Abstract

This paper presents the concept of an optical transmitter based on optical arbitrary waveform generation (OAWG) capable of synthesizing Tb/s optical signals of arbitrary modulation format. Experimental and theoretical demonstrations in this paper include generation of data packet waveforms focusing on (a) achieving high spectral efficiencies in quadrature phase-shift keying (QPSK) and 16 quadrature amplitude modulation (16QAM) modulation formats, (b) generation of complex data waveform packets used for optical-label switching (OLS) consisting of a data payload and label on a carrier and subcarrier, and (c) repeatability and accuracy of duobinary (DB) data packet waveforms with BER measurements. These initial demonstrations are based on static OAWG, or line-by-line pulse shaping, to generate repeated waveforms of arbitrary shape. In addition to experimental and theoretical demonstrations of static OAWG, simulated results show dynamic OAWG, which involves encoding continuous data streams of arbitrary symbol sequence on data packet waveforms of arbitrary length.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Ip, A. P. T. Lau, D. J. F. Barros, and J. M. Kahn, “Coherent detection in optical fiber systems,” Opt. Express 16(2), 753–791 (2008).
    [CrossRef] [PubMed]
  2. D. J. Geisler, N. K. Fontaine, R. P. Scott, J. P. Heritage, K. Okamoto, and S. J. B. Yoo, “360 Gb/s optical transmitter with arbitrary modulation format and dispersion precompensation,” IEEE Photon. Technol. Lett. 21(7), 489–491 (2009).
    [CrossRef]
  3. S. L. Jansen, I. Morita, T. C. W. Schenk, N. Takeda, and H. Tanaka, “Coherent optical 25.8-Gb/s OFDM transmission over 4160-km SSMF,” J. Lightwave Technol. 26(1), 6–15 (2008).
    [CrossRef]
  4. E. Yamada, A. Sano, H. Masuda, T. Kobayashi, E. Yoshida, Y. Miyamoto, Y. Hibino, K. Ishihara, Y. Takatori, K. Okada, K. Hagimoto, T. Yamada, and H. Yamazaki, “Novel no-guard-interval PDM CO-OFDM transmission in 4.1 Tb/s (50 x 88.8-Gb/s) DWDM link over 800 km SMF including 50-GHz spaced ROADM nodes,” in Optical Fiber Communication and National Fiber Optic Engineers Conference (OFC/NFOEC 2008), Technical Digest (CD) (Optical Society of America, 2008), paper PDP8. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2008-PDP8
  5. A. D. Ellis and F. C. G. Gunning, “Spectral density enhancement using coherent WDM,” IEEE Photon. Technol. Lett. 17(2), 504–506 (2005).
    [CrossRef]
  6. F. C. G. Gunning, T. Healy, and A. D. Ellis, “Dispersion tolerance of coherent WDM,” IEEE Photon. Technol. Lett. 18(12), 1338–1340 (2006).
    [CrossRef]
  7. R. P. Scott, N. K. Fontaine, J. Cao, K. Okamoto, B. H. Kolner, J. P. Heritage, and S. J. B. Yoo, “High-fidelity line-by-line optical waveform generation and complete characterization using FROG,” Opt. Express 15(16), 9977–9988 (2007).
    [CrossRef] [PubMed]
  8. Z. Jiang, C. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
    [CrossRef]
  9. A. M. Weiner, “Femtosecond optical pulse shaping and processing,” Prog. Quantum Electron. 19(3), 161–237 (1995).
    [CrossRef]
  10. R. Kobe, S. Takeda, T. Shioda, Y. Tanaka, H. Tsuda, and T. Kurokawa, “Generation of 100-Gbps optical packets with 8-bit RZ pulse patterns using an optical pulse synthesizer,” in Conference on Lasers and Electro-Optics/Pacific Rim, (Optical Society of America, 2007), paper WD3–4. http://www.opticsinfobase.org/abstract.cfm?URI=CLEOPR-2007-WD3_4
  11. N. K. Fontaine, R. P. Scott, J. Cao, A. Karalar, W. Jiang, K. Okamoto, J. P. Heritage, B. H. Kolner, and S. J. Yoo, “32 Phase X 32 amplitude optical arbitrary waveform generation,” Opt. Lett. 32(7), 865–867 (2007).
    [CrossRef] [PubMed]
  12. W. Jiang, F. M. Soares, S.-W. Seo, J.-H. Baek, N. K. Fontaine, R. G. Broeke, J. Cao, J. Yan, K. Okamoto, F. Olsson, S. Lourdudoss, A. Pham, and S. J. B. Yoo, “A monolithic InP-based photonic integrated circuit for optical arbitrary waveform generation,” in Optical Fiber Communication and National Fiber Optic Engineers Conference (OFC/NFOEC 2008), Technical Digest (CD) 2008), paper JThA39. http://www.opticsinfobase.org/abstract.cfm?URI=NFOEC-2008-JThA39
