Abstract

Simultaneous spatial and temporal focusing pulses are created using parametric pulse shaping and characterized with scanning SEA TADPOLE. Multiple foci are created with optically-controlled longitudal and transverse spatial positions. The characterized foci are in agreement with the predictions of a Fourier optics model. The measurements reveal significant pulse front tilt resulting from the simultaneous spatial and temporal focusing optics.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Bewersdorf, R. Pick, and S. W. Hell, “Multifocal multiphoton microscopy,” Opt. Lett. 23(9), 655–657 (1998).
    [CrossRef]
  2. R. Carriles, K. E. Sheetz, E. E. Hoover, J. A. Squier, and V. Barzda, “Simultaneous multifocal, multiphoton, photon counting microscopy,” Opt. Express 16(14), 10364–10371 (2008).
    [CrossRef] [PubMed]
  3. E. Chandler, E. Hoover, J. Field, K. Sheetz, W. Amir, R. Carriles, S. Y. Ding, and J. Squier, “High-resolution mosaic imaging with multifocal, multiphoton photon-counting microscopy,” Appl. Opt. 48(11), 2067–2077 (2009).
    [CrossRef] [PubMed]
  4. D. Oron, E. Tal, and Y. Silberberg, “Scanningless depth-resolved microscopy,” Opt. Express 13(5), 1468–1476 (2005).
    [CrossRef] [PubMed]
  5. E. Papagiakoumou, V. de Sars, D. Oron, and V. Emiliani, “Patterned two-photon illumination by spatiotemporal shaping of ultrashort pulses,” Opt. Express 16(26), 22039–22047 (2008).
    [CrossRef] [PubMed]
  6. G. Duemani Reddy, K. Kelleher, R. Fink, and P. Saggau, “Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity,” Nat. Neurosci. 11(6), 713–720 (2008).
    [CrossRef] [PubMed]
  7. K. E. Sheetz, E. E. Hoover, R. Carriles, D. Kleinfeld, and J. A. Squier, “Advancing multifocal nonlinear microscopy: development and application of a novel multibeam Yb:KGd(WO4)2 oscillator,” Opt. Express 16(22), 17574–17584 (2008).
    [CrossRef] [PubMed]
  8. T. Feurer, J. C. Vaughan, R. M. Koehl, and K. A. Nelson, “Multidimensional control of femtosecond pulses by use of a programmable liquid-crystal matrix,” Opt. Lett. 27(8), 652–654 (2002).
    [CrossRef]
  9. T. Feurer, J. C. Vaughan, and K. A. Nelson, “Spatiotemporal coherent control of lattice vibrational waves,” Science 299(5605), 374–377 (2003).
    [CrossRef] [PubMed]
  10. M. E. Durst, G. Zhu, and C. Xu, “Simultaneous spatial and temporal focusing for axial scanning,” Opt. Express 14(25), 12243–12254 (2006).
    [CrossRef] [PubMed]
  11. M. E. Durst, G. Zhu, and C. Xu, “Simultaneous spatial and temporal focusing in nonlinear microscopy,” Opt. Commun. 281(7), 1796–1805 (2008).
    [CrossRef] [PubMed]
  12. G. Zhu, J. van Howe, M. Durst, W. Zipfel, and C. Xu, “Simultaneous spatial and temporal focusing of femtosecond pulses,” Opt. Express 13(6), 2153–2159 (2005).
    [CrossRef] [PubMed]
  13. H. Suchowski, D. Oron, and Y. Silberberg, “Generation of a dark nonlinear focus by spatio-temporal coherent control,” Opt. Commun. 264(2), 482–487 (2006).
    [CrossRef]
  14. H. Suchowski, A. Natan, B. D. Bruner, and Y. Silberberg, “Spatio-temporal coherent control of atomic systems: weak to strong field transition and breaking of symmetry in 2D maps,” J. Phys. At. Mol. Opt. Phys. 41(7), 074008 (2008).
    [CrossRef]
  15. E. Papagiakoumou, V. de Sars, V. Emiliani, and D. Oron, “Temporal focusing with spatially modulated excitation,” Opt. Express 17(7), 5391–5401 (2009).
    [CrossRef] [PubMed]
  16. P. Bowlan, U. Fuchs, R. Trebino, and U. D. Zeitner, “Measuring the spatiotemporal electric field of tightly focused ultrashort pulses with sub-micron spatial resolution,” Opt. Express 16(18), 13663–13675 (2008).
    [CrossRef] [PubMed]
  17. P. Bowlan, P. Gabolde, M. A. Coughlan, R. Trebino, and R. J. Levis, “Measuring the spatiotemporal electric field of ultrashort pulses with high spatial and spectral resolution,” J. Opt. Soc. Am. B 25(6), A81–A92 (2008).
    [CrossRef]
  18. P. Bowlan, P. Gabolde, and R. Trebino, “Directly measuring the spatio-temporal electric field of focusing ultrashort pulses,” Opt. Express 15(16), 10219–10230 (2007).
    [CrossRef] [PubMed]
  19. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
    [CrossRef]
  20. M. A. Coughlan, M. Plewicki, S. M. Weber, P. Bowlan, R. Trebino, and R. J. Levis, “Shaped pulse electric-field construction and interferometric characterization: The SPECIFIC method,” N. J. Phys. Submitted.
  21. M. A. Coughlan, M. Plewicki, S. M. Weber, P. Bowlan, R. Trebino, and R. J. Levis, “Shaped pulse electric-field construction and interferometric characterization: The SPECIFIC method,” arXiv:0903.1233v1 (2009).
  22. S. M. Weber, “New concepts for optimal control experiments using femtosecond pulse shaping,” in Physics(Free University, Berlin, 2007).
    [PubMed]
  23. S. M. Weber, A. Lindinger, F. Vetter, M. Plewicki, A. Merli, and L. Wöste, “Application of parametric time and frequency domain shaping,” Eur. Phys. J. D 33, 39–42 (2005).
    [CrossRef]
  24. S. M. Weber, F. Weise, M. Plewicki, and A. Lindinger, “Interferometric generation of parametrically shaped polarization pulses,” Appl. Opt. 46(23), 5987–5990 (2007).
    [CrossRef] [PubMed]
  25. S. Akturk, X. Gu, E. Zeek, and R. Trebino, “Pulse-front tilt caused by spatial and temporal chirp,” Opt. Express 12(19), 4399–4410 (2004).
    [CrossRef] [PubMed]
  26. Z. Bor, B. Racz, G. Szabo, M. Hilbert, and H. A. Hazim, “Femtosecond pulse front tilt caused by angular dispersion,” Opt. Eng. 32(10), 2501–2504 (1993).
    [CrossRef]
  27. J. Hebling, “Derivation of the pulse front tilt caused by angular dispersion,” Opt. Quantum Electron. 28(12), 1759–1763 (1996).
    [CrossRef]
  28. J. W. Goodman, Introduction to Fourier optics (Roberts & Co, 2005).
  29. M. M. Wefers and K. A. Nelson, “Space-time profiles of shaped ultrafast optical waveforms,” IEEE J. Quantum Electron. 32(1), 161–172 (1996).
    [CrossRef]
  30. W. Amir, R. Carriles, E. E. Hoover, T. A. Planchon, C. G. Durfee, and J. A. Squier, “Simultaneous imaging of multiple focal planes using a two-photon scanning microscope,” Opt. Lett. 32(12), 1731–1733 (2007).
    [CrossRef] [PubMed]

