Abstract

We present the design and numerical simulation results for a silicon waveguide modulator based on carrier depletion in a linear array of periodically interleaved PN junctions that are oriented perpendicular to the light propagation direction. In this geometry the overlap of the optical waveguide mode with the depletion region is much larger than in designs using a single PN junction aligned parallel to the waveguide propagation direction. Simulations predict that an optimized modulator will have a high modulation efficiency of 0.56 V·cm for a 3V bias, with a 3 dB frequency bandwidth of over 40 GHz. This device has a length of 1.86 mm with a maximum intrinsic loss of 4.3 dB at 0V bias, due to free carrier absorption.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
    [CrossRef]
  2. B. Jalali and S. Fathpour, “Silicon Photonics,” IEEE J. Lightwave Technol. 24(12), 4600–4615 (2006).
    [CrossRef]
  3. L. C. Kimerling, A. B. Apsel, M. Beals, D. Carothers, Y. Chen, T. Conway, D. Gill, M. Grove, C. Hong, M. F. Lipson, J. Liu, J. Michel, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, A. E. White, and C. Wong, “Recent advances in CMOS compatible integrated photonics,” Proc. SPIE 6125, 612502 (2006).
    [CrossRef]
  4. R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
    [CrossRef] [PubMed]
  5. Q. F. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 (2007).
    [CrossRef] [PubMed]
  6. W. M. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15(25), 17106–17113 (2007).
    [CrossRef] [PubMed]
  7. S. J. Spector, M. E. Grein, R. T. Schulein, M. W. Geis, J. U. Yoon, D. E. Lennon, F. Gan, F. X. Kartner, and T. M. Lyszczarz, “Compact carrier injection based Mach-Zehnder modulator in silicon,” in Technical Digest of 2007 Integrated Photonics Research, ITuE5 (2007).
  8. A. S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
    [CrossRef] [PubMed]
  9. F. Gardes, G. Reed, N. Emerson, and C. Png, “A sub-micron depletion-type photonic modulator in Silicon On Insulator,” Opt. Express 13(22), 8845–8854 (2005).
    [CrossRef] [PubMed]
  10. A. S. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007).
    [CrossRef] [PubMed]
  11. F. Y. Gardes, K. L. Tsakmakidis, D. Thomson, G. T. Reed, G. Z. Mashanovich, O. Hess, and D. Avitabile, “Micrometer size polarization independent depletion-type photonic modulator in Silicon On Insulator,” Opt. Express 15(9), 5879–5884 (2007).
    [CrossRef] [PubMed]
  12. D. W. Zheng, D. Z. Feng, G. Gutierrez, and T. Smith, “Design of a 10 GHz Silicon Modulator Based on a 0.25 µm CMOS Process - A Silicon Photonic Approach,” Proc. SPIE 6125, 61250E (2006).
    [CrossRef]
  13. T. Pinguet, V. Sadagopan, A. Mekis, B. Analui, D. Kucharski, and S. Gloeckner, “A 1550 nm, 10 Gbps optical modulator with integrated driver in 130 nm CMOS, 4th IEEE International Conference on Group IV Photonics, ThA2, 186-188 (2007).
  14. D. Marris-Morini, X. Le Roux, L. Vivien, E. Cassan, D. Pascal, M. Halbwax, S. Maine, S. Laval, J. M. Fédéli, and J. F. Damlencourt, “Optical modulation by carrier depletion in a silicon PIN diode,” Opt. Express 14(22), 10838–10843 (2006).
    [CrossRef] [PubMed]
  15. D. Marris-Morini, L. Vivien, J. M. Fédéli, E. Cassan, P. Lyan, and S. Laval, “Low loss and high speed silicon optical modulator based on a lateral carrier depletion structure,” Opt. Express 16(1), 334–339 (2008).
    [CrossRef] [PubMed]
  16. Z. Y. Li, D.-X. Xu, R. Mckinnon, S. Janz, J. H. Schmid, J. Lapointe, P. Cheben, and J.Z. Yu, “Low Driving-Voltage Optical Modulator Based on Carrier Depletion in Silicon with Periodically Interleaved P-N Junctions”, 5th IEEE International conference on Group IV Photonics, WA5, 13–15 (2008).
  17. Silvaco International, 4701 Patrick Henry drive, Bldg 1, Santa Clara, CA 94054, http://www.silvaco.com .
  18. G. P. Agrawal, Fiber-Optic Communication Systems, 2nd ed. (New York: Wiley, 1997), Chap. 5.
  19. C. C. Wang, M. Currie, S. Alexandrou, and T. Y. Hsiang, “Ultrafast all-silicon light modulator,” Opt. Lett. 19(18), 1453–1455 (1994).
    [CrossRef] [PubMed]

