Abstract

We investigate circular birefringence induced by spinning microstructured optical fibres during their fabrication to produce helical-shaped holes. Designs with an offset core which results in a helical path for the light and exhibit only circular birefringence and designs with a linearly birefringent core that result in elliptical birefringence are both investigated.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
    [CrossRef]
  2. P. St. J. Russell, “Photonic-cystal fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006).
    [CrossRef]
  3. M. C. J. Large, L. Poladian, G. W. Barton, and M. A. van Eijkelenborg, Microstructured polymer optical fibres (Springer, Berlin, 2007).
  4. A. Argyros, “Microstructured polymer optical fibres,” J. Lightwave Technol. 27(11), 1571–1579 (2009).
    [CrossRef]
  5. N. A. Issa, M. A. van Eijkelenborg, M. Fellew, F. Cox, G. Henry, and M. C. J. Large, “Fabrication and study of microstructured optical fibers with elliptical holes,” Opt. Lett. 29(12), 1336–1338 (2004).
    [CrossRef] [PubMed]
  6. H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, “Absolutely single polarization photolnic crystal fiber,” IEEE Photon. Technol. Lett. 16(1), 182–184 (2004).
    [CrossRef]
  7. J. N. Ross, “The rotation of the polarization in low birefringence monomode optical fibres due to geometric effects,” Opt. Quantum Electron. 16(5), 455–461 (1984).
    [CrossRef]
  8. M. P. Varnham, R. D. Birch, and D. N. Payne, “Helical-core circularly birefringent fibres,” In Proc. IOOC-ECOC, Venice, 1985.
  9. J. Qian, “Coupled-mode theory for helical fibres,” IEE Proceedings J. 135, 178–182 (1988).
  10. R. D. Birch, “Fabrication and characterisation of circularly birefringent helical fibres,” Electron. Lett. 23(1), 50–52 (1987).
    [CrossRef]
  11. A. Altintas and J. D. Love, “Effective cut-offs for modes on helical fibres,” Opt. Quantum Electron. 22(3), 213–226 (1990).
    [CrossRef]
  12. R. I. Laming and D. N. Payne, “Electric current sensors employing spun highly birefringent optical fibers,” J. Lightwave Technol. 7(12), 2084–2094 (1989).
    [CrossRef]
  13. J. R. Qian, Q. Guo, and L. Li, “Spun linear birefringence fibres and their sensing mechanism in current sensors with temperature compensation,” IEE Proceedings J. 141, 373–380 (1994).
  14. A. Michie, J. Canning, I. Bassett, J. Haywood, K. Digweed, M. Åslund, B. Ashton, M. Stevenson, J. Digweed, A. Lau, and D. Scandurra, “Spun elliptically birefringent photonic crystal fibre,” Opt. Express 15(4), 1811–1816 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-4-1811 .
    [CrossRef] [PubMed]
  15. E. Udd, Fiber optic sensors (John Wiley & Sons, Inc., New York, 1991).
  16. V. P. Gubin, V. A. Isaev, S. K. Morshnev, A. I. Sazonov, N. I. Starostin, Y. K. Chamorovsky, and A. I. Oussov, “Use of spun optical fibres in current sensors,” Quantum Electron. 36(3), 287–291 (2006).
    [CrossRef]
  17. M. Fuochi, J. Hayes, K. Furusawa, W. Belardi, J. Baggett, T. Monro, and D. Richardson, “Polarization mode dispersion reduction in spun large mode area silica holey fibres,” Opt. Express 12(9), 1972–1977 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-9-1972 .
    [CrossRef] [PubMed]
  18. P. Wang, L. J. Cooper, J. K. Sahu, and W. A. Clarkson, “Efficient single-mode operation of a cladding-pumped ytterbium-doped helical-core fiber laser,” Opt. Lett. 31(2), 226–228 (2006).
    [CrossRef] [PubMed]
  19. C. N. Alexeyev and M. A. Yavorsky, “Optical vortices and the higher order modes of twisted strongly elliptical optical fibres,” J. Opt. A, Pure Appl. Opt. 6(9), 824–832 (2004).
    [CrossRef]
  20. J. Qian and C. D. Hussey, “Circular birefringence in helical-core fibre,” Electron. Lett. 22(10), 515–517 (1986).
    [CrossRef]
  21. R. Ulrich and A. Simon, “Polarization optics of twisted single-mode fibres,” Appl. Opt. 18(13), 2241–2251 (1979).
    [CrossRef] [PubMed]
  22. T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22(13), 961–963 (1997).
    [CrossRef] [PubMed]