2009

2008

P. Bowlan, P. Gabolde, M. A. Coughlan, R. Trebino, and R. J. Levis, “Measuring the spatiotemporal electric field of ultrashort pulses with high spatial and spectral resolution,” J. Opt. Soc. Am. B 25(6), A81–A92 (2008).
[CrossRef]

R. Carriles, K. E. Sheetz, E. E. Hoover, J. A. Squier, and V. Barzda, “Simultaneous multifocal, multiphoton, photon counting microscopy,” Opt. Express 16(14), 10364–10371 (2008).
[CrossRef] [PubMed]

P. Bowlan, U. Fuchs, R. Trebino, and U. D. Zeitner, “Measuring the spatiotemporal electric field of tightly focused ultrashort pulses with sub-micron spatial resolution,” Opt. Express 16(18), 13663–13675 (2008).
[CrossRef] [PubMed]

K. E. Sheetz, E. E. Hoover, R. Carriles, D. Kleinfeld, and J. A. Squier, “Advancing multifocal nonlinear microscopy: development and application of a novel multibeam Yb:KGd(WO4)2 oscillator,” Opt. Express 16(22), 17574–17584 (2008).
[CrossRef] [PubMed]

E. Papagiakoumou, V. de Sars, D. Oron, and V. Emiliani, “Patterned two-photon illumination by spatiotemporal shaping of ultrashort pulses,” Opt. Express 16(26), 22039–22047 (2008).
[CrossRef] [PubMed]

G. Duemani Reddy, K. Kelleher, R. Fink, and P. Saggau, “Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity,” Nat. Neurosci. 11(6), 713–720 (2008).
[CrossRef] [PubMed]

M. E. Durst, G. Zhu, and C. Xu, “Simultaneous spatial and temporal focusing in nonlinear microscopy,” Opt. Commun. 281(7), 1796–1805 (2008).
[CrossRef] [PubMed]