  13. S.-W. Seo, J. Yan, J.-H. Baek, F. M. Soares, R. Broeke, A.-V. Pham, and S. J. B. Yoo, “Microwave velocity and impedance tuning of traveling-wave modulator using ion implantation for monolithic integrated photonic systems,” Microw. Opt. Technol. Lett. 50(8), 2151–2155 (2008).
    [CrossRef]
  14. N. K. Fontaine, J. Yang, W. Jiang, D. J. Geisler, K. Okamoto, R. Huang, and S. J. B. Yoo, “Active arrayed-waveguide grating with amplitude and phase control for arbitrary filter generation and high-order dispersion compensation,” in 34th European Conference on Optical Communication (ECOC 2008), Technical Digest (CD) (IEEE, 2008), paper Mo.4.C.3.
  15. J. T. Willits, A. M. Weiner, and S. T. Cundiff, “Theory of rapid-update line-by-line pulse shaping,” Opt. Express 16(1), 315–327 (2008).
    [CrossRef] [PubMed]
  16. D. J. Geisler, N. K. Fontaine, R. P. Scott, T. He, K. Okamoto, J. P. Heritage, and S. J. B. Yoo, “3 b/s/Hz 1.2 Tb/s packet generation using optical arbitrary waveform generation based optical transmitter,” in Optical Fiber Communication and National Fiber Optic Engineers Conference (OFC/NFOEC 2009), Technical Digest (CD) (Optical Society of America, 2009), paper JThA. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2009-JThA29
  17. M. Fujiwara, J. Kani, H. Suzuki, K. Araya, and M. Teshima, “Flattened optical multicarrier generation of 12.5 GHz spaced 256 channels based on sinusoidal amplitude and phase hybrid modulation,” Electron. Lett. 37(15), 967–968 (2001).
    [CrossRef]
  18. T. Sakamoto, T. Kawanishi, and M. Izutsu, “Asymptotic formalism for ultraflat optical frequency comb generation using a Mach-Zehnder modulator,” Opt. Lett. 32(11), 1515–1517 (2007).
    [CrossRef] [PubMed]
  19. N. K. Fontaine, R. P. Scott, C. Yang, D. J. Geisler, J. P. Heritage, K. Okamoto, and S. J. B. Yoo, “Compact 10 GHz loopback arrayed-waveguide grating for high-fidelity optical arbitrary waveform generation,” Opt. Lett. 33(15), 1714–1716 (2008).
    [CrossRef] [PubMed]
  20. N. K. Fontaine, R. P. Scott, C. Yang, D. J. Geisler, K. Okamoto, J. P. Heritage, and S. J. B. Yoo, “Integrated, ultrahigh-fidelity 17 x 40 GHz OAWG,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, (Optical Society of America, 2008), paper CTuA5. http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2008-CTuA5
  21. N. K. Fontaine, R. P. Scott, C. Yang, J. P. Heritage, and S. J. B. Yoo, “Near Quantum-Limited Single-Shot Full-Field Measurements of Arbitrarily Shaped Optical Waveforms,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, (Optical Society of America, 2009), paper CThDD7.
  22. N. K. Fontaine, R. P. Scott, J. P. Heritage, and S. J. B. Yoo, “Near quantum-limited, single-shot coherent arbitrary optical waveform measurements,” Opt. Express 17(15), 12332–12344 (2009).
    [CrossRef] [PubMed]
  23. D. Lee, P. Gabolde, and R. Trebino, “Toward single-shot measurement of a broadband ultrafast continuum,” J. Opt. Soc. Am. B 25(6), A34–A40 (2008).
    [CrossRef]
  24. A. Assalini and A. M. Tonello, “Improved Nyquist pulses,” IEEE Commun. Lett. 8(2), 87–89 (2004).
    [CrossRef]
  25. S. J. B. Yoo, “Optical packet and burst switching technologies for the future photonic internet,” J. Lightwave Technol. 24(12), 4468–4492 (2006).
    [CrossRef]
  26. C.-L. Lu, D. J. M. Sabido, P. Poggiolini, R. T. Hofmeister, and L. G. Kazovsky, “CORD–a WDMA optical network: subcarrier-based signaling and control scheme,” IEEE Photon. Technol. Lett. 7(5), 555–557 (1995).
    [CrossRef]
  27. J. Yu and G.-K. Chang, “A novel technique for optical label and payload generation and multiplexing using optical carrier suppression and separation,” IEEE Photon. Technol. Lett. 16(1), 320–322 (2004).
    [CrossRef]