2008

2007

2006

D. Marris-Morini, X. Le Roux, L. Vivien, E. Cassan, D. Pascal, M. Halbwax, S. Maine, S. Laval, J. M. Fédéli, and J. F. Damlencourt, “Optical modulation by carrier depletion in a silicon PIN diode,” Opt. Express 14(22), 10838–10843 (2006).
[CrossRef] [PubMed]

B. Jalali and S. Fathpour, “Silicon Photonics,” IEEE J. Lightwave Technol. 24(12), 4600–4615 (2006).
[CrossRef]

L. C. Kimerling, A. B. Apsel, M. Beals, D. Carothers, Y. Chen, T. Conway, D. Gill, M. Grove, C. Hong, M. F. Lipson, J. Liu, J. Michel, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, A. E. White, and C. Wong, “Recent advances in CMOS compatible integrated photonics,” Proc. SPIE 6125, 612502 (2006).
[CrossRef]

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

D. W. Zheng, D. Z. Feng, G. Gutierrez, and T. Smith, “Design of a 10 GHz Silicon Modulator Based on a 0.25 µm CMOS Process - A Silicon Photonic Approach,” Proc. SPIE 6125, 61250E (2006).
[CrossRef]

2005

2004

A. S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

1994

1987

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

Alexandrou, S.

Andersen, K. N.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Apsel, A. B.

L. C. Kimerling, A. B. Apsel, M. Beals, D. Carothers, Y. Chen, T. Conway, D. Gill, M. Grove, C. Hong, M. F. Lipson, J. Liu, J. Michel, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, A. E. White, and C. Wong, “Recent advances in CMOS compatible integrated photonics,” Proc. SPIE 6125, 612502 (2006).
[CrossRef]

Avitabile, D.

Beals, M.

L. C. Kimerling, A. B. Apsel, M. Beals, D. Carothers, Y. Chen, T. Conway, D. Gill, M. Grove, C. Hong, M. F. Lipson, J. Liu, J. Michel, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, A. E. White, and C. Wong, “Recent advances in CMOS compatible integrated photonics,” Proc. SPIE 6125, 612502 (2006).
[CrossRef]

Bennett, B. R.

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

Bjarklev, A.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Borel, P. I.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Carothers, D.

L. C. Kimerling, A. B. Apsel, M. Beals, D. Carothers, Y. Chen, T. Conway, D. Gill, M. Grove, C. Hong, M. F. Lipson, J. Liu, J. Michel, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, A. E. White, and C. Wong, “Recent advances in CMOS compatible integrated photonics,” Proc. SPIE 6125, 612502 (2006).
[CrossRef]

Cassan, E.

Chen, Y.

L. C. Kimerling, A. B. Apsel, M. Beals, D. Carothers, Y. Chen, T. Conway, D. Gill, M. Grove, C. Hong, M. F. Lipson, J. Liu, J. Michel, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, A. E. White, and C. Wong, “Recent advances in CMOS compatible integrated photonics,” Proc. SPIE 6125, 612502 (2006).
[CrossRef]

Chetrit, Y.

Ciftcioglu, B.

Cohen, O.

A. S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Conway, T.

L. C. Kimerling, A. B. Apsel, M. Beals, D. Carothers, Y. Chen, T. Conway, D. Gill, M. Grove, C. Hong, M. F. Lipson, J. Liu, J. Michel, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, A. E. White, and C. Wong, “Recent advances in CMOS compatible integrated photonics,” Proc. SPIE 6125, 612502 (2006).
[CrossRef]

Currie, M.

Damlencourt, J. F.

Emerson, N.

Fage-Pedersen, J.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Fathpour, S.

B. Jalali and S. Fathpour, “Silicon Photonics,” IEEE J. Lightwave Technol. 24(12), 4600–4615 (2006).
[CrossRef]

Fédéli, J. M.

Feng, D. Z.

D. W. Zheng, D. Z. Feng, G. Gutierrez, and T. Smith, “Design of a 10 GHz Silicon Modulator Based on a 0.25 µm CMOS Process - A Silicon Photonic Approach,” Proc. SPIE 6125, 61250E (2006).
[CrossRef]

Frandsen, L. H.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Gardes, F.

Gardes, F. Y.

Gill, D.