H. Suchowski, A. Natan, B. D. Bruner, and Y. Silberberg, “Spatio-temporal coherent control of atomic systems: weak to strong field transition and breaking of symmetry in 2D maps,” J. Phys. At. Mol. Opt. Phys. 41(7), 074008 (2008).
[CrossRef]

2007

2006

H. Suchowski, D. Oron, and Y. Silberberg, “Generation of a dark nonlinear focus by spatio-temporal coherent control,” Opt. Commun. 264(2), 482–487 (2006).
[CrossRef]

M. E. Durst, G. Zhu, and C. Xu, “Simultaneous spatial and temporal focusing for axial scanning,” Opt. Express 14(25), 12243–12254 (2006).
[CrossRef] [PubMed]

2005

2004

2003

T. Feurer, J. C. Vaughan, and K. A. Nelson, “Spatiotemporal coherent control of lattice vibrational waves,” Science 299(5605), 374–377 (2003).
[CrossRef] [PubMed]

2002

2000

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[CrossRef]

1998

1996

J. Hebling, “Derivation of the pulse front tilt caused by angular dispersion,” Opt. Quantum Electron. 28(12), 1759–1763 (1996).
[CrossRef]

M. M. Wefers and K. A. Nelson, “Space-time profiles of shaped ultrafast optical waveforms,” IEEE J. Quantum Electron. 32(1), 161–172 (1996).
[CrossRef]

1993

Z. Bor, B. Racz, G. Szabo, M. Hilbert, and H. A. Hazim, “Femtosecond pulse front tilt caused by angular dispersion,” Opt. Eng. 32(10), 2501–2504 (1993).
[CrossRef]

Akturk, S.

Amir, W.

Barzda, V.

Bewersdorf, J.

Bor, Z.

Z. Bor, B. Racz, G. Szabo, M. Hilbert, and H. A. Hazim, “Femtosecond pulse front tilt caused by angular dispersion,” Opt. Eng. 32(10), 2501–2504 (1993).
[CrossRef]

Bowlan, P.

Bruner, B. D.

H. Suchowski, A. Natan, B. D. Bruner, and Y. Silberberg, “Spatio-temporal coherent control of atomic systems: weak to strong field transition and breaking of symmetry in 2D maps,” J. Phys. At. Mol. Opt. Phys. 41(7), 074008 (2008).
[CrossRef]

Carriles, R.

Chandler, E.

Coughlan, M. A.

P. Bowlan, P. Gabolde, M. A. Coughlan, R. Trebino, and R. J. Levis, “Measuring the spatiotemporal electric field of ultrashort pulses with high spatial and spectral resolution,” J. Opt. Soc. Am. B 25(6), A81–A92 (2008).
[CrossRef]

M. A. Coughlan, M. Plewicki, S. M. Weber, P. Bowlan, R. Trebino, and R. J. Levis, “Shaped pulse electric-field construction and interferometric characterization: The SPECIFIC method,” N. J. Phys. Submitted.

de Sars, V.

Ding, S. Y.

Duemani Reddy, G.

G. Duemani Reddy, K. Kelleher, R. Fink, and P. Saggau, “Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity,” Nat. Neurosci. 11(6), 713–720 (2008).
[CrossRef] [PubMed]

Durfee, C. G.

Durst, M.

Durst, M. E.

M. E. Durst, G. Zhu, and C. Xu, “Simultaneous spatial and temporal focusing in nonlinear microscopy,” Opt. Commun. 281(7), 1796–1805 (2008).
[CrossRef] [PubMed]

M. E. Durst, G. Zhu, and C. Xu, “Simultaneous spatial and temporal focusing for axial scanning,” Opt. Express 14(25), 12243–12254 (2006).
[CrossRef] [PubMed]

Emiliani, V.

Feurer, T.

T. Feurer, J. C. Vaughan, and K. A. Nelson, “Spatiotemporal coherent control of lattice vibrational waves,” Science 299(5605), 374–377 (2003).
[CrossRef] [PubMed]

T. Feurer, J. C. Vaughan, R. M. Koehl, and K. A. Nelson, “Multidimensional control of femtosecond pulses by use of a programmable liquid-crystal matrix,” Opt. Lett. 27(8), 652–654 (2002).
[CrossRef]

Field, J.

Fink, R.

G. Duemani Reddy, K. Kelleher, R. Fink, and P. Saggau, “Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity,” Nat. Neurosci. 11(6), 713–720 (2008).
[CrossRef] [PubMed]

Fuchs, U.

Gabolde, P.

Gu, X.

Hazim, H. A.

Z. Bor, B. Racz, G. Szabo, M. Hilbert, and H. A. Hazim, “Femtosecond pulse front tilt caused by angular dispersion,” Opt. Eng. 32(10), 2501–2504 (1993).
[CrossRef]

Hebling, J.