2009 (2)

D. J. Geisler, N. K. Fontaine, R. P. Scott, J. P. Heritage, K. Okamoto, and S. J. B. Yoo, “360 Gb/s optical transmitter with arbitrary modulation format and dispersion precompensation,” IEEE Photon. Technol. Lett. 21(7), 489–491 (2009).
[CrossRef]

N. K. Fontaine, R. P. Scott, J. P. Heritage, and S. J. B. Yoo, “Near quantum-limited, single-shot coherent arbitrary optical waveform measurements,” Opt. Express 17(15), 12332–12344 (2009).
[CrossRef] [PubMed]

2008 (6)

2007 (4)

2006 (2)

F. C. G. Gunning, T. Healy, and A. D. Ellis, “Dispersion tolerance of coherent WDM,” IEEE Photon. Technol. Lett. 18(12), 1338–1340 (2006).
[CrossRef]

S. J. B. Yoo, “Optical packet and burst switching technologies for the future photonic internet,” J. Lightwave Technol. 24(12), 4468–4492 (2006).
[CrossRef]

2005 (1)

A. D. Ellis and F. C. G. Gunning, “Spectral density enhancement using coherent WDM,” IEEE Photon. Technol. Lett. 17(2), 504–506 (2005).
[CrossRef]

2004 (2)

A. Assalini and A. M. Tonello, “Improved Nyquist pulses,” IEEE Commun. Lett. 8(2), 87–89 (2004).
[CrossRef]

J. Yu and G.-K. Chang, “A novel technique for optical label and payload generation and multiplexing using optical carrier suppression and separation,” IEEE Photon. Technol. Lett. 16(1), 320–322 (2004).
[CrossRef]

2001 (1)

M. Fujiwara, J. Kani, H. Suzuki, K. Araya, and M. Teshima, “Flattened optical multicarrier generation of 12.5 GHz spaced 256 channels based on sinusoidal amplitude and phase hybrid modulation,” Electron. Lett. 37(15), 967–968 (2001).
[CrossRef]

1995 (2)

C.-L. Lu, D. J. M. Sabido, P. Poggiolini, R. T. Hofmeister, and L. G. Kazovsky, “CORD–a WDMA optical network: subcarrier-based signaling and control scheme,” IEEE Photon. Technol. Lett. 7(5), 555–557 (1995).
[CrossRef]

A. M. Weiner, “Femtosecond optical pulse shaping and processing,” Prog. Quantum Electron. 19(3), 161–237 (1995).
[CrossRef]

Araya, K.

M. Fujiwara, J. Kani, H. Suzuki, K. Araya, and M. Teshima, “Flattened optical multicarrier generation of 12.5 GHz spaced 256 channels based on sinusoidal amplitude and phase hybrid modulation,” Electron. Lett. 37(15), 967–968 (2001).
[CrossRef]

Assalini, A.

