Abstract

Saturated absorption spectroscopy reveals the narrowest features so far in molecular gas-filled hollow-core photonic crystal fiber. The 48-68 μm core diameter of the kagome-structured fiber used here allows for 8 MHz full-width half-maximum sub-Doppler features, and its wavelength-insensitive transmission is suitable for high-accuracy frequency measurements. A fiber laser is locked to the 12C2H2 ν1 + ν3 P(13) transition inside kagome fiber, and compared with frequency combs based on both a carbon nanotube fiber laser and a Cr:forsterite laser, each of which are referenced to a GPS-disciplined Rb oscillator. The absolute frequency of the measured line center agrees with those measured in power build-up cavities to within 9.3 kHz (1 σ error), and the fractional frequency instability is less than 1.2 × 10 −11 at 1 s averaging time.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Czajkowski, A. A. Madej, and P. Dube, “Development and study of a 1.5 µm optical frequency standard referenced to the P(16) saturated absorption line in the ν1 + ν3 overtone band of 13C2H2,” Opt. Commun. 234(1-6), 259–268 (2004).
    [CrossRef]
  2. M. de Labachelerie, K. Nakagawa, and M. Ohtsu, “Ultranarrow 13C2H2 Saturated-Absorption Lines at 1.5 µm,” Opt. Lett. 19(11), 840–842 (1994).
    [CrossRef] [PubMed]
  3. C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, and W. R. C. Rowley, “High-accuracy frequency atlas of 13C2H2 in the 1.5 µm region,” Appl. Phys. B 80(8), 977–983 (2005).
    [CrossRef]
  4. A. A. Madej, J. E. Bernard, A. J. Alcock, A. Czajkowski, and S. Chepurov, “Accurate absolute frequencies of the ν1 + ν3 band of 13C2H2 determined using an infrared mode-locked Cr: YAG laser frequency comb,” J. Opt. Soc. Am. B 23(4), 741–749 (2006).
    [CrossRef]
  5. H. S. Moon, W. K. Lee, and H. S. Suh, “Absolute-frequency measurement of an acetylene-stabilized laser locked to the P(16) transition of 13C2H2 using an optical-frequency comb,” IEEE Trans. Instrum. Meas. 56(2), 509–512 (2007).
    [CrossRef]
  6. M. Musha, Y. Tamura, K. Nakagawa, and K. Ueda, “Practical optical frequency measurement system around 1.5 µm based on an acetylene-stabilized laser-locked optical frequency comb,” Opt. Commun. 272(1), 211–216 (2007).
    [CrossRef]
  7. P. Balling, M. Fischer, P. Kubina, and R. Holzwarth, “Absolute frequency measurement of wavelength standard at 1542nm: acetylene stabilized DFB laser,” Opt. Express 13(23), 9196–9201 (2005).
    [CrossRef] [PubMed]
  8. W. C. Swann and S. L. Gilbert, “Pressure-induced shift and broadening of 1510-1540 nm acetylene wavelength calibration lines,” J. Opt. Soc. Am. B 17(7), 1263–1270 (2000).
    [CrossRef]
  9. A. M. Cubillas, J. Hald, and J. C. Petersen, “High resolution spectroscopy of ammonia in a hollow-core fiber,” Opt. Express 16(6), 3976–3985 (2008).
    [CrossRef] [PubMed]
  10. S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, “Low-light-level optical interactions with rubidium vapor in a photonic band-gap fiber,” Phys. Rev. Lett. 97(2), 023603 (2006).
    [CrossRef] [PubMed]
  11. J. Hald, J. C. Petersen, and J. Henningsen, “Saturated optical absorption by slow molecules in hollow-core photonic band-gap fibers,” Phys. Rev. Lett. 98(21), 213902 (2007).
    [CrossRef] [PubMed]
  12. K. Knabe, J. Lim, K. Tillman, R. Thapa, F. Couny, P. S. Light, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “Stability of an Acetylene Frequency Reference inside Kagome Structured Hollow-Core Photonic Crystal Fiber,” in Proceedings of CLEO CWB5 (2009).
  13. P. S. Light, F. Benabid, F. Couny, M. Maric, and A. N. Luiten, “Electromagnetically induced transparency in Rb-filled coated hollow-core photonic crystal fiber,” Opt. Lett. 32(10), 1323–1325 (2007).
    [CrossRef] [PubMed]
  14. F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
    [CrossRef] [PubMed]
  15. A. R. Bhagwat and A. L. Gaeta, “Nonlinear optics in hollow-core photonic bandgap fibers,” Opt. Express 16(7), 5035–5047 (2008).
    [CrossRef] [PubMed]
  16. F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
    [CrossRef] [PubMed]
  17. Crystal Fibre A/S, http://www.crystal-fibre.com/ .
  18. R. Thapa, K. Knabe, M. Faheem, A. Naweed, O. L. Weaver, and K. L. Corwin, “Saturated absorption spectroscopy of acetylene gas inside large-core photonic bandgap fiber,” Opt. Lett. 31(16), 2489–2491 (2006).
    [CrossRef] [PubMed]
  19. F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31(24), 3574–3576 (2006).
    [CrossRef] [PubMed]
  20. G. Bjorklund, M. Levenson, W. Lenth, and C. Ortiz, “Frequency Modulation (FM) Spectroscopy,” Appl. Phys. B 32(3), 145–152 (1983).
    [CrossRef]
  21. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical-resonator,” Appl. Phys. B 31(2), 97–105 (1983).
    [CrossRef]
  22. J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical Heterodyne Saturation Spectroscopy,” Appl. Phys. Lett. 39(9), 680–682 (1981).
    [CrossRef]
  23. J. Lim, K. Knabe, K. A. Tillman, W. Neely, Y. Wang, R. Amezcua-Correa, F. Couny, P. S. Light, F. Benabid, J. C. Knight, K. L. Corwin, J. W. Nicholson, and B. R. Washburn, “A phase-stabilized carbon nanotube fiber laser frequency comb,” Opt. Express 17(16), 14115–14120 (2009).
    [CrossRef] [PubMed]
  24. Y. Wang, J. Lim, R. Amezcua-Correa, J. C. Knight, and B. R. Washburn, “Sub-33 fs Pulses from an All-Fiber Parabolic Amplifier Employing Hollow-Core Photonic Bandgap Fiber,” in Proceedings of Frontiers In Optics FWF5 (2008).
  25. P. T. Systems, http://www.ptsyst.com/ .
  26. S. T. Dawkins, J. J. McFerran, and A. N. Luiten, “Considerations on the measurement of the stability of oscillators with frequency counters,” IEEE Trans. Ultra. Ferr. Freq. Contr. 54(5), 918–925 (2007).
    [CrossRef]
  27. J. Rutman, “Characterization of Phase and Frequency Instabilities in Precision Frequency Sources: Fifteen Years of Progress,” in Proceeding of the IEEE (Institute of Electrical and Electronics Engineers, New York, 1968), pp. 1048–1075.
  28. K. A. Tillman, R. Thapa, B. R. Washburn, and K. L. Corwin, “Significant Carrier Envelope Offset Frequency Linewidth Narrowing in a Prism-Based Cr:Forsterite Frequency Comb ” in Proceedings of CLEO CTuC5 (2009).
  29. L. S. Ma, Z. Y. Bi, A. Bartels, K. Kim, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Frequency uncertainty for optically referenced femtosecond laser frequency combs,” IEEE J. Quantum Electron. 43(2), 139–146 (2007).
    [CrossRef]
  30. C. S. Edwards, G. P. Barwood, H. S. Margolis, P. Gill, and W. R. C. Rowley, “High-precision frequency measurements of the ν1 + ν3 combination band of 12C2H2 in the 1.5 µm region,” J. Mol. Spectrosc. 234(1), 143–148 (2005).
    [CrossRef]
  31. A. A. Madej, A. J. Alcock, A. Czajkowski, J. E. Bernard, and S. Chepurov, “Accurate absolute reference frequencies from 1511 to 1545 nm of the ν1 + ν3 band of 12C2H2 determined with laser frequency comb interval measurements,” J. Opt. Soc. Am. B 23(10), 2200–2208 (2006).
    [CrossRef]
  32. J. L. Hall and C. J. Borde, “Shift and broadening of saturated absorption resonances due to curvature of laser wave fronts,” Appl. Phys. Lett. 29(12), 788–790 (1976).
    [CrossRef]
  33. S. E. Park, H. S. Lee, T. Y. Kwon, and H. Cho, “Dispersion-like signals in velocity-selective saturated-absorption spectroscopy,” Opt. Commun. 192(1-2), 49–55 (2001).
    [CrossRef]
  34. E. A. J. Marcatili and R. A. Schmeltzer, “Hollow Metallic and Dielectric Wave-guides for Long Distance Optical Transmission and Lasers,” Bell Syst. Tech. J. 43, 1783 -1809 (1964).

2009

2008

2007

P. S. Light, F. Benabid, F. Couny, M. Maric, and A. N. Luiten, “Electromagnetically induced transparency in Rb-filled coated hollow-core photonic crystal fiber,” Opt. Lett. 32(10), 1323–1325 (2007).
[CrossRef] [PubMed]

H. S. Moon, W. K. Lee, and H. S. Suh, “Absolute-frequency measurement of an acetylene-stabilized laser locked to the P(16) transition of 13C2H2 using an optical-frequency comb,” IEEE Trans. Instrum. Meas. 56(2), 509–512 (2007).
[CrossRef]

M. Musha, Y. Tamura, K. Nakagawa, and K. Ueda, “Practical optical frequency measurement system around 1.5 µm based on an acetylene-stabilized laser-locked optical frequency comb,” Opt. Commun. 272(1), 211–216 (2007).
[CrossRef]

J. Hald, J. C. Petersen, and J. Henningsen, “Saturated optical absorption by slow molecules in hollow-core photonic band-gap fibers,” Phys. Rev. Lett. 98(21), 213902 (2007).
[CrossRef] [PubMed]

S. T. Dawkins, J. J. McFerran, and A. N. Luiten, “Considerations on the measurement of the stability of oscillators with frequency counters,” IEEE Trans. Ultra. Ferr. Freq. Contr. 54(5), 918–925 (2007).
[CrossRef]

L. S. Ma, Z. Y. Bi, A. Bartels, K. Kim, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Frequency uncertainty for optically referenced femtosecond laser frequency combs,” IEEE J. Quantum Electron. 43(2), 139–146 (2007).
[CrossRef]

2006

2005

P. Balling, M. Fischer, P. Kubina, and R. Holzwarth, “Absolute frequency measurement of wavelength standard at 1542nm: acetylene stabilized DFB laser,” Opt. Express 13(23), 9196–9201 (2005).
[CrossRef] [PubMed]

C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, and W. R. C. Rowley, “High-accuracy frequency atlas of 13C2H2 in the 1.5 µm region,” Appl. Phys. B 80(8), 977–983 (2005).
[CrossRef]

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[CrossRef] [PubMed]

C. S. Edwards, G. P. Barwood, H. S. Margolis, P. Gill, and W. R. C. Rowley, “High-precision frequency measurements of the ν1 + ν3 combination band of 12C2H2 in the 1.5 µm region,” J. Mol. Spectrosc. 234(1), 143–148 (2005).
[CrossRef]

2004

A. Czajkowski, A. A. Madej, and P. Dube, “Development and study of a 1.5 µm optical frequency standard referenced to the P(16) saturated absorption line in the ν1 + ν3 overtone band of 13C2H2,” Opt. Commun. 234(1-6), 259–268 (2004).
[CrossRef]

2002

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[CrossRef] [PubMed]

2001

S. E. Park, H. S. Lee, T. Y. Kwon, and H. Cho, “Dispersion-like signals in velocity-selective saturated-absorption spectroscopy,” Opt. Commun. 192(1-2), 49–55 (2001).
[CrossRef]

2000

1994

1983

G. Bjorklund, M. Levenson, W. Lenth, and C. Ortiz, “Frequency Modulation (FM) Spectroscopy,” Appl. Phys. B 32(3), 145–152 (1983).
[CrossRef]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical-resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

1981

J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical Heterodyne Saturation Spectroscopy,” Appl. Phys. Lett. 39(9), 680–682 (1981).
[CrossRef]

1976

J. L. Hall and C. J. Borde, “Shift and broadening of saturated absorption resonances due to curvature of laser wave fronts,” Appl. Phys. Lett. 29(12), 788–790 (1976).
[CrossRef]

1964

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow Metallic and Dielectric Wave-guides for Long Distance Optical Transmission and Lasers,” Bell Syst. Tech. J. 43, 1783 -1809 (1964).

Alcock, A. J.

Amezcua-Correa, R.

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[CrossRef] [PubMed]

Baer, T.

J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical Heterodyne Saturation Spectroscopy,” Appl. Phys. Lett. 39(9), 680–682 (1981).
[CrossRef]

Balling, P.

Bartels, A.

L. S. Ma, Z. Y. Bi, A. Bartels, K. Kim, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Frequency uncertainty for optically referenced femtosecond laser frequency combs,” IEEE J. Quantum Electron. 43(2), 139–146 (2007).
[CrossRef]

Barwood, G. P.

C. S. Edwards, G. P. Barwood, H. S. Margolis, P. Gill, and W. R. C. Rowley, “High-precision frequency measurements of the ν1 + ν3 combination band of 12C2H2 in the 1.5 µm region,” J. Mol. Spectrosc. 234(1), 143–148 (2005).
[CrossRef]

C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, and W. R. C. Rowley, “High-accuracy frequency atlas of 13C2H2 in the 1.5 µm region,” Appl. Phys. B 80(8), 977–983 (2005).
[CrossRef]

Benabid, F.

Bernard, J. E.

Bhagwat, A. R.

A. R. Bhagwat and A. L. Gaeta, “Nonlinear optics in hollow-core photonic bandgap fibers,” Opt. Express 16(7), 5035–5047 (2008).
[CrossRef] [PubMed]

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, “Low-light-level optical interactions with rubidium vapor in a photonic band-gap fiber,” Phys. Rev. Lett. 97(2), 023603 (2006).
[CrossRef] [PubMed]

Bi, Z. Y.

L. S. Ma, Z. Y. Bi, A. Bartels, K. Kim, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Frequency uncertainty for optically referenced femtosecond laser frequency combs,” IEEE J. Quantum Electron. 43(2), 139–146 (2007).
[CrossRef]

Birks, T. A.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[CrossRef] [PubMed]

Bjorklund, G.

G. Bjorklund, M. Levenson, W. Lenth, and C. Ortiz, “Frequency Modulation (FM) Spectroscopy,” Appl. Phys. B 32(3), 145–152 (1983).
[CrossRef]

Borde, C. J.

J. L. Hall and C. J. Borde, “Shift and broadening of saturated absorption resonances due to curvature of laser wave fronts,” Appl. Phys. Lett. 29(12), 788–790 (1976).
[CrossRef]

Chepurov, S.

Cho, H.

S. E. Park, H. S. Lee, T. Y. Kwon, and H. Cho, “Dispersion-like signals in velocity-selective saturated-absorption spectroscopy,” Opt. Commun. 192(1-2), 49–55 (2001).
[CrossRef]

Corwin, K. L.

Couny, F.

Cubillas, A. M.

Czajkowski, A.

Dawkins, S. T.

S. T. Dawkins, J. J. McFerran, and A. N. Luiten, “Considerations on the measurement of the stability of oscillators with frequency counters,” IEEE Trans. Ultra. Ferr. Freq. Contr. 54(5), 918–925 (2007).
[CrossRef]

de Labachelerie, M.

Diddams, S. A.

L. S. Ma, Z. Y. Bi, A. Bartels, K. Kim, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Frequency uncertainty for optically referenced femtosecond laser frequency combs,” IEEE J. Quantum Electron. 43(2), 139–146 (2007).
[CrossRef]

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical-resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Dube, P.

A. Czajkowski, A. A. Madej, and P. Dube, “Development and study of a 1.5 µm optical frequency standard referenced to the P(16) saturated absorption line in the ν1 + ν3 overtone band of 13C2H2,” Opt. Commun. 234(1-6), 259–268 (2004).
[CrossRef]

Edwards, C. S.

C. S. Edwards, G. P. Barwood, H. S. Margolis, P. Gill, and W. R. C. Rowley, “High-precision frequency measurements of the ν1 + ν3 combination band of 12C2H2 in the 1.5 µm region,” J. Mol. Spectrosc. 234(1), 143–148 (2005).
[CrossRef]

C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, and W. R. C. Rowley, “High-accuracy frequency atlas of 13C2H2 in the 1.5 µm region,” Appl. Phys. B 80(8), 977–983 (2005).
[CrossRef]

Faheem, M.

Fischer, M.

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical-resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Gaeta, A. L.

A. R. Bhagwat and A. L. Gaeta, “Nonlinear optics in hollow-core photonic bandgap fibers,” Opt. Express 16(7), 5035–5047 (2008).
[CrossRef] [PubMed]

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, “Low-light-level optical interactions with rubidium vapor in a photonic band-gap fiber,” Phys. Rev. Lett. 97(2), 023603 (2006).
[CrossRef] [PubMed]

Ghosh, S.

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, “Low-light-level optical interactions with rubidium vapor in a photonic band-gap fiber,” Phys. Rev. Lett. 97(2), 023603 (2006).
[CrossRef] [PubMed]

Gilbert, S. L.

Gill, P.

C. S. Edwards, G. P. Barwood, H. S. Margolis, P. Gill, and W. R. C. Rowley, “High-precision frequency measurements of the ν1 + ν3 combination band of 12C2H2 in the 1.5 µm region,” J. Mol. Spectrosc. 234(1), 143–148 (2005).
[CrossRef]

C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, and W. R. C. Rowley, “High-accuracy frequency atlas of 13C2H2 in the 1.5 µm region,” Appl. Phys. B 80(8), 977–983 (2005).
[CrossRef]

Goh, S.

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, “Low-light-level optical interactions with rubidium vapor in a photonic band-gap fiber,” Phys. Rev. Lett. 97(2), 023603 (2006).
[CrossRef] [PubMed]

Hald, J.

A. M. Cubillas, J. Hald, and J. C. Petersen, “High resolution spectroscopy of ammonia in a hollow-core fiber,” Opt. Express 16(6), 3976–3985 (2008).
[CrossRef] [PubMed]

J. Hald, J. C. Petersen, and J. Henningsen, “Saturated optical absorption by slow molecules in hollow-core photonic band-gap fibers,” Phys. Rev. Lett. 98(21), 213902 (2007).
[CrossRef] [PubMed]

Hall, J. L.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical-resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical Heterodyne Saturation Spectroscopy,” Appl. Phys. Lett. 39(9), 680–682 (1981).
[CrossRef]

J. L. Hall and C. J. Borde, “Shift and broadening of saturated absorption resonances due to curvature of laser wave fronts,” Appl. Phys. Lett. 29(12), 788–790 (1976).
[CrossRef]

Henningsen, J.

J. Hald, J. C. Petersen, and J. Henningsen, “Saturated optical absorption by slow molecules in hollow-core photonic band-gap fibers,” Phys. Rev. Lett. 98(21), 213902 (2007).
[CrossRef] [PubMed]

Hollberg, L.

L. S. Ma, Z. Y. Bi, A. Bartels, K. Kim, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Frequency uncertainty for optically referenced femtosecond laser frequency combs,” IEEE J. Quantum Electron. 43(2), 139–146 (2007).
[CrossRef]

J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical Heterodyne Saturation Spectroscopy,” Appl. Phys. Lett. 39(9), 680–682 (1981).
[CrossRef]

Holzwarth, R.

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical-resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Kim, K.

L. S. Ma, Z. Y. Bi, A. Bartels, K. Kim, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Frequency uncertainty for optically referenced femtosecond laser frequency combs,” IEEE J. Quantum Electron. 43(2), 139–146 (2007).
[CrossRef]

Kirby, B. J.

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, “Low-light-level optical interactions with rubidium vapor in a photonic band-gap fiber,” Phys. Rev. Lett. 97(2), 023603 (2006).
[CrossRef] [PubMed]

Knabe, K.

Knight, J. C.

J. Lim, K. Knabe, K. A. Tillman, W. Neely, Y. Wang, R. Amezcua-Correa, F. Couny, P. S. Light, F. Benabid, J. C. Knight, K. L. Corwin, J. W. Nicholson, and B. R. Washburn, “A phase-stabilized carbon nanotube fiber laser frequency comb,” Opt. Express 17(16), 14115–14120 (2009).
[CrossRef] [PubMed]

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[CrossRef] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[CrossRef] [PubMed]

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical-resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Kubina, P.

Kwon, T. Y.

S. E. Park, H. S. Lee, T. Y. Kwon, and H. Cho, “Dispersion-like signals in velocity-selective saturated-absorption spectroscopy,” Opt. Commun. 192(1-2), 49–55 (2001).
[CrossRef]

Lea, S. N.

C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, and W. R. C. Rowley, “High-accuracy frequency atlas of 13C2H2 in the 1.5 µm region,” Appl. Phys. B 80(8), 977–983 (2005).
[CrossRef]

Lee, H. S.

S. E. Park, H. S. Lee, T. Y. Kwon, and H. Cho, “Dispersion-like signals in velocity-selective saturated-absorption spectroscopy,” Opt. Commun. 192(1-2), 49–55 (2001).
[CrossRef]

Lee, W. K.

H. S. Moon, W. K. Lee, and H. S. Suh, “Absolute-frequency measurement of an acetylene-stabilized laser locked to the P(16) transition of 13C2H2 using an optical-frequency comb,” IEEE Trans. Instrum. Meas. 56(2), 509–512 (2007).
[CrossRef]

Lenth, W.

G. Bjorklund, M. Levenson, W. Lenth, and C. Ortiz, “Frequency Modulation (FM) Spectroscopy,” Appl. Phys. B 32(3), 145–152 (1983).
[CrossRef]

Levenson, M.

G. Bjorklund, M. Levenson, W. Lenth, and C. Ortiz, “Frequency Modulation (FM) Spectroscopy,” Appl. Phys. B 32(3), 145–152 (1983).
[CrossRef]

Light, P. S.

Lim, J.

Luiten, A. N.

P. S. Light, F. Benabid, F. Couny, M. Maric, and A. N. Luiten, “Electromagnetically induced transparency in Rb-filled coated hollow-core photonic crystal fiber,” Opt. Lett. 32(10), 1323–1325 (2007).
[CrossRef] [PubMed]

S. T. Dawkins, J. J. McFerran, and A. N. Luiten, “Considerations on the measurement of the stability of oscillators with frequency counters,” IEEE Trans. Ultra. Ferr. Freq. Contr. 54(5), 918–925 (2007).
[CrossRef]

Ma, L. S.

L. S. Ma, Z. Y. Bi, A. Bartels, K. Kim, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Frequency uncertainty for optically referenced femtosecond laser frequency combs,” IEEE J. Quantum Electron. 43(2), 139–146 (2007).
[CrossRef]

Madej, A. A.

Marcatili, E. A. J.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow Metallic and Dielectric Wave-guides for Long Distance Optical Transmission and Lasers,” Bell Syst. Tech. J. 43, 1783 -1809 (1964).

Margolis, H. S.

C. S. Edwards, G. P. Barwood, H. S. Margolis, P. Gill, and W. R. C. Rowley, “High-precision frequency measurements of the ν1 + ν3 combination band of 12C2H2 in the 1.5 µm region,” J. Mol. Spectrosc. 234(1), 143–148 (2005).
[CrossRef]

C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, and W. R. C. Rowley, “High-accuracy frequency atlas of 13C2H2 in the 1.5 µm region,” Appl. Phys. B 80(8), 977–983 (2005).
[CrossRef]

Maric, M.

McFerran, J. J.

S. T. Dawkins, J. J. McFerran, and A. N. Luiten, “Considerations on the measurement of the stability of oscillators with frequency counters,” IEEE Trans. Ultra. Ferr. Freq. Contr. 54(5), 918–925 (2007).
[CrossRef]

Moon, H. S.

H. S. Moon, W. K. Lee, and H. S. Suh, “Absolute-frequency measurement of an acetylene-stabilized laser locked to the P(16) transition of 13C2H2 using an optical-frequency comb,” IEEE Trans. Instrum. Meas. 56(2), 509–512 (2007).
[CrossRef]

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical-resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Musha, M.

M. Musha, Y. Tamura, K. Nakagawa, and K. Ueda, “Practical optical frequency measurement system around 1.5 µm based on an acetylene-stabilized laser-locked optical frequency comb,” Opt. Commun. 272(1), 211–216 (2007).
[CrossRef]

Nakagawa, K.

M. Musha, Y. Tamura, K. Nakagawa, and K. Ueda, “Practical optical frequency measurement system around 1.5 µm based on an acetylene-stabilized laser-locked optical frequency comb,” Opt. Commun. 272(1), 211–216 (2007).
[CrossRef]

M. de Labachelerie, K. Nakagawa, and M. Ohtsu, “Ultranarrow 13C2H2 Saturated-Absorption Lines at 1.5 µm,” Opt. Lett. 19(11), 840–842 (1994).
[CrossRef] [PubMed]

Naweed, A.

Neely, W.

Nicholson, J. W.

Oates, C.

L. S. Ma, Z. Y. Bi, A. Bartels, K. Kim, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Frequency uncertainty for optically referenced femtosecond laser frequency combs,” IEEE J. Quantum Electron. 43(2), 139–146 (2007).
[CrossRef]

Ohtsu, M.

Ortiz, C.

G. Bjorklund, M. Levenson, W. Lenth, and C. Ortiz, “Frequency Modulation (FM) Spectroscopy,” Appl. Phys. B 32(3), 145–152 (1983).
[CrossRef]

Park, S. E.

S. E. Park, H. S. Lee, T. Y. Kwon, and H. Cho, “Dispersion-like signals in velocity-selective saturated-absorption spectroscopy,” Opt. Commun. 192(1-2), 49–55 (2001).
[CrossRef]

Petersen, J. C.

A. M. Cubillas, J. Hald, and J. C. Petersen, “High resolution spectroscopy of ammonia in a hollow-core fiber,” Opt. Express 16(6), 3976–3985 (2008).
[CrossRef] [PubMed]

J. Hald, J. C. Petersen, and J. Henningsen, “Saturated optical absorption by slow molecules in hollow-core photonic band-gap fibers,” Phys. Rev. Lett. 98(21), 213902 (2007).
[CrossRef] [PubMed]

Renshaw, C. K.

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, “Low-light-level optical interactions with rubidium vapor in a photonic band-gap fiber,” Phys. Rev. Lett. 97(2), 023603 (2006).
[CrossRef] [PubMed]

Robertsson, L.

L. S. Ma, Z. Y. Bi, A. Bartels, K. Kim, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Frequency uncertainty for optically referenced femtosecond laser frequency combs,” IEEE J. Quantum Electron. 43(2), 139–146 (2007).
[CrossRef]

Robinson, H. G.

J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical Heterodyne Saturation Spectroscopy,” Appl. Phys. Lett. 39(9), 680–682 (1981).
[CrossRef]

Rowley, W. R. C.

C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, and W. R. C. Rowley, “High-accuracy frequency atlas of 13C2H2 in the 1.5 µm region,” Appl. Phys. B 80(8), 977–983 (2005).
[CrossRef]

C. S. Edwards, G. P. Barwood, H. S. Margolis, P. Gill, and W. R. C. Rowley, “High-precision frequency measurements of the ν1 + ν3 combination band of 12C2H2 in the 1.5 µm region,” J. Mol. Spectrosc. 234(1), 143–148 (2005).
[CrossRef]

Russell, P. S. J.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[CrossRef] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[CrossRef] [PubMed]

Schmeltzer, R. A.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow Metallic and Dielectric Wave-guides for Long Distance Optical Transmission and Lasers,” Bell Syst. Tech. J. 43, 1783 -1809 (1964).

Suh, H. S.

H. S. Moon, W. K. Lee, and H. S. Suh, “Absolute-frequency measurement of an acetylene-stabilized laser locked to the P(16) transition of 13C2H2 using an optical-frequency comb,” IEEE Trans. Instrum. Meas. 56(2), 509–512 (2007).
[CrossRef]

Swann, W. C.

Tamura, Y.

M. Musha, Y. Tamura, K. Nakagawa, and K. Ueda, “Practical optical frequency measurement system around 1.5 µm based on an acetylene-stabilized laser-locked optical frequency comb,” Opt. Commun. 272(1), 211–216 (2007).
[CrossRef]

Thapa, R.

Tillman, K. A.

Ueda, K.

M. Musha, Y. Tamura, K. Nakagawa, and K. Ueda, “Practical optical frequency measurement system around 1.5 µm based on an acetylene-stabilized laser-locked optical frequency comb,” Opt. Commun. 272(1), 211–216 (2007).
[CrossRef]

Wang, Y.

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical-resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Washburn, B. R.

Weaver, O. L.

Wilpers, G.

L. S. Ma, Z. Y. Bi, A. Bartels, K. Kim, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Frequency uncertainty for optically referenced femtosecond laser frequency combs,” IEEE J. Quantum Electron. 43(2), 139–146 (2007).
[CrossRef]

Windeler, R. S.

L. S. Ma, Z. Y. Bi, A. Bartels, K. Kim, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Frequency uncertainty for optically referenced femtosecond laser frequency combs,” IEEE J. Quantum Electron. 43(2), 139–146 (2007).
[CrossRef]

Zucco, M.

L. S. Ma, Z. Y. Bi, A. Bartels, K. Kim, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Frequency uncertainty for optically referenced femtosecond laser frequency combs,” IEEE J. Quantum Electron. 43(2), 139–146 (2007).
[CrossRef]

Appl. Phys. B

C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, and W. R. C. Rowley, “High-accuracy frequency atlas of 13C2H2 in the 1.5 µm region,” Appl. Phys. B 80(8), 977–983 (2005).
[CrossRef]

G. Bjorklund, M. Levenson, W. Lenth, and C. Ortiz, “Frequency Modulation (FM) Spectroscopy,” Appl. Phys. B 32(3), 145–152 (1983).
[CrossRef]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical-resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Appl. Phys. Lett.

J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical Heterodyne Saturation Spectroscopy,” Appl. Phys. Lett. 39(9), 680–682 (1981).
[CrossRef]

J. L. Hall and C. J. Borde, “Shift and broadening of saturated absorption resonances due to curvature of laser wave fronts,” Appl. Phys. Lett. 29(12), 788–790 (1976).
[CrossRef]

Bell Syst. Tech. J.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow Metallic and Dielectric Wave-guides for Long Distance Optical Transmission and Lasers,” Bell Syst. Tech. J. 43, 1783 -1809 (1964).

IEEE J. Quantum Electron.

L. S. Ma, Z. Y. Bi, A. Bartels, K. Kim, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Frequency uncertainty for optically referenced femtosecond laser frequency combs,” IEEE J. Quantum Electron. 43(2), 139–146 (2007).
[CrossRef]

IEEE Trans. Instrum. Meas.

H. S. Moon, W. K. Lee, and H. S. Suh, “Absolute-frequency measurement of an acetylene-stabilized laser locked to the P(16) transition of 13C2H2 using an optical-frequency comb,” IEEE Trans. Instrum. Meas. 56(2), 509–512 (2007).
[CrossRef]

IEEE Trans. Ultra. Ferr. Freq. Contr.

S. T. Dawkins, J. J. McFerran, and A. N. Luiten, “Considerations on the measurement of the stability of oscillators with frequency counters,” IEEE Trans. Ultra. Ferr. Freq. Contr. 54(5), 918–925 (2007).
[CrossRef]

J. Mol. Spectrosc.

C. S. Edwards, G. P. Barwood, H. S. Margolis, P. Gill, and W. R. C. Rowley, “High-precision frequency measurements of the ν1 + ν3 combination band of 12C2H2 in the 1.5 µm region,” J. Mol. Spectrosc. 234(1), 143–148 (2005).
[CrossRef]

J. Opt. Soc. Am. B

Nature

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[CrossRef] [PubMed]

Opt. Commun.

M. Musha, Y. Tamura, K. Nakagawa, and K. Ueda, “Practical optical frequency measurement system around 1.5 µm based on an acetylene-stabilized laser-locked optical frequency comb,” Opt. Commun. 272(1), 211–216 (2007).
[CrossRef]

A. Czajkowski, A. A. Madej, and P. Dube, “Development and study of a 1.5 µm optical frequency standard referenced to the P(16) saturated absorption line in the ν1 + ν3 overtone band of 13C2H2,” Opt. Commun. 234(1-6), 259–268 (2004).
[CrossRef]

S. E. Park, H. S. Lee, T. Y. Kwon, and H. Cho, “Dispersion-like signals in velocity-selective saturated-absorption spectroscopy,” Opt. Commun. 192(1-2), 49–55 (2001).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, “Low-light-level optical interactions with rubidium vapor in a photonic band-gap fiber,” Phys. Rev. Lett. 97(2), 023603 (2006).
[CrossRef] [PubMed]

J. Hald, J. C. Petersen, and J. Henningsen, “Saturated optical absorption by slow molecules in hollow-core photonic band-gap fibers,” Phys. Rev. Lett. 98(21), 213902 (2007).
[CrossRef] [PubMed]

Science

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[CrossRef] [PubMed]

Other

Crystal Fibre A/S, http://www.crystal-fibre.com/ .

Y. Wang, J. Lim, R. Amezcua-Correa, J. C. Knight, and B. R. Washburn, “Sub-33 fs Pulses from an All-Fiber Parabolic Amplifier Employing Hollow-Core Photonic Bandgap Fiber,” in Proceedings of Frontiers In Optics FWF5 (2008).

P. T. Systems, http://www.ptsyst.com/ .

K. Knabe, J. Lim, K. Tillman, R. Thapa, F. Couny, P. S. Light, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “Stability of an Acetylene Frequency Reference inside Kagome Structured Hollow-Core Photonic Crystal Fiber,” in Proceedings of CLEO CWB5 (2009).

J. Rutman, “Characterization of Phase and Frequency Instabilities in Precision Frequency Sources: Fifteen Years of Progress,” in Proceeding of the IEEE (Institute of Electrical and Electronics Engineers, New York, 1968), pp. 1048–1075.

K. A. Tillman, R. Thapa, B. R. Washburn, and K. L. Corwin, “Significant Carrier Envelope Offset Frequency Linewidth Narrowing in a Prism-Based Cr:Forsterite Frequency Comb ” in Proceedings of CLEO CTuC5 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of the saturated absorption spectroscopy setup. Solid lines indicate optical fiber, and dotted lines indicate free-space paths. Shown are fiber optical isolators (OI), fiber couplers (C), a polarizing beam splitter (PBS), photo-detectors (PD), and a cross-section of the 19-cell kagome HC-PCF [19]. (b) (left axis) Normalized fractional transmission of a 4.1 m long HC-PCF near the P(13) transition for a pump laser power of 32 mW exiting the fiber, while the laser frequency was scanned at 1.2 GHz/sec. (right axis) The output from the FRC with a FSR of 48.01 ± 0.01 MHz. (c) Sub-Doppler FWHM wl versus pressure with fit lines extrapolated to zero pressure of the P(11) transition inside the 10 μm (triangles) and 20 μm (diamonds) HC-PCF (previously reported in Ref [18].), and of the P(13) transition inside the kagome fiber data (hexagons). The lengths of each fiber in order of increasing core size are 0.9 m, 0.8 m, and 4.1 m, while the pump powers exiting the three fibers are 30 mW, 29 mW, and 32 mW, respectively. Error bars from a chi-squared fitting routine are smaller than the symbol size.

Fig. 2
Fig. 2

Optical and electrical schematic for stabilizing a CW laser to 12C2H2 inside kagome HC-PCF. An EOM phase modulates the probe beam that is detected by the PD, whose electrical signal is band pass filtered (BPF) and amplified before being mixed with a phase adjustable synthesizer (Synth). An AM amplitude modulates the pump beam, so the electrical signal is again filtered, amplified, and mixed. The resulting signal is then sent to a servo that feeds back to the fiber laser’s PZT after being filtered with a 60 kHz low pass filter (LPF) and is shown in the lower left corner.

Fig. 3
Fig. 3

(a) Optical and electrical schematic for the heterodyne beat between a stabilized frequency comb and a CW laser stabilized to 12C2H2 inside kagome HC-PCF. The frequency counters used to record the various RF signals had either 10 digit (HP53131A) or 12 digit resolution (HP53132A). Shown is a fiber polarization controller (PC). (b) Frequency of the beat between the HC-PCF acetylene-stabilized laser and the CNFL frequency comb vs. time, recorded at a 1 s gate time using a counter. Oscillations with a period of ~10 minutes correlate to air-conditioner cooling cycles. (c) Optical fractional frequency instability vs. averaging time for f beat (filled squares) and the GPS disciplined Rb oscillator (open pentagons). A triangle deviation, similar to an Allan deviation, was calculated for f beat.

Fig. 4
Fig. 4

Absolute frequency of the acetylene-stabilized laser versus acetylene pressure inside the 4.1 m kagome fiber with a linear fit line. Each data point indicates an independent alignment to avoid frequency offsets due to free-space coupling into the kagome fiber. The linear fit gives a zero-pressure intercept of (195,580,979,379.6 ± 5.6) kHz and a slope of (−369 ± 48) kHz/torr.

Tables (1)

Tables Icon

Table 1 Mean 12C2H2 ν1 + ν3 P(13) frequency and error budget for this work and for referenced work [30,31].

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

flaser=fx+½fAOM,
flaser±|fbeat|=fn,  and 
fn=n   frep±|f0|,
Δn=2((Δf0)2+(Δfbeat)2+(½ΔfAOM,1)2)+(n2+(n+m)2)(Δfrep)2(frep,2frep,1),
βnm=k(12(unmkd)2).

Metrics