2009 (1)

2007 (1)

2006 (3)

2004 (4)

M. Fuochi, J. Hayes, K. Furusawa, W. Belardi, J. Baggett, T. Monro, and D. Richardson, “Polarization mode dispersion reduction in spun large mode area silica holey fibres,” Opt. Express 12(9), 1972–1977 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-9-1972 .
[CrossRef] [PubMed]

N. A. Issa, M. A. van Eijkelenborg, M. Fellew, F. Cox, G. Henry, and M. C. J. Large, “Fabrication and study of microstructured optical fibers with elliptical holes,” Opt. Lett. 29(12), 1336–1338 (2004).
[CrossRef] [PubMed]

C. N. Alexeyev and M. A. Yavorsky, “Optical vortices and the higher order modes of twisted strongly elliptical optical fibres,” J. Opt. A, Pure Appl. Opt. 6(9), 824–832 (2004).
[CrossRef]

H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, “Absolutely single polarization photolnic crystal fiber,” IEEE Photon. Technol. Lett. 16(1), 182–184 (2004).
[CrossRef]

1997 (1)

1994 (1)

J. R. Qian, Q. Guo, and L. Li, “Spun linear birefringence fibres and their sensing mechanism in current sensors with temperature compensation,” IEE Proceedings J. 141, 373–380 (1994).

1990 (1)

A. Altintas and J. D. Love, “Effective cut-offs for modes on helical fibres,” Opt. Quantum Electron. 22(3), 213–226 (1990).
[CrossRef]

1989 (1)

R. I. Laming and D. N. Payne, “Electric current sensors employing spun highly birefringent optical fibers,” J. Lightwave Technol. 7(12), 2084–2094 (1989).
[CrossRef]

1988 (1)

J. Qian, “Coupled-mode theory for helical fibres,” IEE Proceedings J. 135, 178–182 (1988).

1987 (1)

R. D. Birch, “Fabrication and characterisation of circularly birefringent helical fibres,” Electron. Lett. 23(1), 50–52 (1987).
[CrossRef]

1986 (2)

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[CrossRef]

J. Qian and C. D. Hussey, “Circular birefringence in helical-core fibre,” Electron. Lett. 22(10), 515–517 (1986).
[CrossRef]

1984 (1)

J. N. Ross, “The rotation of the polarization in low birefringence monomode optical fibres due to geometric effects,” Opt. Quantum Electron. 16(5), 455–461 (1984).
[CrossRef]

1979 (1)

Alexeyev, C. N.

C. N. Alexeyev and M. A. Yavorsky, “Optical vortices and the higher order modes of twisted strongly elliptical optical fibres,” J. Opt. A, Pure Appl. Opt. 6(9), 824–832 (2004).
[CrossRef]

Altintas, A.

A. Altintas and J. D. Love, “Effective cut-offs for modes on helical fibres,” Opt. Quantum Electron. 22(3), 213–226 (1990).
[CrossRef]

Argyros, A.

Ashton, B.

Åslund, M.

Baggett, J.

Bassett, I.

Belardi, W.

Birch, R. D.

R. D. Birch, “Fabrication and characterisation of circularly birefringent helical fibres,” Electron. Lett. 23(1), 50–52 (1987).
[CrossRef]

Birks, T. A.

Canning, J.