A. Assalini and A. M. Tonello, “Improved Nyquist pulses,” IEEE Commun. Lett. 8(2), 87–89 (2004).
[CrossRef]

Baek, J.-H.

S.-W. Seo, J. Yan, J.-H. Baek, F. M. Soares, R. Broeke, A.-V. Pham, and S. J. B. Yoo, “Microwave velocity and impedance tuning of traveling-wave modulator using ion implantation for monolithic integrated photonic systems,” Microw. Opt. Technol. Lett. 50(8), 2151–2155 (2008).
[CrossRef]

Barros, D. J. F.

Broeke, R.

S.-W. Seo, J. Yan, J.-H. Baek, F. M. Soares, R. Broeke, A.-V. Pham, and S. J. B. Yoo, “Microwave velocity and impedance tuning of traveling-wave modulator using ion implantation for monolithic integrated photonic systems,” Microw. Opt. Technol. Lett. 50(8), 2151–2155 (2008).
[CrossRef]

Cao, J.

Chang, G.-K.

J. Yu and G.-K. Chang, “A novel technique for optical label and payload generation and multiplexing using optical carrier suppression and separation,” IEEE Photon. Technol. Lett. 16(1), 320–322 (2004).
[CrossRef]

Cundiff, S. T.

Ellis, A. D.

F. C. G. Gunning, T. Healy, and A. D. Ellis, “Dispersion tolerance of coherent WDM,” IEEE Photon. Technol. Lett. 18(12), 1338–1340 (2006).
[CrossRef]

A. D. Ellis and F. C. G. Gunning, “Spectral density enhancement using coherent WDM,” IEEE Photon. Technol. Lett. 17(2), 504–506 (2005).
[CrossRef]

Fontaine, N. K.

Fujiwara, M.

M. Fujiwara, J. Kani, H. Suzuki, K. Araya, and M. Teshima, “Flattened optical multicarrier generation of 12.5 GHz spaced 256 channels based on sinusoidal amplitude and phase hybrid modulation,” Electron. Lett. 37(15), 967–968 (2001).
[CrossRef]

Gabolde, P.

Geisler, D. J.

D. J. Geisler, N. K. Fontaine, R. P. Scott, J. P. Heritage, K. Okamoto, and S. J. B. Yoo, “360 Gb/s optical transmitter with arbitrary modulation format and dispersion precompensation,” IEEE Photon. Technol. Lett. 21(7), 489–491 (2009).
[CrossRef]

N. K. Fontaine, R. P. Scott, C. Yang, D. J. Geisler, J. P. Heritage, K. Okamoto, and S. J. B. Yoo, “Compact 10 GHz loopback arrayed-waveguide grating for high-fidelity optical arbitrary waveform generation,” Opt. Lett. 33(15), 1714–1716 (2008).
[CrossRef] [PubMed]

Gunning, F. C. G.

F. C. G. Gunning, T. Healy, and A. D. Ellis, “Dispersion tolerance of coherent WDM,” IEEE Photon. Technol. Lett. 18(12), 1338–1340 (2006).
[CrossRef]

A. D. Ellis and F. C. G. Gunning, “Spectral density enhancement using coherent WDM,” IEEE Photon. Technol. Lett. 17(2), 504–506 (2005).
[CrossRef]

Healy, T.

F. C. G. Gunning, T. Healy, and A. D. Ellis, “Dispersion tolerance of coherent WDM,” IEEE Photon. Technol. Lett. 18(12), 1338–1340 (2006).
[CrossRef]

Heritage, J. P.

Hofmeister, R. T.

C.-L. Lu, D. J. M. Sabido, P. Poggiolini, R. T. Hofmeister, and L. G. Kazovsky, “CORD–a WDMA optical network: subcarrier-based signaling and control scheme,” IEEE Photon. Technol. Lett. 7(5), 555–557 (1995).
[CrossRef]

Huang, C.

Z. Jiang, C. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[CrossRef]

Ip, E.

Izutsu, M.

Jansen, S. L.

Jiang, W.

Jiang, Z.

Z. Jiang, C. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[CrossRef]

Kahn, J. M.

Kani, J.

M. Fujiwara, J. Kani, H. Suzuki, K. Araya, and M. Teshima, “Flattened optical multicarrier generation of 12.5 GHz spaced 256 channels based on sinusoidal amplitude and phase hybrid modulation,” Electron. Lett. 37(15), 967–968 (2001).
[CrossRef]

Karalar, A.

Kawanishi, T.

Kazovsky, L. G.

C.-L. Lu, D. J. M. Sabido, P. Poggiolini, R. T. Hofmeister, and L. G. Kazovsky, “CORD–a WDMA optical network: subcarrier-based signaling and control scheme,” IEEE Photon. Technol. Lett. 7(5), 555–557 (1995).
[CrossRef]

Kolner, B. H.

Lau, A. P. T.

Leaird, D. E.

Z. Jiang, C. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[CrossRef]

Lee, D.

Lu, C.-L.

C.-L. Lu, D. J. M. Sabido, P. Poggiolini, R. T. Hofmeister, and L. G. Kazovsky, “CORD–a WDMA optical network: subcarrier-based signaling and control scheme,” IEEE Photon. Technol. Lett. 7(5), 555–557 (1995).
[CrossRef]

Morita, I.

Okamoto, K.

Pham, A.-V.

S.-W. Seo, J. Yan, J.-H. Baek, F. M. Soares, R. Broeke, A.-V. Pham, and S. J. B. Yoo, “Microwave velocity and impedance tuning of traveling-wave modulator using ion implantation for monolithic integrated photonic systems,” Microw. Opt. Technol. Lett. 50(8), 2151–2155 (2008).
[CrossRef]

Poggiolini, P.

C.-L. Lu, D. J. M. Sabido, P. Poggiolini, R. T. Hofmeister, and L. G. Kazovsky, “CORD–a WDMA optical network: subcarrier-based signaling and control scheme,” IEEE Photon. Technol. Lett. 7(5), 555–557 (1995).
[CrossRef]

Sabido, D. J. M.

C.-L. Lu, D. J. M. Sabido, P. Poggiolini, R. T. Hofmeister, and L. G. Kazovsky, “CORD–a WDMA optical network: subcarrier-based signaling and control scheme,” IEEE Photon. Technol. Lett. 7(5), 555–557 (1995).
[CrossRef]

Sakamoto, T.

Schenk, T. C. W.

Scott, R. P.

Seo, S.-W.

S.-W. Seo, J. Yan, J.-H. Baek, F. M. Soares, R. Broeke, A.-V. Pham, and S. J. B. Yoo, “Microwave velocity and impedance tuning of traveling-wave modulator using ion implantation for monolithic integrated photonic systems,” Microw. Opt. Technol. Lett. 50(8), 2151–2155 (2008).
[CrossRef]

Soares, F. M.

S.-W. Seo, J. Yan, J.-H. Baek, F. M. Soares, R. Broeke, A.-V. Pham, and S. J. B. Yoo, “Microwave velocity and impedance tuning of traveling-wave modulator using ion implantation for monolithic integrated photonic systems,” Microw. Opt. Technol. Lett. 50(8), 2151–2155 (2008).
[CrossRef]

Suzuki, H.

M. Fujiwara, J. Kani, H. Suzuki, K. Araya, and M. Teshima, “Flattened optical multicarrier generation of 12.5 GHz spaced 256 channels based on sinusoidal amplitude and phase hybrid modulation,” Electron. Lett. 37(15), 967–968 (2001).
[CrossRef]

Takeda, N.

Tanaka, H.

Teshima, M.

M. Fujiwara, J. Kani, H. Suzuki, K. Araya, and M. Teshima, “Flattened optical multicarrier generation of 12.5 GHz spaced 256 channels based on sinusoidal amplitude and phase hybrid modulation,” Electron. Lett. 37(15), 967–968 (2001).
[CrossRef]

Tonello, A. M.

A. Assalini and A. M. Tonello, “Improved Nyquist pulses,” IEEE Commun. Lett. 8(2), 87–89 (2004).
[CrossRef]

Trebino, R.

Weiner, A. M.

J. T. Willits, A. M. Weiner, and S. T. Cundiff, “Theory of rapid-update line-by-line pulse shaping,” Opt. Express 16(1), 315–327 (2008).
[CrossRef] [PubMed]

Z. Jiang, C. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[CrossRef]

A. M. Weiner, “Femtosecond optical pulse shaping and processing,” Prog. Quantum Electron. 19(3), 161–237 (1995).
[CrossRef]

Willits, J. T.

Yan, J.

S.-W. Seo, J. Yan, J.-H. Baek, F. M. Soares, R. Broeke, A.-V. Pham, and S. J. B. Yoo, “Microwave velocity and impedance tuning of traveling-wave modulator using ion implantation for monolithic integrated photonic systems,” Microw. Opt. Technol. Lett. 50(8), 2151–2155 (2008).
[CrossRef]

Yang, C.

Yoo, S. J.

Yoo, S. J. B.

Yu, J.

J. Yu and G.-K. Chang, “A novel technique for optical label and payload generation and multiplexing using optical carrier suppression and separation,” IEEE Photon. Technol. Lett. 16(1), 320–322 (2004).
[CrossRef]

Electron. Lett. (1)

M. Fujiwara, J. Kani, H. Suzuki, K. Araya, and M. Teshima, “Flattened optical multicarrier generation of 12.5 GHz spaced 256 channels based on sinusoidal amplitude and phase hybrid modulation,” Electron. Lett. 37(15), 967–968 (2001).
[CrossRef]

IEEE Commun. Lett. (1)

A. Assalini and A. M. Tonello, “Improved Nyquist pulses,” IEEE Commun. Lett. 8(2), 87–89 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

C.-L. Lu, D. J. M. Sabido, P. Poggiolini, R. T. Hofmeister, and L. G. Kazovsky, “CORD–a WDMA optical network: subcarrier-based signaling and control scheme,” IEEE Photon. Technol. Lett. 7(5), 555–557 (1995).
[CrossRef]

J. Yu and G.-K. Chang, “A novel technique for optical label and payload generation and multiplexing using optical carrier suppression and separation,” IEEE Photon. Technol. Lett. 16(1), 320–322 (2004).
[CrossRef]

D. J. Geisler, N. K. Fontaine, R. P. Scott, J. P. Heritage, K. Okamoto, and S. J. B. Yoo, “360 Gb/s optical transmitter with arbitrary modulation format and dispersion precompensation,” IEEE Photon. Technol. Lett. 21(7), 489–491 (2009).
[CrossRef]

A. D. Ellis and F. C. G. Gunning, “Spectral density enhancement using coherent WDM,” IEEE Photon. Technol. Lett. 17(2), 504–506 (2005).
[CrossRef]

F. C. G. Gunning, T. Healy, and A. D. Ellis, “Dispersion tolerance of coherent WDM,” IEEE Photon. Technol. Lett. 18(12), 1338–1340 (2006).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Microw. Opt. Technol. Lett. (1)

S.-W. Seo, J. Yan, J.-H. Baek, F. M. Soares, R. Broeke, A.-V. Pham, and S. J. B. Yoo, “Microwave velocity and impedance tuning of traveling-wave modulator using ion implantation for monolithic integrated photonic systems,” Microw. Opt. Technol. Lett. 50(8), 2151–2155 (2008).
[CrossRef]

Nat. Photonics (1)

Z. Jiang, C. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[CrossRef]

Opt. Express (4)

Opt. Lett. (3)

Prog. Quantum Electron. (1)

A. M. Weiner, “Femtosecond optical pulse shaping and processing,” Prog. Quantum Electron. 19(3), 161–237 (1995).
[CrossRef]

Other (7)

R. Kobe, S. Takeda, T. Shioda, Y. Tanaka, H. Tsuda, and T. Kurokawa, “Generation of 100-Gbps optical packets with 8-bit RZ pulse patterns using an optical pulse synthesizer,” in Conference on Lasers and Electro-Optics/Pacific Rim, (Optical Society of America, 2007), paper WD3–4. http://www.opticsinfobase.org/abstract.cfm?URI=CLEOPR-2007-WD3_4

W. Jiang, F. M. Soares, S.-W. Seo, J.-H. Baek, N. K. Fontaine, R. G. Broeke, J. Cao, J. Yan, K. Okamoto, F. Olsson, S. Lourdudoss, A. Pham, and S. J. B. Yoo, “A monolithic InP-based photonic integrated circuit for optical arbitrary waveform generation,” in Optical Fiber Communication and National Fiber Optic Engineers Conference (OFC/NFOEC 2008), Technical Digest (CD) 2008), paper JThA39. http://www.opticsinfobase.org/abstract.cfm?URI=NFOEC-2008-JThA39

N. K. Fontaine, R. P. Scott, C. Yang, D. J. Geisler, K. Okamoto, J. P. Heritage, and S. J. B. Yoo, “Integrated, ultrahigh-fidelity 17 x 40 GHz OAWG,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, (Optical Society of America, 2008), paper CTuA5. http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2008-CTuA5

N. K. Fontaine, R. P. Scott, C. Yang, J. P. Heritage, and S. J. B. Yoo, “Near Quantum-Limited Single-Shot Full-Field Measurements of Arbitrarily Shaped Optical Waveforms,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, (Optical Society of America, 2009), paper CThDD7.

N. K. Fontaine, J. Yang, W. Jiang, D. J. Geisler, K. Okamoto, R. Huang, and S. J. B. Yoo, “Active arrayed-waveguide grating with amplitude and phase control for arbitrary filter generation and high-order dispersion compensation,” in 34th European Conference on Optical Communication (ECOC 2008), Technical Digest (CD) (IEEE, 2008), paper Mo.4.C.3.

D. J. Geisler, N. K. Fontaine, R. P. Scott, T. He, K. Okamoto, J. P. Heritage, and S. J. B. Yoo, “3 b/s/Hz 1.2 Tb/s packet generation using optical arbitrary waveform generation based optical transmitter,” in Optical Fiber Communication and National Fiber Optic Engineers Conference (OFC/NFOEC 2009), Technical Digest (CD) (Optical Society of America, 2009), paper JThA. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2009-JThA29

E. Yamada, A. Sano, H. Masuda, T. Kobayashi, E. Yoshida, Y. Miyamoto, Y. Hibino, K. Ishihara, Y. Takatori, K. Okada, K. Hagimoto, T. Yamada, and H. Yamazaki, “Novel no-guard-interval PDM CO-OFDM transmission in 4.1 Tb/s (50 x 88.8-Gb/s) DWDM link over 800 km SMF including 50-GHz spaced ROADM nodes,” in Optical Fiber Communication and National Fiber Optic Engineers Conference (OFC/NFOEC 2008), Technical Digest (CD) (Optical Society of America, 2008), paper PDP8. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2008-PDP8

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

(a) Static OAWG involves arbitrarily filtering a frequency comb to make a repetitive THz bandwidth waveform. (b) Dynamic OAWG involves modulating each frequency comb individually to generate an infinite duration waveform. Example (c) intensity and phase modulators, and (d) I/Q modulators capable of full field modulation.

Fig. 3
Fig. 3

9-bit 360 Gb/s OOK packet example. Unshaped 40 GHz OFC output (a) spectral intensity (blue stems) and phase (red circles) and (b) time domain intensity (solid blue) and phase (dashed red). Shaped OOK packet (c) spectral intensity (blue stems) and phase (red circles) with targets indicated by ‘x’ and (d) time domain intensity (blue) and phase (red). Measurements (solid) and targets (dashed). Vertical lines separate bit periods.

Fig. 2
Fig. 2

Generalized OFCG experimental arrangement for 10 GHz and 40 GHz comb sources; only the 10 GHz OFCG uses PM4. DEMZM: dual-electrode Mach-Zehnder modulator. PM: phase modulator.

