Abstract

In this work, a host which interacts and enhanced energy transfer to the luminescent center such that it facilitates the infrared emission while avoiding undesired emissions was found. An intense emission at ~1530 nm with no other visible emissions was observed in Er- and Yb-Er- doped CeF3 nanoparticles upon excitation at ~975 nm. The average measured luminescence lifetimes of the ~1530 nm emission for heat-treated CeF3:Er and CeF3:Yb,Er nanoparticles was ~4.5−6.5 ms, with internal quantum efficiencies up to ~52−75%. These nanoparticles offer a vast range of potential applications, which include optical amplifiers, waveguides, laser materials and infrared imaging probes.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Kenyon, “Recent developments in rare-earth doped materials for optoelectronics,” Prog. Quantum Electron. 26(4-5), 225–284 (2002).
    [CrossRef]
  2. L. H. Slooff, A. van Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Rare-earth doped polymers for planar optical amplifiers,” J. Appl. Phys. 91(7), 3955–3980 (2002).
    [CrossRef]
  3. A. Polman and F. C. J. M. van Veggel, “Broadband sensitizers for erbium-doped planar optical amplifiers: review,” J. Opt. Soc. Am. B 21(5), 871–892 (2004).
    [CrossRef]
  4. A. Jha, “A review of visible, near-IR and mid-IR transitions in rare-earth doped glass waveguides for remote sensing and LIDAR,” Proc. SPIE 6409, 650918.1-650918.12 (2006).
  5. A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. L. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res. 36(1), 397–429 (2006).
    [CrossRef]
  6. Y. T. Lim, S. Kim, A. Nakayama, N. E. Stott, M. G. Bawendi, and J. V. Frangioni, “Selection of quantum dot wavelengths for biomedical assays and imaging,” Mol. Imaging 2(1), 50–64 (2003).
    [CrossRef] [PubMed]
  7. E. H. Sargent, “Infrared quantum dots,” Adv. Mater. 17, 515–522 (2005).
    [CrossRef]
  8. G. A. Kumar, C. W. Chen, J. Ballato, and R. E. Riman, “Optical characterization of infrared emitting rare-earth-doped fluoride nanocrystals and their transparent nanocomposites,” Chem. Mater. 19(6), 1523–1528 (2007).
    [CrossRef]
  9. G. A. Hebbink, J. W. Stouwdam, D. N. Reinhoudt, and F. C. J. M. van Veggel, “Lanthanide (III)-doped nanoparticles that emit in the near-infrared,” Adv. Mater. 14(16), 1147–1150 (2002).
    [CrossRef]
  10. R. C. Powell, Physics of Solid-State Laser Materials, (Springer-Verlag, 1998).
  11. P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-doped fiber amplifiers: Fundamentals and technology, (Academic Press, 1999)
  12. B. Simondi-Teisseire, B. Viana, D. Vivien, and A. M. Lejus, “Yb3+ to Er3+ energy transfer and rate-equations formalism in the eye safe laser material Yb:Er:Ca2Al2SiO7,” Opt. Mater. 6(4), 267–274 (1996).
    [CrossRef]
  13. J. L. Sommerdijk and A. Bril, “Phosphors for the conversion of infrared radiation into visible light,” Philips Tech. Rev. 34, 1–32 (1974).
  14. S. Heer, K. Kompe, H. U. Gudel, and M. Haase, “Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals,” Adv. Mater. 16, 2102–2105 (2004).
    [CrossRef]
  15. G. A Kumar, R Riman, E Snitzer, and J Ballato, “Solution synthesis and spectroscopic characterization of high Er3+ content LaF3 for broadband 1.5 μm amplification,” J. Appl. Phys. 95, 40–47 (2004).
    [CrossRef]
  16. G. A. Kumar, R. Riman, S. C. Chae, Y. N. Jang, I. K. Bae, and H. S. Moon, “Synthesis and spectroscopic characterization of CaF2:Er3+ single crystal for highly efficient 1.53 μm amplification,” J. Appl. Phys. 95(7), 3243–3249 (2004).
    [CrossRef]
  17. G. S. Yi and G. M. Chow, “Colloidal LaF3: Yb,Er, LaF3:Yb,Ho and LaF3:Yb,Tm nanocrystals with multicolor upconversion fluorescence,” J. Mater. Chem. 15(41), 4460–4464 (2005).
    [CrossRef]
  18. G. S. Yi and G. M. Chow, “Synthesis of hexagonal-phase NaYF4:Yb,Er and NaYF4:Yb,Tm nanocrystals with efficient up-conversion fluorescence,” Adv. Funct. Mater. 16(18), 2324–2329 (2006).
    [CrossRef]
  19. G. A. Kumar, C. W. Chen, and R. E. Riman, “Optical spectroscopy and confocal fluorescence imaging of upconverting Er3+-doped CaF2 nanocrystals,” Appl. Phys. Lett. 90(9), 093123.1–093123, 3 (2007).
    [CrossRef]
  20. Z. Meng, T. Yoshimura, K. Fukue, M. Higashihata, Y. Nakata, and T. Okada, “Large improvement in quantum fluorescence yield of Er3+-doped fluorozirconate and fluoroindate glasses by Ce3+ co-doping,” J. Appl. Phys. 88(5), 2187–2190 (2000).
    [CrossRef]
  21. Y. G. Choi, K. H. Kim, S. H. Park, and J. Heo, “Comparative study of energy transfers from Er3+ to Ce3+ in tellurite and sulfide glasses under 980 nm excitation,” J. Appl. Phys. 88(7), 3832–3839 (2000).
    [CrossRef]
  22. C. Strohhöfer and A. Polman, “Relationship between gain and Yb3+ concentration in Er3+-Yb3+ doped waveguide amplifiers,” J. Appl. Phys. 90(9), 4314–4320 (2001).
    [CrossRef]
  23. K. Nagamatsu, S. Nagaoka, M. Higashihata, N. J. Vasa, Z. Meng, S. Buddhudu, T. Okada, Y. Kubota, N. Nishimura, and T. Teshima, “Influence of Yb3+ and Ce3+ co-doping on fluorescence characteristics of Er3+-doped fluoride glass under 980 nm excitation,” Opt. Mater. 27(2), 337–342 (2004).
    [CrossRef]
  24. X. Wang, J. Zhuang, Q. Peng, and Y. Li, “Hydrothermal synthesis of rare-earth fluoride nanocrystals,” Inorg. Chem. 45(17), 6661–6665 (2006).
    [CrossRef] [PubMed]
  25. B. D. Cullity, and S. R. Stock, Elements of X-ray diffraction, 3rd edition (Prentice Hall, 2001)
  26. N. Yamada, S. Shionoya, and T. Kushida, “Phonon-assisted energy transfer between trivalent rare earth ions,” J. Phys. Soc. Jpn. 32(6), 1577–1586 (1972).
    [CrossRef]
  27. H. Gerlinger and G. Schaack, “Crystal-field states of the Ce3+ ion in CeF3: A demonstration of vibronic interaction in ionic rare-earth compounds,” Phys. Rev. B 33(11), 7438–7450 (1986).
    [CrossRef]
  28. M. J. F. Digonnet, Rare earth doped fiber lasers and amplifiers, (Marcel Dekker, Inc., 1993).

2007 (2)

G. A. Kumar, C. W. Chen, J. Ballato, and R. E. Riman, “Optical characterization of infrared emitting rare-earth-doped fluoride nanocrystals and their transparent nanocomposites,” Chem. Mater. 19(6), 1523–1528 (2007).
[CrossRef]

G. A. Kumar, C. W. Chen, and R. E. Riman, “Optical spectroscopy and confocal fluorescence imaging of upconverting Er3+-doped CaF2 nanocrystals,” Appl. Phys. Lett. 90(9), 093123.1–093123, 3 (2007).
[CrossRef]

2006 (3)

G. S. Yi and G. M. Chow, “Synthesis of hexagonal-phase NaYF4:Yb,Er and NaYF4:Yb,Tm nanocrystals with efficient up-conversion fluorescence,” Adv. Funct. Mater. 16(18), 2324–2329 (2006).
[CrossRef]

X. Wang, J. Zhuang, Q. Peng, and Y. Li, “Hydrothermal synthesis of rare-earth fluoride nanocrystals,” Inorg. Chem. 45(17), 6661–6665 (2006).
[CrossRef] [PubMed]

A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. L. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res. 36(1), 397–429 (2006).
[CrossRef]

2005 (2)

E. H. Sargent, “Infrared quantum dots,” Adv. Mater. 17, 515–522 (2005).
[CrossRef]

G. S. Yi and G. M. Chow, “Colloidal LaF3: Yb,Er, LaF3:Yb,Ho and LaF3:Yb,Tm nanocrystals with multicolor upconversion fluorescence,” J. Mater. Chem. 15(41), 4460–4464 (2005).
[CrossRef]

2004 (5)

S. Heer, K. Kompe, H. U. Gudel, and M. Haase, “Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals,” Adv. Mater. 16, 2102–2105 (2004).
[CrossRef]

G. A Kumar, R Riman, E Snitzer, and J Ballato, “Solution synthesis and spectroscopic characterization of high Er3+ content LaF3 for broadband 1.5 μm amplification,” J. Appl. Phys. 95, 40–47 (2004).
[CrossRef]

G. A. Kumar, R. Riman, S. C. Chae, Y. N. Jang, I. K. Bae, and H. S. Moon, “Synthesis and spectroscopic characterization of CaF2:Er3+ single crystal for highly efficient 1.53 μm amplification,” J. Appl. Phys. 95(7), 3243–3249 (2004).
[CrossRef]

K. Nagamatsu, S. Nagaoka, M. Higashihata, N. J. Vasa, Z. Meng, S. Buddhudu, T. Okada, Y. Kubota, N. Nishimura, and T. Teshima, “Influence of Yb3+ and Ce3+ co-doping on fluorescence characteristics of Er3+-doped fluoride glass under 980 nm excitation,” Opt. Mater. 27(2), 337–342 (2004).
[CrossRef]

A. Polman and F. C. J. M. van Veggel, “Broadband sensitizers for erbium-doped planar optical amplifiers: review,” J. Opt. Soc. Am. B 21(5), 871–892 (2004).
[CrossRef]

2003 (1)

Y. T. Lim, S. Kim, A. Nakayama, N. E. Stott, M. G. Bawendi, and J. V. Frangioni, “Selection of quantum dot wavelengths for biomedical assays and imaging,” Mol. Imaging 2(1), 50–64 (2003).
[CrossRef] [PubMed]

2002 (3)

G. A. Hebbink, J. W. Stouwdam, D. N. Reinhoudt, and F. C. J. M. van Veggel, “Lanthanide (III)-doped nanoparticles that emit in the near-infrared,” Adv. Mater. 14(16), 1147–1150 (2002).
[CrossRef]

A. J. Kenyon, “Recent developments in rare-earth doped materials for optoelectronics,” Prog. Quantum Electron. 26(4-5), 225–284 (2002).
[CrossRef]

L. H. Slooff, A. van Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Rare-earth doped polymers for planar optical amplifiers,” J. Appl. Phys. 91(7), 3955–3980 (2002).
[CrossRef]

2001 (1)

C. Strohhöfer and A. Polman, “Relationship between gain and Yb3+ concentration in Er3+-Yb3+ doped waveguide amplifiers,” J. Appl. Phys. 90(9), 4314–4320 (2001).
[CrossRef]

2000 (2)

Z. Meng, T. Yoshimura, K. Fukue, M. Higashihata, Y. Nakata, and T. Okada, “Large improvement in quantum fluorescence yield of Er3+-doped fluorozirconate and fluoroindate glasses by Ce3+ co-doping,” J. Appl. Phys. 88(5), 2187–2190 (2000).
[CrossRef]

Y. G. Choi, K. H. Kim, S. H. Park, and J. Heo, “Comparative study of energy transfers from Er3+ to Ce3+ in tellurite and sulfide glasses under 980 nm excitation,” J. Appl. Phys. 88(7), 3832–3839 (2000).
[CrossRef]

1996 (1)

B. Simondi-Teisseire, B. Viana, D. Vivien, and A. M. Lejus, “Yb3+ to Er3+ energy transfer and rate-equations formalism in the eye safe laser material Yb:Er:Ca2Al2SiO7,” Opt. Mater. 6(4), 267–274 (1996).
[CrossRef]

1986 (1)

H. Gerlinger and G. Schaack, “Crystal-field states of the Ce3+ ion in CeF3: A demonstration of vibronic interaction in ionic rare-earth compounds,” Phys. Rev. B 33(11), 7438–7450 (1986).
[CrossRef]

1974 (1)

J. L. Sommerdijk and A. Bril, “Phosphors for the conversion of infrared radiation into visible light,” Philips Tech. Rev. 34, 1–32 (1974).

1972 (1)

N. Yamada, S. Shionoya, and T. Kushida, “Phonon-assisted energy transfer between trivalent rare earth ions,” J. Phys. Soc. Jpn. 32(6), 1577–1586 (1972).
[CrossRef]

Aung, Y. L.

A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. L. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res. 36(1), 397–429 (2006).
[CrossRef]

Bae, I. K.

G. A. Kumar, R. Riman, S. C. Chae, Y. N. Jang, I. K. Bae, and H. S. Moon, “Synthesis and spectroscopic characterization of CaF2:Er3+ single crystal for highly efficient 1.53 μm amplification,” J. Appl. Phys. 95(7), 3243–3249 (2004).
[CrossRef]

Ballato, J

G. A Kumar, R Riman, E Snitzer, and J Ballato, “Solution synthesis and spectroscopic characterization of high Er3+ content LaF3 for broadband 1.5 μm amplification,” J. Appl. Phys. 95, 40–47 (2004).
[CrossRef]

Ballato, J.

G. A. Kumar, C. W. Chen, J. Ballato, and R. E. Riman, “Optical characterization of infrared emitting rare-earth-doped fluoride nanocrystals and their transparent nanocomposites,” Chem. Mater. 19(6), 1523–1528 (2007).
[CrossRef]

Bawendi, M. G.

Y. T. Lim, S. Kim, A. Nakayama, N. E. Stott, M. G. Bawendi, and J. V. Frangioni, “Selection of quantum dot wavelengths for biomedical assays and imaging,” Mol. Imaging 2(1), 50–64 (2003).
[CrossRef] [PubMed]

Bril, A.

J. L. Sommerdijk and A. Bril, “Phosphors for the conversion of infrared radiation into visible light,” Philips Tech. Rev. 34, 1–32 (1974).

Buddhudu, S.

K. Nagamatsu, S. Nagaoka, M. Higashihata, N. J. Vasa, Z. Meng, S. Buddhudu, T. Okada, Y. Kubota, N. Nishimura, and T. Teshima, “Influence of Yb3+ and Ce3+ co-doping on fluorescence characteristics of Er3+-doped fluoride glass under 980 nm excitation,” Opt. Mater. 27(2), 337–342 (2004).
[CrossRef]

Chae, S. C.

G. A. Kumar, R. Riman, S. C. Chae, Y. N. Jang, I. K. Bae, and H. S. Moon, “Synthesis and spectroscopic characterization of CaF2:Er3+ single crystal for highly efficient 1.53 μm amplification,” J. Appl. Phys. 95(7), 3243–3249 (2004).
[CrossRef]

Chen, C. W.

G. A. Kumar, C. W. Chen, and R. E. Riman, “Optical spectroscopy and confocal fluorescence imaging of upconverting Er3+-doped CaF2 nanocrystals,” Appl. Phys. Lett. 90(9), 093123.1–093123, 3 (2007).
[CrossRef]

G. A. Kumar, C. W. Chen, J. Ballato, and R. E. Riman, “Optical characterization of infrared emitting rare-earth-doped fluoride nanocrystals and their transparent nanocomposites,” Chem. Mater. 19(6), 1523–1528 (2007).
[CrossRef]

Choi, Y. G.

Y. G. Choi, K. H. Kim, S. H. Park, and J. Heo, “Comparative study of energy transfers from Er3+ to Ce3+ in tellurite and sulfide glasses under 980 nm excitation,” J. Appl. Phys. 88(7), 3832–3839 (2000).
[CrossRef]

Chow, G. M.

G. S. Yi and G. M. Chow, “Synthesis of hexagonal-phase NaYF4:Yb,Er and NaYF4:Yb,Tm nanocrystals with efficient up-conversion fluorescence,” Adv. Funct. Mater. 16(18), 2324–2329 (2006).
[CrossRef]

G. S. Yi and G. M. Chow, “Colloidal LaF3: Yb,Er, LaF3:Yb,Ho and LaF3:Yb,Tm nanocrystals with multicolor upconversion fluorescence,” J. Mater. Chem. 15(41), 4460–4464 (2005).
[CrossRef]

Frangioni, J. V.

Y. T. Lim, S. Kim, A. Nakayama, N. E. Stott, M. G. Bawendi, and J. V. Frangioni, “Selection of quantum dot wavelengths for biomedical assays and imaging,” Mol. Imaging 2(1), 50–64 (2003).
[CrossRef] [PubMed]

Fukue, K.

