germany, 2006) pp. 798–801.

B. T. Kelly, “Physics of graphite,” Applied Science Publishers Ltd., Essex (1981).

W. N. Reynolds, “Physical properties of graphite,” Elsevier Publishing Co. Ltd., Amsterdam (1968).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) The schematic of the experimental setup used for the experiments. The angle of incidence of the pump beam is shown as θ. (b) Schematic representation of the illumination of the basal plane surface of the HOPG crystal, showing the orientation of the graphene planes. (c) Schematic representation of the illumination of the edge plane surface.

Fig. 2
Fig. 2

(a) THz electric-field detected using a 500 µm thick ZnTe (110) crystal. (b) The dependence of the generated THz electric-field on the incident pump power. The dashed black line is a linear fit to the data at low pump power.

Fig. 3
Fig. 3

(a) The schematic of the experimental setup used for applying in-plane magnetic-fields across the sample surface. (b) THz electric-field emitted from HOPG basal plane surface in the presence of in-plane magnetic-field; the blue and red traces indicate the two different cases with magnetic-fields of opposite sign.

Fig. 4
Fig. 4

(a) The azimuthal angle dependence of the THz electric-field amplitude from the edge plane of the HOPG crystal. (b) The electric-field transients observed for the crystal azimuthal angles of 90° (red) and 270° (blue).

Fig. 5
Fig. 5

The amplitude of the THz electric-field generated from a pencil drawing on paper as a function of position along a line shown in the inset. Inset: Photograph of the drawing.

Metrics