Chamorovsky, Y. K.

V. P. Gubin, V. A. Isaev, S. K. Morshnev, A. I. Sazonov, N. I. Starostin, Y. K. Chamorovsky, and A. I. Oussov, “Use of spun optical fibres in current sensors,” Quantum Electron. 36(3), 287–291 (2006).
[CrossRef]

Clarkson, W. A.

Cooper, L. J.

Cox, F.

Digweed, J.

Digweed, K.

Fellew, M.

Fuochi, M.

Furusawa, K.

Gubin, V. P.

V. P. Gubin, V. A. Isaev, S. K. Morshnev, A. I. Sazonov, N. I. Starostin, Y. K. Chamorovsky, and A. I. Oussov, “Use of spun optical fibres in current sensors,” Quantum Electron. 36(3), 287–291 (2006).
[CrossRef]

Guo, Q.

J. R. Qian, Q. Guo, and L. Li, “Spun linear birefringence fibres and their sensing mechanism in current sensors with temperature compensation,” IEE Proceedings J. 141, 373–380 (1994).

Hayes, J.

Haywood, J.

Henry, G.

Hussey, C. D.

J. Qian and C. D. Hussey, “Circular birefringence in helical-core fibre,” Electron. Lett. 22(10), 515–517 (1986).
[CrossRef]

Isaev, V. A.

V. P. Gubin, V. A. Isaev, S. K. Morshnev, A. I. Sazonov, N. I. Starostin, Y. K. Chamorovsky, and A. I. Oussov, “Use of spun optical fibres in current sensors,” Quantum Electron. 36(3), 287–291 (2006).
[CrossRef]

Issa, N. A.

Kawanishi, S.

H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, “Absolutely single polarization photolnic crystal fiber,” IEEE Photon. Technol. Lett. 16(1), 182–184 (2004).
[CrossRef]

Knight, J. C.

Koyanagi, S.

H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, “Absolutely single polarization photolnic crystal fiber,” IEEE Photon. Technol. Lett. 16(1), 182–184 (2004).
[CrossRef]

Kubota, H.

H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, “Absolutely single polarization photolnic crystal fiber,” IEEE Photon. Technol. Lett. 16(1), 182–184 (2004).
[CrossRef]

Laming, R. I.

R. I. Laming and D. N. Payne, “Electric current sensors employing spun highly birefringent optical fibers,” J. Lightwave Technol. 7(12), 2084–2094 (1989).
[CrossRef]

Large, M. C. J.

Lau, A.

Li, L.

J. R. Qian, Q. Guo, and L. Li, “Spun linear birefringence fibres and their sensing mechanism in current sensors with temperature compensation,” IEE Proceedings J. 141, 373–380 (1994).

Love, J. D.

A. Altintas and J. D. Love, “Effective cut-offs for modes on helical fibres,” Opt. Quantum Electron. 22(3), 213–226 (1990).
[CrossRef]

Michie, A.

Monro, T.

Morshnev, S. K.

V. P. Gubin, V. A. Isaev, S. K. Morshnev, A. I. Sazonov, N. I. Starostin, Y. K. Chamorovsky, and A. I. Oussov, “Use of spun optical fibres in current sensors,” Quantum Electron. 36(3), 287–291 (2006).
[CrossRef]

Noda, J.

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[CrossRef]

Okamoto, K.

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[CrossRef]

Oussov, A. I.

V. P. Gubin, V. A. Isaev, S. K. Morshnev, A. I. Sazonov, N. I. Starostin, Y. K. Chamorovsky, and A. I. Oussov, “Use of spun optical fibres in current sensors,” Quantum Electron. 36(3), 287–291 (2006).
[CrossRef]

Payne, D. N.

R. I. Laming and D. N. Payne, “Electric current sensors employing spun highly birefringent optical fibers,” J. Lightwave Technol. 7(12), 2084–2094 (1989).
[CrossRef]

Qian, J.