Z. Meng, T. Yoshimura, K. Fukue, M. Higashihata, Y. Nakata, and T. Okada, “Large improvement in quantum fluorescence yield of Er3+-doped fluorozirconate and fluoroindate glasses by Ce3+ co-doping,” J. Appl. Phys. 88(5), 2187–2190 (2000).
[CrossRef]

Gerlinger, H.

H. Gerlinger and G. Schaack, “Crystal-field states of the Ce3+ ion in CeF3: A demonstration of vibronic interaction in ionic rare-earth compounds,” Phys. Rev. B 33(11), 7438–7450 (1986).
[CrossRef]

Gudel, H. U.

S. Heer, K. Kompe, H. U. Gudel, and M. Haase, “Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals,” Adv. Mater. 16, 2102–2105 (2004).
[CrossRef]

Haase, M.

S. Heer, K. Kompe, H. U. Gudel, and M. Haase, “Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals,” Adv. Mater. 16, 2102–2105 (2004).
[CrossRef]

Hebbink, G. A.

L. H. Slooff, A. van Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Rare-earth doped polymers for planar optical amplifiers,” J. Appl. Phys. 91(7), 3955–3980 (2002).
[CrossRef]

G. A. Hebbink, J. W. Stouwdam, D. N. Reinhoudt, and F. C. J. M. van Veggel, “Lanthanide (III)-doped nanoparticles that emit in the near-infrared,” Adv. Mater. 14(16), 1147–1150 (2002).
[CrossRef]

Heer, S.

S. Heer, K. Kompe, H. U. Gudel, and M. Haase, “Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals,” Adv. Mater. 16, 2102–2105 (2004).
[CrossRef]

Heo, J.

Y. G. Choi, K. H. Kim, S. H. Park, and J. Heo, “Comparative study of energy transfers from Er3+ to Ce3+ in tellurite and sulfide glasses under 980 nm excitation,” J. Appl. Phys. 88(7), 3832–3839 (2000).
[CrossRef]

Higashihata, M.

K. Nagamatsu, S. Nagaoka, M. Higashihata, N. J. Vasa, Z. Meng, S. Buddhudu, T. Okada, Y. Kubota, N. Nishimura, and T. Teshima, “Influence of Yb3+ and Ce3+ co-doping on fluorescence characteristics of Er3+-doped fluoride glass under 980 nm excitation,” Opt. Mater. 27(2), 337–342 (2004).
[CrossRef]

Z. Meng, T. Yoshimura, K. Fukue, M. Higashihata, Y. Nakata, and T. Okada, “Large improvement in quantum fluorescence yield of Er3+-doped fluorozirconate and fluoroindate glasses by Ce3+ co-doping,” J. Appl. Phys. 88(5), 2187–2190 (2000).
[CrossRef]

Hofstraat, J. W.

L. H. Slooff, A. van Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Rare-earth doped polymers for planar optical amplifiers,” J. Appl. Phys. 91(7), 3955–3980 (2002).
[CrossRef]

Ikesue, A.

A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. L. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res. 36(1), 397–429 (2006).
[CrossRef]

Jang, Y. N.

G. A. Kumar, R. Riman, S. C. Chae, Y. N. Jang, I. K. Bae, and H. S. Moon, “Synthesis and spectroscopic characterization of CaF2:Er3+ single crystal for highly efficient 1.53 μm amplification,” J. Appl. Phys. 95(7), 3243–3249 (2004).
[CrossRef]

Kamimura, T.

A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. L. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res. 36(1), 397–429 (2006).
[CrossRef]

Kenyon, A. J.

A. J. Kenyon, “Recent developments in rare-earth doped materials for optoelectronics,” Prog. Quantum Electron. 26(4-5), 225–284 (2002).
[CrossRef]

Kim, K. H.

Y. G. Choi, K. H. Kim, S. H. Park, and J. Heo, “Comparative study of energy transfers from Er3+ to Ce3+ in tellurite and sulfide glasses under 980 nm excitation,” J. Appl. Phys. 88(7), 3832–3839 (2000).
[CrossRef]

Kim, S.

Y. T. Lim, S. Kim, A. Nakayama, N. E. Stott, M. G. Bawendi, and J. V. Frangioni, “Selection of quantum dot wavelengths for biomedical assays and imaging,” Mol. Imaging 2(1), 50–64 (2003).
[CrossRef] [PubMed]

Klink, S. I.

L. H. Slooff, A. van Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Rare-earth doped polymers for planar optical amplifiers,” J. Appl. Phys. 91(7), 3955–3980 (2002).
[CrossRef]

Kompe, K.

S. Heer, K. Kompe, H. U. Gudel, and M. Haase, “Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals,” Adv. Mater. 16, 2102–2105 (2004).
[CrossRef]

Kubota, Y.

K. Nagamatsu, S. Nagaoka, M. Higashihata, N. J. Vasa, Z. Meng, S. Buddhudu, T. Okada, Y. Kubota, N. Nishimura, and T. Teshima, “Influence of Yb3+ and Ce3+ co-doping on fluorescence characteristics of Er3+-doped fluoride glass under 980 nm excitation,” Opt. Mater. 27(2), 337–342 (2004).
[CrossRef]

Kumar, G. A

G. A Kumar, R Riman, E Snitzer, and J Ballato, “Solution synthesis and spectroscopic characterization of high Er3+ content LaF3 for broadband 1.5 μm amplification,” J. Appl. Phys. 95, 40–47 (2004).
[CrossRef]

Kumar, G. A.

G. A. Kumar, C. W. Chen, and R. E. Riman, “Optical spectroscopy and confocal fluorescence imaging of upconverting Er3+-doped CaF2 nanocrystals,” Appl. Phys. Lett. 90(9), 093123.1–093123, 3 (2007).
[CrossRef]

G. A. Kumar, C. W. Chen, J. Ballato, and R. E. Riman, “Optical characterization of infrared emitting rare-earth-doped fluoride nanocrystals and their transparent nanocomposites,” Chem. Mater. 19(6), 1523–1528 (2007).
[CrossRef]

G. A. Kumar, R. Riman, S. C. Chae, Y. N. Jang, I. K. Bae, and H. S. Moon, “Synthesis and spectroscopic characterization of CaF2:Er3+ single crystal for highly efficient 1.53 μm amplification,” J. Appl. Phys. 95(7), 3243–3249 (2004).
[CrossRef]

Kushida, T.

N. Yamada, S. Shionoya, and T. Kushida, “Phonon-assisted energy transfer between trivalent rare earth ions,” J. Phys. Soc. Jpn. 32(6), 1577–1586 (1972).
[CrossRef]

Lejus, A. M.

B. Simondi-Teisseire, B. Viana, D. Vivien, and A. M. Lejus, “Yb3+ to Er3+ energy transfer and rate-equations formalism in the eye safe laser material Yb:Er:Ca2Al2SiO7,” Opt. Mater. 6(4), 267–274 (1996).
[CrossRef]

Li, Y.

X. Wang, J. Zhuang, Q. Peng, and Y. Li, “Hydrothermal synthesis of rare-earth fluoride nanocrystals,” Inorg. Chem. 45(17), 6661–6665 (2006).
[CrossRef] [PubMed]

Lim, Y. T.

Y. T. Lim, S. Kim, A. Nakayama, N. E. Stott, M. G. Bawendi, and J. V. Frangioni, “Selection of quantum dot wavelengths for biomedical assays and imaging,” Mol. Imaging 2(1), 50–64 (2003).
[CrossRef] [PubMed]

Meng, Z.

K. Nagamatsu, S. Nagaoka, M. Higashihata, N. J. Vasa, Z. Meng, S. Buddhudu, T. Okada, Y. Kubota, N. Nishimura, and T. Teshima, “Influence of Yb3+ and Ce3+ co-doping on fluorescence characteristics of Er3+-doped fluoride glass under 980 nm excitation,” Opt. Mater. 27(2), 337–342 (2004).
[CrossRef]

Z. Meng, T. Yoshimura, K. Fukue, M. Higashihata, Y. Nakata, and T. Okada, “Large improvement in quantum fluorescence yield of Er3+-doped fluorozirconate and fluoroindate glasses by Ce3+ co-doping,” J. Appl. Phys. 88(5), 2187–2190 (2000).
[CrossRef]

Messing, G. L.

A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. L. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res. 36(1), 397–429 (2006).
[CrossRef]

Moon, H. S.

G. A. Kumar, R. Riman, S. C. Chae, Y. N. Jang, I. K. Bae, and H. S. Moon, “Synthesis and spectroscopic characterization of CaF2:Er3+ single crystal for highly efficient 1.53 μm amplification,” J. Appl. Phys. 95(7), 3243–3249 (2004).
[CrossRef]

Nagamatsu, K.

K. Nagamatsu, S. Nagaoka, M. Higashihata, N. J. Vasa, Z. Meng, S. Buddhudu, T. Okada, Y. Kubota, N. Nishimura, and T. Teshima, “Influence of Yb3+ and Ce3+ co-doping on fluorescence characteristics of Er3+-doped fluoride glass under 980 nm excitation,” Opt. Mater. 27(2), 337–342 (2004).
[CrossRef]

Nagaoka, S.

K. Nagamatsu, S. Nagaoka, M. Higashihata, N. J. Vasa, Z. Meng, S. Buddhudu, T. Okada, Y. Kubota, N. Nishimura, and T. Teshima, “Influence of Yb3+ and Ce3+ co-doping on fluorescence characteristics of Er3+-doped fluoride glass under 980 nm excitation,” Opt. Mater. 27(2), 337–342 (2004).
[CrossRef]

Nakata, Y.

Z. Meng, T. Yoshimura, K. Fukue, M. Higashihata, Y. Nakata, and T. Okada, “Large improvement in quantum fluorescence yield of Er3+-doped fluorozirconate and fluoroindate glasses by Ce3+ co-doping,” J. Appl. Phys. 88(5), 2187–2190 (2000).
[CrossRef]

Nakayama, A.

Y. T. Lim, S. Kim, A. Nakayama, N. E. Stott, M. G. Bawendi, and J. V. Frangioni, “Selection of quantum dot wavelengths for biomedical assays and imaging,” Mol. Imaging 2(1), 50–64 (2003).
[CrossRef] [PubMed]

Nishimura, N.

K. Nagamatsu, S. Nagaoka, M. Higashihata, N. J. Vasa, Z. Meng, S. Buddhudu, T. Okada, Y. Kubota, N. Nishimura, and T. Teshima, “Influence of Yb3+ and Ce3+ co-doping on fluorescence characteristics of Er3+-doped fluoride glass under 980 nm excitation,” Opt. Mater. 27(2), 337–342 (2004).
[CrossRef]

Okada, T.

K. Nagamatsu, S. Nagaoka, M. Higashihata, N. J. Vasa, Z. Meng, S. Buddhudu, T. Okada, Y. Kubota, N. Nishimura, and T. Teshima, “Influence of Yb3+ and Ce3+ co-doping on fluorescence characteristics of Er3+-doped fluoride glass under 980 nm excitation,” Opt. Mater. 27(2), 337–342 (2004).
[CrossRef]

Z. Meng, T. Yoshimura, K. Fukue, M. Higashihata, Y. Nakata, and T. Okada, “Large improvement in quantum fluorescence yield of Er3+-doped fluorozirconate and fluoroindate glasses by Ce3+ co-doping,” J. Appl. Phys. 88(5), 2187–2190 (2000).
[CrossRef]

Park, S. H.

Y. G. Choi, K. H. Kim, S. H. Park, and J. Heo, “Comparative study of energy transfers from Er3+ to Ce3+ in tellurite and sulfide glasses under 980 nm excitation,” J. Appl. Phys. 88(7), 3832–3839 (2000).
[CrossRef]

Peng, Q.