L. C. Kimerling, A. B. Apsel, M. Beals, D. Carothers, Y. Chen, T. Conway, D. Gill, M. Grove, C. Hong, M. F. Lipson, J. Liu, J. Michel, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, A. E. White, and C. Wong, “Recent advances in CMOS compatible integrated photonics,” Proc. SPIE 6125, 612502 (2006).
[CrossRef]

Green, W. M.

Grove, M.

L. C. Kimerling, A. B. Apsel, M. Beals, D. Carothers, Y. Chen, T. Conway, D. Gill, M. Grove, C. Hong, M. F. Lipson, J. Liu, J. Michel, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, A. E. White, and C. Wong, “Recent advances in CMOS compatible integrated photonics,” Proc. SPIE 6125, 612502 (2006).
[CrossRef]

Gutierrez, G.

D. W. Zheng, D. Z. Feng, G. Gutierrez, and T. Smith, “Design of a 10 GHz Silicon Modulator Based on a 0.25 µm CMOS Process - A Silicon Photonic Approach,” Proc. SPIE 6125, 61250E (2006).
[CrossRef]

Halbwax, M.

Hansen, O.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Hess, O.

Hong, C.

L. C. Kimerling, A. B. Apsel, M. Beals, D. Carothers, Y. Chen, T. Conway, D. Gill, M. Grove, C. Hong, M. F. Lipson, J. Liu, J. Michel, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, A. E. White, and C. Wong, “Recent advances in CMOS compatible integrated photonics,” Proc. SPIE 6125, 612502 (2006).
[CrossRef]

Hsiang, T. Y.

Izhaky, N.

Jacobsen, R. S.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Jalali, B.

B. Jalali and S. Fathpour, “Silicon Photonics,” IEEE J. Lightwave Technol. 24(12), 4600–4615 (2006).
[CrossRef]

Jones, R.

A. S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Kimerling, L. C.

L. C. Kimerling, A. B. Apsel, M. Beals, D. Carothers, Y. Chen, T. Conway, D. Gill, M. Grove, C. Hong, M. F. Lipson, J. Liu, J. Michel, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, A. E. White, and C. Wong, “Recent advances in CMOS compatible integrated photonics,” Proc. SPIE 6125, 612502 (2006).
[CrossRef]

Kristensen, M.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Laval, S.

Lavrinenko, A. V.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Le Roux, X.

Liao, L.

A. S. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007).
[CrossRef] [PubMed]

A. S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Lipson, M.

Lipson, M. F.

L. C. Kimerling, A. B. Apsel, M. Beals, D. Carothers, Y. Chen, T. Conway, D. Gill, M. Grove, C. Hong, M. F. Lipson, J. Liu, J. Michel, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, A. E. White, and C. Wong, “Recent advances in CMOS compatible integrated photonics,” Proc. SPIE 6125, 612502 (2006).
[CrossRef]

Liu, A. S.

A. S. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007).
[CrossRef] [PubMed]

A. S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Liu, J.

L. C. Kimerling, A. B. Apsel, M. Beals, D. Carothers, Y. Chen, T. Conway, D. Gill, M. Grove, C. Hong, M. F. Lipson, J. Liu, J. Michel, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, A. E. White, and C. Wong, “Recent advances in CMOS compatible integrated photonics,” Proc. SPIE 6125, 612502 (2006).
[CrossRef]

Lyan, P.

Maine, S.

Manipatruni, S.

Marris-Morini, D.

Mashanovich, G. Z.

Michel, J.

L. C. Kimerling, A. B. Apsel, M. Beals, D. Carothers, Y. Chen, T. Conway, D. Gill, M. Grove, C. Hong, M. F. Lipson, J. Liu, J. Michel, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, A. E. White, and C. Wong, “Recent advances in CMOS compatible integrated photonics,” Proc. SPIE 6125, 612502 (2006).
[CrossRef]

Moulin, G.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Nguyen, H.

Nicolaescu, R.

A. S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Ou, H.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Paniccia, M.

A. S. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007).
[CrossRef] [PubMed]

A. S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Pascal, D.

Patel, S. S.

L. C. Kimerling, A. B. Apsel, M. Beals, D. Carothers, Y. Chen, T. Conway, D. Gill, M. Grove, C. Hong, M. F. Lipson, J. Liu, J. Michel, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, A. E. White, and C. Wong, “Recent advances in CMOS compatible integrated photonics,” Proc. SPIE 6125, 612502 (2006).
[CrossRef]

Peucheret, C.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Png, C.

Pomerene, A. T.

L. C. Kimerling, A. B. Apsel, M. Beals, D. Carothers, Y. Chen, T. Conway, D. Gill, M. Grove, C. Hong, M. F. Lipson, J. Liu, J. Michel, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, A. E. White, and C. Wong, “Recent advances in CMOS compatible integrated photonics,” Proc. SPIE 6125, 612502 (2006).
[CrossRef]

Rasras, M.

L. C. Kimerling, A. B. Apsel, M. Beals, D. Carothers, Y. Chen, T. Conway, D. Gill, M. Grove, C. Hong, M. F. Lipson, J. Liu, J. Michel, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, A. E. White, and C. Wong, “Recent advances in CMOS compatible integrated photonics,” Proc. SPIE 6125, 612502 (2006).
[CrossRef]

Reed, G.

Reed, G. T.

Rooks, M. J.

Rubin, D.

A. S. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007).
[CrossRef] [PubMed]

A. S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Samara-Rubio, D.

A. S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Schmidt, B.

Sekaric, L.

Shakya, J.

Smith, T.

D. W. Zheng, D. Z. Feng, G. Gutierrez, and T. Smith, “Design of a 10 GHz Silicon Modulator Based on a 0.25 µm CMOS Process - A Silicon Photonic Approach,” Proc. SPIE 6125, 61250E (2006).
[CrossRef]

Soref, R. A.

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

Sparacin, D. K.

L. C. Kimerling, A. B. Apsel, M. Beals, D. Carothers, Y. Chen, T. Conway, D. Gill, M. Grove, C. Hong, M. F. Lipson, J. Liu, J. Michel, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, A. E. White, and C. Wong, “Recent advances in CMOS compatible integrated photonics,” Proc. SPIE 6125, 612502 (2006).
[CrossRef]

Thomson, D.

Tsakmakidis, K. L.

Vivien, L.

Vlasov, Y. A.

Wang, C. C.

White, A. E.

L. C. Kimerling, A. B. Apsel, M. Beals, D. Carothers, Y. Chen, T. Conway, D. Gill, M. Grove, C. Hong, M. F. Lipson, J. Liu, J. Michel, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, A. E. White, and C. Wong, “Recent advances in CMOS compatible integrated photonics,” Proc. SPIE 6125, 612502 (2006).
[CrossRef]

Wong, C.

L. C. Kimerling, A. B. Apsel, M. Beals, D. Carothers, Y. Chen, T. Conway, D. Gill, M. Grove, C. Hong, M. F. Lipson, J. Liu, J. Michel, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, A. E. White, and C. Wong, “Recent advances in CMOS compatible integrated photonics,” Proc. SPIE 6125, 612502 (2006).
[CrossRef]

Xu, Q. F.

Zheng, D. W.

D. W. Zheng, D. Z. Feng, G. Gutierrez, and T. Smith, “Design of a 10 GHz Silicon Modulator Based on a 0.25 µm CMOS Process - A Silicon Photonic Approach,” Proc. SPIE 6125, 61250E (2006).
[CrossRef]

Zsigri, B.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

IEEE J. Lightwave Technol.

B. Jalali and S. Fathpour, “Silicon Photonics,” IEEE J. Lightwave Technol. 24(12), 4600–4615 (2006).
[CrossRef]

IEEE J. Quantum Electron.

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

Nature

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

A. S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Opt. Express

F. Gardes, G. Reed, N. Emerson, and C. Png, “A sub-micron depletion-type photonic modulator in Silicon On Insulator,” Opt. Express 13(22), 8845–8854 (2005).
[CrossRef] [PubMed]

D. Marris-Morini, X. Le Roux, L. Vivien, E. Cassan, D. Pascal, M. Halbwax, S. Maine, S. Laval, J. M. Fédéli, and J. F. Damlencourt, “Optical modulation by carrier depletion in a silicon PIN diode,” Opt. Express 14(22), 10838–10843 (2006).
[CrossRef] [PubMed]

Q. F. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 (2007).
[CrossRef] [PubMed]

A. S. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007).
[CrossRef] [PubMed]

F. Y. Gardes, K. L. Tsakmakidis, D. Thomson, G. T. Reed, G. Z. Mashanovich, O. Hess, and D. Avitabile, “Micrometer size polarization independent depletion-type photonic modulator in Silicon On Insulator,” Opt. Express 15(9), 5879–5884 (2007).
[CrossRef] [PubMed]

W. M. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15(25), 17106–17113 (2007).
[CrossRef] [PubMed]

D. Marris-Morini, L. Vivien, J. M. Fédéli, E. Cassan, P. Lyan, and S. Laval, “Low loss and high speed silicon optical modulator based on a lateral carrier depletion structure,” Opt. Express 16(1), 334–339 (2008).
[CrossRef] [PubMed]

Opt. Lett.

Proc. SPIE

D. W. Zheng, D. Z. Feng, G. Gutierrez, and T. Smith, “Design of a 10 GHz Silicon Modulator Based on a 0.25 µm CMOS Process - A Silicon Photonic Approach,” Proc. SPIE 6125, 61250E (2006).
[CrossRef]

L. C. Kimerling, A. B. Apsel, M. Beals, D. Carothers, Y. Chen, T. Conway, D. Gill, M. Grove, C. Hong, M. F. Lipson, J. Liu, J. Michel, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, A. E. White, and C. Wong, “Recent advances in CMOS compatible integrated photonics,” Proc. SPIE 6125, 612502 (2006).
[CrossRef]

Other

S. J. Spector, M. E. Grein, R. T. Schulein, M. W. Geis, J. U. Yoon, D. E. Lennon, F. Gan, F. X. Kartner, and T. M. Lyszczarz, “Compact carrier injection based Mach-Zehnder modulator in silicon,” in Technical Digest of 2007 Integrated Photonics Research, ITuE5 (2007).

T. Pinguet, V. Sadagopan, A. Mekis, B. Analui, D. Kucharski, and S. Gloeckner, “A 1550 nm, 10 Gbps optical modulator with integrated driver in 130 nm CMOS, 4th IEEE International Conference on Group IV Photonics, ThA2, 186-188 (2007).

Z. Y. Li, D.-X. Xu, R. Mckinnon, S. Janz, J. H. Schmid, J. Lapointe, P. Cheben, and J.Z. Yu, “Low Driving-Voltage Optical Modulator Based on Carrier Depletion in Silicon with Periodically Interleaved P-N Junctions”, 5th IEEE International conference on Group IV Photonics, WA5, 13–15 (2008).

Silvaco International, 4701 Patrick Henry drive, Bldg 1, Santa Clara, CA 94054, http://www.silvaco.com .

G. P. Agrawal, Fiber-Optic Communication Systems, 2nd ed. (New York: Wiley, 1997), Chap. 5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic 3-D view of a phase shifter with periodically interleaved PN junctions, (b) top view of one doping period, and (c) step-function optical field profile used for refractive index change evaluation, assuming the same width W0 as the waveguide.

Fig. 2
Fig. 2

Top view of free carrier concentrations (sum of free electrons and holes) for Design A at the biases of (a) 0 V and (b) 3 V, respectively.

Fig. 3
Fig. 3

(a) Phase shift per unit length Δφ (π/mm), (b) absorption loss (dB/mm) per unit length and (c) frequency bandwidth BW3dB for different doping concentrations. The reverse bias is 0, 1, 2, or 3V as indicated for the phase modulator structure with a segment length of L = 300 nm and a width of W1 = 600 nm.

Fig. 4
Fig. 4

(a) Phase shift per unit length at different reverse bias voltages, as a function of the segment length L and (b) Absorption loss per unit length corresponding to these cases. The both P- and N- types of doping levels are N1 = 1 × 1018 cm−3. (c) 3 dB frequency bandwidth BW3dB as a function of segment length L.

Fig. 5
Fig. 5

(a) Phase shift, (b) absorption loss and (c) frequency bandwidth as a function of PN junction segment width W1, at a reverse bias of 3 V. The waveguide width is W0 = 600 nm.

Fig. 6
Fig. 6

Transient response of an optimized modulator ( Design F) to a 3 V square driving pulse with a ramp time of (a) 1 ps and (b) 20 ps, respectively.

Tables (3)

Tables Icon

Table 1 Lists of three types of PN junction modulators with different PN junction orientations, indicated by the dashed line.

Tables Icon

Table 2 Parameters comparison for PN junction based silicon optical modulators. (* indicate simulation results.)

Tables Icon

Table 3 Design parameter and figures of merit for several modulator designs discussed in the text.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Δnc=8.8×1022ΔNe8.5×1018(ΔNh)0.8
Δαc=8.5×1018ΔNe+   6.0×1018ΔNh   
Δneff(z)=sΔnc(x,y,z)|E(x,y,z)|2dxdys|E(x,y,z)|2dxdy
Δαeff(z)=sΔαc(x,y,z)|E(x,y,z)|2dxdys|E(x,y,z)|2dxdy
Δφ=2π2Lλ02LΔneff(z)dz
Δα=4.3432L02LΔαeff(z)dz
Lπ=πΔφ
απ=LπΔα

Metrics