Fig. 4
Fig. 4

DSP algorithm flow for data packet specification. (a) Raised-cosine filter definition. 8-bit [00100111] OOK and QPSK symbol trains in the (b) temporal and (c) spectral domains. Raised-cosine filtered symbol trains in the (d) spectral and (e) time domains. Filtered symbol trains with CD precomensation for 168 ps/nm of dispersion and 0.6 ps/nm2 of dispersion slope in the (f) spectral and (g) temporal domains. Intensity shown in solid blue lines and phase in dashed red lines or ‘x’ for all plots. Time domain intensities are normalized to a peak of 1 and plotted on a linear scale. Spectral domain intensities are normalized and plotted on a log scale with 5 dB/div.

Fig. 5
Fig. 5

Experimental arrangement for communication applications. PM: phase modulator. AM: amplitude modulator. AWG: arrayed-waveguide grating.

Fig. 6
Fig. 6

40-bit 400 Gb/s NRZ-OOK packet. (a) Spectral domain intensity (blue stems) and phase (red circles) with targets indicated by blue and red ‘x’ symbols. (b) Time-domain optical field intensity (solid blue line) and phase (red dots). Target intensity and phase indicated by blue and red dashed lines, respectively. (c) Target and (d) measured eye diagrams.

Fig. 7
Fig. 7

80-bit 800 Gb/s NRZ-QPSK packet. (a) Spectral domain intensity (blue stems) and phase (red circles) with targets indicated by blue and red ‘x’ symbols. (b) Time domain optical field intensity (solid blue line) and phase (red dots). Target intensity and phase indicated by blue and red dashed lines, respectively. Target (c) constellation diagram and (d,e) eye diagrams of real and imaginary field components. Measured (f) constellation diagram and (g,h) calculated pseudo eye diagrams of real and imaginary field components.

Fig. 8
Fig. 8

120 bit 1200 Gb/s NRZ-QAM packet. (a) Spectral intensity (blue stems) and phase (red circles) with targets indicated by blue (intensity) and red (phase) ‘x’ symbols. (b) Time domain optical field intensity (solid blue line) and phase (red dots). Target intensity and phase indicated by blue and red dashed lines, respectively. Constellation diagrams of (c) target data, (d) measured data and (e) measured data with spectral phase correction.

Fig. 9
Fig. 9

10-bit 100 Gb/s payload with 4-bit 40 Gb/s label OOK OLS packet (a) spectral domain intensity (blue stems) and phase (red circles) with targets indicated by blue and red ‘x’ symbols and (b) time domain optical field intensity (solid blue line) and phase (red dots). Target intensity and phase indicated by blue and red dashed lines, respectively. (c) Payload and (d) label time domain waveforms.

Fig. 10
Fig. 10

10-bit 100 Gb/s payload with 4-bit 40 Gb/s label PSK OLS packet (a) spectral domain intensity (blue stems) and phase (red circles) with targets indicated by blue and red ‘x’ symbols and (b) time domain optical field intensity (solid blue line) and phase (red dots). (c) Payload and (d) label time domain waveforms.

Fig. 11
Fig. 11

(a) Mean intensity of 500 single shot measurements of the 50-bit DB waveform at 500 Gb/s. (b) Eye diagram generated from an ideal 50-bit DB data stream at a power of 60,000 photons without any system noise or other impairments. (c) Eye diagram generated from 500 measurements of the same 50-bit DB data stream at 60,000 photons. The colors represent a 2-D histogram of the measured data. (d) BER curve calculated from the measured 50-bit DB data stream.

Fig. 12
Fig. 12

Pictorial description of spectral slice dynamic OAWG. (a) Extended data packet consisting of four 100 ps static OAWG time periods. (b) Spectrum of extended data packet divided into 10 GHz spectral slices. (c) Inverse Fourier transform of each spectral slice with pre-emphasis for the spectral multiplexer. (d) Transmission of a gapless spectral multiplexer.

Metrics