X. Wang, J. Zhuang, Q. Peng, and Y. Li, “Hydrothermal synthesis of rare-earth fluoride nanocrystals,” Inorg. Chem. 45(17), 6661–6665 (2006).
[CrossRef] [PubMed]

Polman, A.

A. Polman and F. C. J. M. van Veggel, “Broadband sensitizers for erbium-doped planar optical amplifiers: review,” J. Opt. Soc. Am. B 21(5), 871–892 (2004).
[CrossRef]

L. H. Slooff, A. van Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Rare-earth doped polymers for planar optical amplifiers,” J. Appl. Phys. 91(7), 3955–3980 (2002).
[CrossRef]

C. Strohhöfer and A. Polman, “Relationship between gain and Yb3+ concentration in Er3+-Yb3+ doped waveguide amplifiers,” J. Appl. Phys. 90(9), 4314–4320 (2001).
[CrossRef]

Reinhoudt, D. N.

L. H. Slooff, A. van Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Rare-earth doped polymers for planar optical amplifiers,” J. Appl. Phys. 91(7), 3955–3980 (2002).
[CrossRef]

G. A. Hebbink, J. W. Stouwdam, D. N. Reinhoudt, and F. C. J. M. van Veggel, “Lanthanide (III)-doped nanoparticles that emit in the near-infrared,” Adv. Mater. 14(16), 1147–1150 (2002).
[CrossRef]

Riman, R

G. A Kumar, R Riman, E Snitzer, and J Ballato, “Solution synthesis and spectroscopic characterization of high Er3+ content LaF3 for broadband 1.5 μm amplification,” J. Appl. Phys. 95, 40–47 (2004).
[CrossRef]

Riman, R.

G. A. Kumar, R. Riman, S. C. Chae, Y. N. Jang, I. K. Bae, and H. S. Moon, “Synthesis and spectroscopic characterization of CaF2:Er3+ single crystal for highly efficient 1.53 μm amplification,” J. Appl. Phys. 95(7), 3243–3249 (2004).
[CrossRef]

Riman, R. E.

G. A. Kumar, C. W. Chen, and R. E. Riman, “Optical spectroscopy and confocal fluorescence imaging of upconverting Er3+-doped CaF2 nanocrystals,” Appl. Phys. Lett. 90(9), 093123.1–093123, 3 (2007).
[CrossRef]

G. A. Kumar, C. W. Chen, J. Ballato, and R. E. Riman, “Optical characterization of infrared emitting rare-earth-doped fluoride nanocrystals and their transparent nanocomposites,” Chem. Mater. 19(6), 1523–1528 (2007).
[CrossRef]

Sargent, E. H.

E. H. Sargent, “Infrared quantum dots,” Adv. Mater. 17, 515–522 (2005).
[CrossRef]

Schaack, G.

H. Gerlinger and G. Schaack, “Crystal-field states of the Ce3+ ion in CeF3: A demonstration of vibronic interaction in ionic rare-earth compounds,” Phys. Rev. B 33(11), 7438–7450 (1986).
[CrossRef]

Shionoya, S.

N. Yamada, S. Shionoya, and T. Kushida, “Phonon-assisted energy transfer between trivalent rare earth ions,” J. Phys. Soc. Jpn. 32(6), 1577–1586 (1972).
[CrossRef]

Simondi-Teisseire, B.

B. Simondi-Teisseire, B. Viana, D. Vivien, and A. M. Lejus, “Yb3+ to Er3+ energy transfer and rate-equations formalism in the eye safe laser material Yb:Er:Ca2Al2SiO7,” Opt. Mater. 6(4), 267–274 (1996).
[CrossRef]

Slooff, L. H.

L. H. Slooff, A. van Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Rare-earth doped polymers for planar optical amplifiers,” J. Appl. Phys. 91(7), 3955–3980 (2002).
[CrossRef]

Snitzer, E

G. A Kumar, R Riman, E Snitzer, and J Ballato, “Solution synthesis and spectroscopic characterization of high Er3+ content LaF3 for broadband 1.5 μm amplification,” J. Appl. Phys. 95, 40–47 (2004).
[CrossRef]

Sommerdijk, J. L.

J. L. Sommerdijk and A. Bril, “Phosphors for the conversion of infrared radiation into visible light,” Philips Tech. Rev. 34, 1–32 (1974).

Stott, N. E.

Y. T. Lim, S. Kim, A. Nakayama, N. E. Stott, M. G. Bawendi, and J. V. Frangioni, “Selection of quantum dot wavelengths for biomedical assays and imaging,” Mol. Imaging 2(1), 50–64 (2003).
[CrossRef] [PubMed]

Stouwdam, J. W.

G. A. Hebbink, J. W. Stouwdam, D. N. Reinhoudt, and F. C. J. M. van Veggel, “Lanthanide (III)-doped nanoparticles that emit in the near-infrared,” Adv. Mater. 14(16), 1147–1150 (2002).
[CrossRef]

Strohhöfer, C.

C. Strohhöfer and A. Polman, “Relationship between gain and Yb3+ concentration in Er3+-Yb3+ doped waveguide amplifiers,” J. Appl. Phys. 90(9), 4314–4320 (2001).
[CrossRef]

Taira, T.

A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. L. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res. 36(1), 397–429 (2006).
[CrossRef]

Teshima, T.

K. Nagamatsu, S. Nagaoka, M. Higashihata, N. J. Vasa, Z. Meng, S. Buddhudu, T. Okada, Y. Kubota, N. Nishimura, and T. Teshima, “Influence of Yb3+ and Ce3+ co-doping on fluorescence characteristics of Er3+-doped fluoride glass under 980 nm excitation,” Opt. Mater. 27(2), 337–342 (2004).
[CrossRef]

van Blaaderen, A.

L. H. Slooff, A. van Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Rare-earth doped polymers for planar optical amplifiers,” J. Appl. Phys. 91(7), 3955–3980 (2002).
[CrossRef]

van Veggel, F. C. J. M.

A. Polman and F. C. J. M. van Veggel, “Broadband sensitizers for erbium-doped planar optical amplifiers: review,” J. Opt. Soc. Am. B 21(5), 871–892 (2004).
[CrossRef]

L. H. Slooff, A. van Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Rare-earth doped polymers for planar optical amplifiers,” J. Appl. Phys. 91(7), 3955–3980 (2002).
[CrossRef]

G. A. Hebbink, J. W. Stouwdam, D. N. Reinhoudt, and F. C. J. M. van Veggel, “Lanthanide (III)-doped nanoparticles that emit in the near-infrared,” Adv. Mater. 14(16), 1147–1150 (2002).
[CrossRef]

Vasa, N. J.

K. Nagamatsu, S. Nagaoka, M. Higashihata, N. J. Vasa, Z. Meng, S. Buddhudu, T. Okada, Y. Kubota, N. Nishimura, and T. Teshima, “Influence of Yb3+ and Ce3+ co-doping on fluorescence characteristics of Er3+-doped fluoride glass under 980 nm excitation,” Opt. Mater. 27(2), 337–342 (2004).
[CrossRef]

Viana, B.

B. Simondi-Teisseire, B. Viana, D. Vivien, and A. M. Lejus, “Yb3+ to Er3+ energy transfer and rate-equations formalism in the eye safe laser material Yb:Er:Ca2Al2SiO7,” Opt. Mater. 6(4), 267–274 (1996).
[CrossRef]

Vivien, D.

B. Simondi-Teisseire, B. Viana, D. Vivien, and A. M. Lejus, “Yb3+ to Er3+ energy transfer and rate-equations formalism in the eye safe laser material Yb:Er:Ca2Al2SiO7,” Opt. Mater. 6(4), 267–274 (1996).
[CrossRef]

Wang, X.

X. Wang, J. Zhuang, Q. Peng, and Y. Li, “Hydrothermal synthesis of rare-earth fluoride nanocrystals,” Inorg. Chem. 45(17), 6661–6665 (2006).
[CrossRef] [PubMed]

Yamada, N.

N. Yamada, S. Shionoya, and T. Kushida, “Phonon-assisted energy transfer between trivalent rare earth ions,” J. Phys. Soc. Jpn. 32(6), 1577–1586 (1972).
[CrossRef]

Yi, G. S.

G. S. Yi and G. M. Chow, “Synthesis of hexagonal-phase NaYF4:Yb,Er and NaYF4:Yb,Tm nanocrystals with efficient up-conversion fluorescence,” Adv. Funct. Mater. 16(18), 2324–2329 (2006).
[CrossRef]

G. S. Yi and G. M. Chow, “Colloidal LaF3: Yb,Er, LaF3:Yb,Ho and LaF3:Yb,Tm nanocrystals with multicolor upconversion fluorescence,” J. Mater. Chem. 15(41), 4460–4464 (2005).
[CrossRef]

Yoshida, K.

A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. L. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res. 36(1), 397–429 (2006).
[CrossRef]

Yoshimura, T.

Z. Meng, T. Yoshimura, K. Fukue, M. Higashihata, Y. Nakata, and T. Okada, “Large improvement in quantum fluorescence yield of Er3+-doped fluorozirconate and fluoroindate glasses by Ce3+ co-doping,” J. Appl. Phys. 88(5), 2187–2190 (2000).
[CrossRef]

Zhuang, J.

X. Wang, J. Zhuang, Q. Peng, and Y. Li, “Hydrothermal synthesis of rare-earth fluoride nanocrystals,” Inorg. Chem. 45(17), 6661–6665 (2006).
[CrossRef] [PubMed]

Adv. Funct. Mater. (1)

G. S. Yi and G. M. Chow, “Synthesis of hexagonal-phase NaYF4:Yb,Er and NaYF4:Yb,Tm nanocrystals with efficient up-conversion fluorescence,” Adv. Funct. Mater. 16(18), 2324–2329 (2006).
[CrossRef]

Adv. Mater. (3)

S. Heer, K. Kompe, H. U. Gudel, and M. Haase, “Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals,” Adv. Mater. 16, 2102–2105 (2004).
[CrossRef]

E. H. Sargent, “Infrared quantum dots,” Adv. Mater. 17, 515–522 (2005).
[CrossRef]

G. A. Hebbink, J. W. Stouwdam, D. N. Reinhoudt, and F. C. J. M. van Veggel, “Lanthanide (III)-doped nanoparticles that emit in the near-infrared,” Adv. Mater. 14(16), 1147–1150 (2002).
[CrossRef]

Annu. Rev. Mater. Res. (1)

A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. L. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res. 36(1), 397–429 (2006).
[CrossRef]

Appl. Phys. Lett. (1)

G. A. Kumar, C. W. Chen, and R. E. Riman, “Optical spectroscopy and confocal fluorescence imaging of upconverting Er3+-doped CaF2 nanocrystals,” Appl. Phys. Lett. 90(9), 093123.1–093123, 3 (2007).
[CrossRef]

Chem. Mater. (1)

G. A. Kumar, C. W. Chen, J. Ballato, and R. E. Riman, “Optical characterization of infrared emitting rare-earth-doped fluoride nanocrystals and their transparent nanocomposites,” Chem. Mater. 19(6), 1523–1528 (2007).
[CrossRef]

Inorg. Chem. (1)

X. Wang, J. Zhuang, Q. Peng, and Y. Li, “Hydrothermal synthesis of rare-earth fluoride nanocrystals,” Inorg. Chem. 45(17), 6661–6665 (2006).
[CrossRef] [PubMed]

J. Appl. Phys. (6)

L. H. Slooff, A. van Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Rare-earth doped polymers for planar optical amplifiers,” J. Appl. Phys. 91(7), 3955–3980 (2002).
[CrossRef]

Z. Meng, T. Yoshimura, K. Fukue, M. Higashihata, Y. Nakata, and T. Okada, “Large improvement in quantum fluorescence yield of Er3+-doped fluorozirconate and fluoroindate glasses by Ce3+ co-doping,” J. Appl. Phys. 88(5), 2187–2190 (2000).
[CrossRef]

Y. G. Choi, K. H. Kim, S. H. Park, and J. Heo, “Comparative study of energy transfers from Er3+ to Ce3+ in tellurite and sulfide glasses under 980 nm excitation,” J. Appl. Phys. 88(7), 3832–3839 (2000).
[CrossRef]

C. Strohhöfer and A. Polman, “Relationship between gain and Yb3+ concentration in Er3+-Yb3+ doped waveguide amplifiers,” J. Appl. Phys. 90(9), 4314–4320 (2001).
[CrossRef]

G. A Kumar, R Riman, E Snitzer, and J Ballato, “Solution synthesis and spectroscopic characterization of high Er3+ content LaF3 for broadband 1.5 μm amplification,” J. Appl. Phys. 95, 40–47 (2004).
[CrossRef]

G. A. Kumar, R. Riman, S. C. Chae, Y. N. Jang, I. K. Bae, and H. S. Moon, “Synthesis and spectroscopic characterization of CaF2:Er3+ single crystal for highly efficient 1.53 μm amplification,” J. Appl. Phys. 95(7), 3243–3249 (2004).
[CrossRef]

J. Mater. Chem. (1)

G. S. Yi and G. M. Chow, “Colloidal LaF3: Yb,Er, LaF3:Yb,Ho and LaF3:Yb,Tm nanocrystals with multicolor upconversion fluorescence,” J. Mater. Chem. 15(41), 4460–4464 (2005).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Soc. Jpn. (1)

N. Yamada, S. Shionoya, and T. Kushida, “Phonon-assisted energy transfer between trivalent rare earth ions,” J. Phys. Soc. Jpn. 32(6), 1577–1586 (1972).
[CrossRef]

Mol. Imaging (1)

Y. T. Lim, S. Kim, A. Nakayama, N. E. Stott, M. G. Bawendi, and J. V. Frangioni, “Selection of quantum dot wavelengths for biomedical assays and imaging,” Mol. Imaging 2(1), 50–64 (2003).
[CrossRef] [PubMed]

Opt. Mater. (2)

B. Simondi-Teisseire, B. Viana, D. Vivien, and A. M. Lejus, “Yb3+ to Er3+ energy transfer and rate-equations formalism in the eye safe laser material Yb:Er:Ca2Al2SiO7,” Opt. Mater. 6(4), 267–274 (1996).
[CrossRef]

K. Nagamatsu, S. Nagaoka, M. Higashihata, N. J. Vasa, Z. Meng, S. Buddhudu, T. Okada, Y. Kubota, N. Nishimura, and T. Teshima, “Influence of Yb3+ and Ce3+ co-doping on fluorescence characteristics of Er3+-doped fluoride glass under 980 nm excitation,” Opt. Mater. 27(2), 337–342 (2004).
[CrossRef]

Philips Tech. Rev. (1)

J. L. Sommerdijk and A. Bril, “Phosphors for the conversion of infrared radiation into visible light,” Philips Tech. Rev. 34, 1–32 (1974).

Phys. Rev. B (1)

H. Gerlinger and G. Schaack, “Crystal-field states of the Ce3+ ion in CeF3: A demonstration of vibronic interaction in ionic rare-earth compounds,” Phys. Rev. B 33(11), 7438–7450 (1986).
[CrossRef]

Prog. Quantum Electron. (1)

A. J. Kenyon, “Recent developments in rare-earth doped materials for optoelectronics,” Prog. Quantum Electron. 26(4-5), 225–284 (2002).
[CrossRef]

Other (5)

A. Jha, “A review of visible, near-IR and mid-IR transitions in rare-earth doped glass waveguides for remote sensing and LIDAR,” Proc. SPIE 6409, 650918.1-650918.12 (2006).

M. J. F. Digonnet, Rare earth doped fiber lasers and amplifiers, (Marcel Dekker, Inc., 1993).

B. D. Cullity, and S. R. Stock, Elements of X-ray diffraction, 3rd edition (Prentice Hall, 2001)

R. C. Powell, Physics of Solid-State Laser Materials, (Springer-Verlag, 1998).

P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-doped fiber amplifiers: Fundamentals and technology, (Academic Press, 1999)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of electronic transitions in (a) Er-doped fluorides (e.g. NaYF4) where near infrared-to-visible upconversion process dominates, (b) CeF3:Er and (c) CeF3:Yb-Er. Dashed lines indicate non-radiative transitions.

Fig. 2
Fig. 2

TEM micrographs of CeF3:Er (0.5 mol%), (a) as-synthesized and (b) heat-treated at 400°C, 1h.

Fig. 3
Fig. 3

XRD profile of (a) as-synthesized and heat-treated CeF3:Er, (b) as-synthesized CeF3:Yb,Er and (c) heat treated CeF3:Yb,Er. YbF3 diffraction peak positions indicated by *. All other diffraction peaks were identified as CeF3.

Fig. 4
Fig. 4

Measured emission from (a) as-synthesized and (b) heat-treated CeF3:Er, and (c) as-synthesized and (d) heat treated CeF3:Yb-Er upon excitation at ~975 nm.

Fig. 5
Fig. 5

Measured decay time and quantum efficiency for ~1530 nm emission from heat treated (a) CeF3:Er and (b) CeF3:Yb-Er upon excitation at ~975 nm.

Metrics