J. Hebling, “Derivation of the pulse front tilt caused by angular dispersion,” Opt. Quantum Electron. 28(12), 1759–1763 (1996).
[CrossRef]

Hell, S. W.

Hilbert, M.

Z. Bor, B. Racz, G. Szabo, M. Hilbert, and H. A. Hazim, “Femtosecond pulse front tilt caused by angular dispersion,” Opt. Eng. 32(10), 2501–2504 (1993).
[CrossRef]

Hoover, E.

Hoover, E. E.

Kelleher, K.

G. Duemani Reddy, K. Kelleher, R. Fink, and P. Saggau, “Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity,” Nat. Neurosci. 11(6), 713–720 (2008).
[CrossRef] [PubMed]

Kleinfeld, D.

Koehl, R. M.

Levis, R. J.

P. Bowlan, P. Gabolde, M. A. Coughlan, R. Trebino, and R. J. Levis, “Measuring the spatiotemporal electric field of ultrashort pulses with high spatial and spectral resolution,” J. Opt. Soc. Am. B 25(6), A81–A92 (2008).
[CrossRef]

M. A. Coughlan, M. Plewicki, S. M. Weber, P. Bowlan, R. Trebino, and R. J. Levis, “Shaped pulse electric-field construction and interferometric characterization: The SPECIFIC method,” N. J. Phys. Submitted.

Lindinger, A.

S. M. Weber, F. Weise, M. Plewicki, and A. Lindinger, “Interferometric generation of parametrically shaped polarization pulses,” Appl. Opt. 46(23), 5987–5990 (2007).
[CrossRef] [PubMed]

S. M. Weber, A. Lindinger, F. Vetter, M. Plewicki, A. Merli, and L. Wöste, “Application of parametric time and frequency domain shaping,” Eur. Phys. J. D 33, 39–42 (2005).
[CrossRef]

Merli, A.

S. M. Weber, A. Lindinger, F. Vetter, M. Plewicki, A. Merli, and L. Wöste, “Application of parametric time and frequency domain shaping,” Eur. Phys. J. D 33, 39–42 (2005).
[CrossRef]

Natan, A.

H. Suchowski, A. Natan, B. D. Bruner, and Y. Silberberg, “Spatio-temporal coherent control of atomic systems: weak to strong field transition and breaking of symmetry in 2D maps,” J. Phys. At. Mol. Opt. Phys. 41(7), 074008 (2008).
[CrossRef]

Nelson, K. A.

T. Feurer, J. C. Vaughan, and K. A. Nelson, “Spatiotemporal coherent control of lattice vibrational waves,” Science 299(5605), 374–377 (2003).
[CrossRef] [PubMed]

T. Feurer, J. C. Vaughan, R. M. Koehl, and K. A. Nelson, “Multidimensional control of femtosecond pulses by use of a programmable liquid-crystal matrix,” Opt. Lett. 27(8), 652–654 (2002).
[CrossRef]

M. M. Wefers and K. A. Nelson, “Space-time profiles of shaped ultrafast optical waveforms,” IEEE J. Quantum Electron. 32(1), 161–172 (1996).
[CrossRef]

Oron, D.

Papagiakoumou, E.

Pick, R.

Planchon, T. A.

Plewicki, M.

S. M. Weber, F. Weise, M. Plewicki, and A. Lindinger, “Interferometric generation of parametrically shaped polarization pulses,” Appl. Opt. 46(23), 5987–5990 (2007).
[CrossRef] [PubMed]

S. M. Weber, A. Lindinger, F. Vetter, M. Plewicki, A. Merli, and L. Wöste, “Application of parametric time and frequency domain shaping,” Eur. Phys. J. D 33, 39–42 (2005).
[CrossRef]

M. A. Coughlan, M. Plewicki, S. M. Weber, P. Bowlan, R. Trebino, and R. J. Levis, “Shaped pulse electric-field construction and interferometric characterization: The SPECIFIC method,” N. J. Phys. Submitted.

Racz, B.

Z. Bor, B. Racz, G. Szabo, M. Hilbert, and H. A. Hazim, “Femtosecond pulse front tilt caused by angular dispersion,” Opt. Eng. 32(10), 2501–2504 (1993).
[CrossRef]

Saggau, P.

G. Duemani Reddy, K. Kelleher, R. Fink, and P. Saggau, “Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity,” Nat. Neurosci. 11(6), 713–720 (2008).
[CrossRef] [PubMed]

Sheetz, K.

Sheetz, K. E.

Silberberg, Y.

H. Suchowski, A. Natan, B. D. Bruner, and Y. Silberberg, “Spatio-temporal coherent control of atomic systems: weak to strong field transition and breaking of symmetry in 2D maps,” J. Phys. At. Mol. