Abstract

We demonstrate the generation of wideband frequency sweeps using a semiconductor laser in an optoelectronic feedback loop. The rate and shape of the optical frequency sweep is locked to and determined by the frequency of a reference electronic signal, leading to an agile, high coherence swept-frequency source for laser ranging and 3-D imaging applications. Using a reference signal of constant frequency, a transform-limited linear sweep of 100 GHz in 1 ms is achieved, and real-time ranging with a spatial resolution of 1.5 mm is demonstrated. Further, arbitrary frequency sweeps can be achieved by tuning the frequency of the input electronic signal. Broadband quadratic and exponential optical frequency sweeps are demonstrated using this technique.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
    [CrossRef]
  2. J. Zheng, “Analysis of Optical Frequency-Modulated Continuous-Wave Interference,” Appl. Opt. 43(21), 4189–4198 (2004).
    [CrossRef] [PubMed]
  3. W. S. Burdic, Radar signal analysis (Prentice-Hall, 1968), Chap. 5.
  4. G. Beheim and K. Fritsch, “Remote displacement measurements using a laser diode,” Electron. Lett. 21(3), 93–94 (1985).
    [CrossRef]
  5. E. C. Burrows and K.-Y. Liou, “High-resolution laser LIDAR utilizing two-section distributed feedback semiconductor laser as a coherent source,” Electron. Lett. 26(9), 577–579 (1990).
    [CrossRef]
  6. A. Dieckmann, “FMCW-LIDAR with tunable twin-guide laser diode,” Electron. Lett. 30(4), 308–309 (1994).
    [CrossRef]
  7. E. M. Strzelecki, D. A. Cohen, and L. Coldren, “Investigation of tunable single frequency diode lasers for sensor applications,” J. Lightwave Technol. 6(10), 1610–1618 (1988).
    [CrossRef]
  8. K. Iiyama, L.-T. Wang, and K. Hayashi, “Linearizing optical frequency-sweep of a laser diode for FMCW reflectometry,” J. Lightwave Technol. 14(2), 173–178 (1996).
    [CrossRef]
  9. F. M. Gardner, Phaselock Techniques (Wiley 2005).
  10. N. Satyan, W. Liang, and A. Yariv, “Coherence cloning using semiconductor laser optical phase-lock loops,” IEEE J. Quantum Electron. 45(7), 755–761 (2009).
    [CrossRef]
  11. I. V. Komarov and S. M. Smolskiy, Fundamentals of short-range FM radar (Artech House, 2003), Chap. 5.

2009

N. Satyan, W. Liang, and A. Yariv, “Coherence cloning using semiconductor laser optical phase-lock loops,” IEEE J. Quantum Electron. 45(7), 755–761 (2009).
[CrossRef]

2004

2001

M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[CrossRef]

1996

K. Iiyama, L.-T. Wang, and K. Hayashi, “Linearizing optical frequency-sweep of a laser diode for FMCW reflectometry,” J. Lightwave Technol. 14(2), 173–178 (1996).
[CrossRef]

1994

A. Dieckmann, “FMCW-LIDAR with tunable twin-guide laser diode,” Electron. Lett. 30(4), 308–309 (1994).
[CrossRef]

1990

E. C. Burrows and K.-Y. Liou, “High-resolution laser LIDAR utilizing two-section distributed feedback semiconductor laser as a coherent source,” Electron. Lett. 26(9), 577–579 (1990).
[CrossRef]

1988

E. M. Strzelecki, D. A. Cohen, and L. Coldren, “Investigation of tunable single frequency diode lasers for sensor applications,” J. Lightwave Technol. 6(10), 1610–1618 (1988).
[CrossRef]

1985

G. Beheim and K. Fritsch, “Remote displacement measurements using a laser diode,” Electron. Lett. 21(3), 93–94 (1985).
[CrossRef]

Amann, M.-C.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[CrossRef]

Beheim, G.

G. Beheim and K. Fritsch, “Remote displacement measurements using a laser diode,” Electron. Lett. 21(3), 93–94 (1985).
[CrossRef]

Bosch, T.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[CrossRef]

Burrows, E. C.

E. C. Burrows and K.-Y. Liou, “High-resolution laser LIDAR utilizing two-section distributed feedback semiconductor laser as a coherent source,” Electron. Lett. 26(9), 577–579 (1990).
[CrossRef]

Cohen, D. A.

E. M. Strzelecki, D. A. Cohen, and L. Coldren, “Investigation of tunable single frequency diode lasers for sensor applications,” J. Lightwave Technol. 6(10), 1610–1618 (1988).
[CrossRef]

Coldren, L.

E. M. Strzelecki, D. A. Cohen, and L. Coldren, “Investigation of tunable single frequency diode lasers for sensor applications,” J. Lightwave Technol. 6(10), 1610–1618 (1988).
[CrossRef]

Dieckmann, A.

A. Dieckmann, “FMCW-LIDAR with tunable twin-guide laser diode,” Electron. Lett. 30(4), 308–309 (1994).
[CrossRef]

Fritsch, K.

G. Beheim and K. Fritsch, “Remote displacement measurements using a laser diode,” Electron. Lett. 21(3), 93–94 (1985).
[CrossRef]

Hayashi, K.

K. Iiyama, L.-T. Wang, and K. Hayashi, “Linearizing optical frequency-sweep of a laser diode for FMCW reflectometry,” J. Lightwave Technol. 14(2), 173–178 (1996).
[CrossRef]

Iiyama, K.

K. Iiyama, L.-T. Wang, and K. Hayashi, “Linearizing optical frequency-sweep of a laser diode for FMCW reflectometry,” J. Lightwave Technol. 14(2), 173–178 (1996).
[CrossRef]

Lescure, M.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[CrossRef]

Liang, W.