J. Qian, “Coupled-mode theory for helical fibres,” IEE Proceedings J. 135, 178–182 (1988).

J. Qian and C. D. Hussey, “Circular birefringence in helical-core fibre,” Electron. Lett. 22(10), 515–517 (1986).
[CrossRef]

Qian, J. R.

J. R. Qian, Q. Guo, and L. Li, “Spun linear birefringence fibres and their sensing mechanism in current sensors with temperature compensation,” IEE Proceedings J. 141, 373–380 (1994).

Richardson, D.

Ross, J. N.

J. N. Ross, “The rotation of the polarization in low birefringence monomode optical fibres due to geometric effects,” Opt. Quantum Electron. 16(5), 455–461 (1984).
[CrossRef]

Russell, P. St. J.

Sahu, J. K.

Sasaki, Y.

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[CrossRef]

Sazonov, A. I.

V. P. Gubin, V. A. Isaev, S. K. Morshnev, A. I. Sazonov, N. I. Starostin, Y. K. Chamorovsky, and A. I. Oussov, “Use of spun optical fibres in current sensors,” Quantum Electron. 36(3), 287–291 (2006).
[CrossRef]

Scandurra, D.

Simon, A.

Starostin, N. I.

V. P. Gubin, V. A. Isaev, S. K. Morshnev, A. I. Sazonov, N. I. Starostin, Y. K. Chamorovsky, and A. I. Oussov, “Use of spun optical fibres in current sensors,” Quantum Electron. 36(3), 287–291 (2006).
[CrossRef]

Stevenson, M.

Tanaka, M.

H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, “Absolutely single polarization photolnic crystal fiber,” IEEE Photon. Technol. Lett. 16(1), 182–184 (2004).
[CrossRef]

Ulrich, R.

van Eijkelenborg, M. A.

Wang, P.

Yamaguchi, S.

H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, “Absolutely single polarization photolnic crystal fiber,” IEEE Photon. Technol. Lett. 16(1), 182–184 (2004).
[CrossRef]

Yavorsky, M. A.

C. N. Alexeyev and M. A. Yavorsky, “Optical vortices and the higher order modes of twisted strongly elliptical optical fibres,” J. Opt. A, Pure Appl. Opt. 6(9), 824–832 (2004).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (2)

R. D. Birch, “Fabrication and characterisation of circularly birefringent helical fibres,” Electron. Lett. 23(1), 50–52 (1987).
[CrossRef]

J. Qian and C. D. Hussey, “Circular birefringence in helical-core fibre,” Electron. Lett. 22(10), 515–517 (1986).
[CrossRef]

IEE Proceedings J. (2)

J. R. Qian, Q. Guo, and L. Li, “Spun linear birefringence fibres and their sensing mechanism in current sensors with temperature compensation,” IEE Proceedings J. 141, 373–380 (1994).

J. Qian, “Coupled-mode theory for helical fibres,” IEE Proceedings J. 135, 178–182 (1988).

IEEE Photon. Technol. Lett. (1)

H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, “Absolutely single polarization photolnic crystal fiber,” IEEE Photon. Technol. Lett. 16(1), 182–184 (2004).
[CrossRef]

J. Lightwave Technol. (4)

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[CrossRef]

R. I. Laming and D. N. Payne, “Electric current sensors employing spun highly birefringent optical fibers,” J. Lightwave Technol. 7(12), 2084–2094 (1989).
[CrossRef]

P. St. J. Russell, “Photonic-cystal fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006).
[CrossRef]

A. Argyros, “Microstructured polymer optical fibres,” J. Lightwave Technol. 27(11), 1571–1579 (2009).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

C. N. Alexeyev and M. A. Yavorsky, “Optical vortices and the higher order modes of twisted strongly elliptical optical fibres,” J. Opt. A, Pure Appl. Opt. 6(9), 824–832 (2004).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Opt. Quantum Electron. (2)