N. Satyan, W. Liang, and A. Yariv, “Coherence cloning using semiconductor laser optical phase-lock loops,” IEEE J. Quantum Electron. 45(7), 755–761 (2009).
[CrossRef]

Liou, K.-Y.

E. C. Burrows and K.-Y. Liou, “High-resolution laser LIDAR utilizing two-section distributed feedback semiconductor laser as a coherent source,” Electron. Lett. 26(9), 577–579 (1990).
[CrossRef]

Myllyla, R.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[CrossRef]

Rioux, M.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[CrossRef]

Satyan, N.

N. Satyan, W. Liang, and A. Yariv, “Coherence cloning using semiconductor laser optical phase-lock loops,” IEEE J. Quantum Electron. 45(7), 755–761 (2009).
[CrossRef]

Strzelecki, E. M.

E. M. Strzelecki, D. A. Cohen, and L. Coldren, “Investigation of tunable single frequency diode lasers for sensor applications,” J. Lightwave Technol. 6(10), 1610–1618 (1988).
[CrossRef]

Wang, L.-T.

K. Iiyama, L.-T. Wang, and K. Hayashi, “Linearizing optical frequency-sweep of a laser diode for FMCW reflectometry,” J. Lightwave Technol. 14(2), 173–178 (1996).
[CrossRef]

Yariv, A.

N. Satyan, W. Liang, and A. Yariv, “Coherence cloning using semiconductor laser optical phase-lock loops,” IEEE J. Quantum Electron. 45(7), 755–761 (2009).
[CrossRef]

Zheng, J.

Appl. Opt.

Electron. Lett.

G. Beheim and K. Fritsch, “Remote displacement measurements using a laser diode,” Electron. Lett. 21(3), 93–94 (1985).
[CrossRef]

E. C. Burrows and K.-Y. Liou, “High-resolution laser LIDAR utilizing two-section distributed feedback semiconductor laser as a coherent source,” Electron. Lett. 26(9), 577–579 (1990).
[CrossRef]

A. Dieckmann, “FMCW-LIDAR with tunable twin-guide laser diode,” Electron. Lett. 30(4), 308–309 (1994).
[CrossRef]

IEEE J. Quantum Electron.

N. Satyan, W. Liang, and A. Yariv, “Coherence cloning using semiconductor laser optical phase-lock loops,” IEEE J. Quantum Electron. 45(7), 755–761 (2009).
[CrossRef]

J. Lightwave Technol.

E. M. Strzelecki, D. A. Cohen, and L. Coldren, “Investigation of tunable single frequency diode lasers for sensor applications,” J. Lightwave Technol. 6(10), 1610–1618 (1988).
[CrossRef]

K. Iiyama, L.-T. Wang, and K. Hayashi, “Linearizing optical frequency-sweep of a laser diode for FMCW reflectometry,” J. Lightwave Technol. 14(2), 173–178 (1996).
[CrossRef]

Opt. Eng.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[CrossRef]

Other

W. S. Burdic, Radar signal analysis (Prentice-Hall, 1968), Chap. 5.

I. V. Komarov and S. M. Smolskiy, Fundamentals of short-range FM radar (Artech House, 2003), Chap. 5.

F. M. Gardner, Phaselock Techniques (Wiley 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Optoelectronic feedback loop for the generation of accurate broadband linear chirps. The optical portion of the loop is shown in blue.

Fig. 2
Fig. 2

Small signal phase propagation in the feedback loop.

Fig. 3
Fig. 3

Measured spectrograms of the output of the loop photodetector, for the (a) free-running and (b) pre-distorted cases. The pre-distortion significantly reduces the SCL non-linearity.

Fig. 4
Fig. 4

(a) Measured spectrogram of the output of the loop photodetector when the loop is in lock, corresponding to an optical sweep rate of 100 GHz/ms. (b) Fourier transform of the photodetector output measured over a 1 ms duration.

Fig. 5
Fig. 5

Measured optical spectrum of the locked swept-frequency SCL. RBW = 10 GHz

Fig. 6
Fig. 6

Schematic of the ranging experiment with a linearly chirped optical source. The optical path is shown in blue. PD: Photodetector

Fig. 7
Fig. 7

Range resolution measurements using the swept-frequency SCL. The target was an acrylic sheet of refractive index 1.5 and thickness (a) 5.44 mm, (b) 4.29 mm, (c) 2.25 mm and (d) 1.49 mm.

Fig. 8
Fig. 8

Measured spectrograms of the output of the loop photodetector, illustrating arbitrary sweeps of the SCL frequency. (a) The reference signal is swept linearly with time. (b) The reference signal is swept exponentially with time. The laser sweep rate varies between 50 GHz/ms and 150 GHz/ms.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

δz=c2B,
ωSCL=ω0+ξt,
ϕ(t)=ϕ0+ω0t+12ξt2.
iPD(t)=KPcos(ϕ(t)ϕ(tτ)),
iM(t)=KPKMcos(ϕ(t)ϕ(tτ)ωRt),
ωR=ωPD=ξτ.
iM(t)=KPKMcos(ω0τ12ξτ2).
ddt(ϕ(t)ϕ(tτ))=ωR.
τdωdt=ωR,
ϕs(ω)=ϕs(n)(ω)jωjω+Kτejωτd+(ϕR(ω)+ϕMZ(ω))Kτejωτdjω(jω+Kτejωτd),
ω(t)=ω0+KSCL(i)i(t),
ωPD(t)=τdωdt=didt(τKSCL+τidKSCLdi)=didtFdist(i).
ω(t)=1τ0tωR(t)dt,
fR(t)=(4 .29MHz)(1 .43MHz4 .29MHz)t(1ms).

Metrics