J. N. Ross, “The rotation of the polarization in low birefringence monomode optical fibres due to geometric effects,” Opt. Quantum Electron. 16(5), 455–461 (1984).
[CrossRef]

A. Altintas and J. D. Love, “Effective cut-offs for modes on helical fibres,” Opt. Quantum Electron. 22(3), 213–226 (1990).
[CrossRef]

Quantum Electron. (1)

V. P. Gubin, V. A. Isaev, S. K. Morshnev, A. I. Sazonov, N. I. Starostin, Y. K. Chamorovsky, and A. I. Oussov, “Use of spun optical fibres in current sensors,” Quantum Electron. 36(3), 287–291 (2006).
[CrossRef]

Other (3)

M. P. Varnham, R. D. Birch, and D. N. Payne, “Helical-core circularly birefringent fibres,” In Proc. IOOC-ECOC, Venice, 1985.

M. C. J. Large, L. Poladian, G. W. Barton, and M. A. van Eijkelenborg, Microstructured polymer optical fibres (Springer, Berlin, 2007).

E. Udd, Fiber optic sensors (John Wiley & Sons, Inc., New York, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The Poincare Sphere representation of polarisation, in which the poles represent right-hand and left-hand circular polarisation (RHCP, LHCP) and the equator linear polarisation. The polarisation modes are denoted by red circles and the polarisation axis is shown for (a) linear, (b) circular and (c) elliptical birefringence. Light that excites both polarisation modes (figure assumes these are equally excited) will trace out a circle as shown as it propagates along the fibre.

Fig. 2
Fig. 2

(a) Cross-section of a helical-core fibre. The insets compare the distortion to the microstructure created by spinning (upper inset - 13 mm pitch, compared to lower inset - 1.88 mm pitch). (b) Side-view of helical fibre. (c) Side view of SLB fibre with inset showing the cross section. The spin pitch P, the core off-set Q and the arc length of the helix S are indicated.

Fig. 3
Fig. 3

(a) A comparison of measured and expected beat length as calculated using Eq. (2), for helical core fibres with spin pitch as indicated. The circular birefringence shown was calculated for a wavelength of 1 µm. (b) The same comparison for three fibres before and after annealing. The error bars are indicative of errors arising from experimental measurements of the beat length, pitch and core offset, the latter two becoming increasingly important for small pitch.

Fig. 4
Fig. 4

Difference in transmission between a 13 and a 1.88 mm pitch fibre. The smaller pitch fibre shows higher loss at short wavelengths, resulting from bend loss. The bend loss is expected to affect short wavelengths (Λ/λ > 4.3) for which the NA decreases. Inset shows near field of output of a 1.88 mm pitch fibre (10 cm length), showing the transmitted light is red, whilst the light lost due to bend loss is trapped in high order cladding modes. The small oscillations observed in the figure arise from noise in the measurements.

Fig. 5
Fig. 5

Ellipticity and beat length for a SLB fibre in (a) the local frame and (b) the laboratory frame. The shaded areas represent the parameter space covered by the fabricated fibres, whilst the data points show the results of specific measurements. Given the wavelength dependence of linear birefringence, the lower LP values correspond to longer wavelengths.

Fig. 6
Fig. 6

(a) Measurement of ellipticity using a linear polariser (shown as a blue circle) in combination with a Soleil-Babinet phase compensator, as described in the text, when the light is sufficiently spread over the circle to produce fringes in the spectrum. (b) Alternative measurement for the when the light is not sufficiently spread and occupies only a small arc.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

LB=λ/B.
LB=SP/[2(SP)]
η=2π/Lp,
τ=4π/P,
ρ=2π/LB,
LB=PLP/P2+4LP2,
ε=tan(θ/2)=tan[tan1(2LP/P)/2].
L'B=PLP/(P2+4LP22LP).
LB(λ)=LΔλmλ(k1)[1Δλλ(k1)]1,
B(λ)=mλL[(1+Δλλ)k11]1,

Metrics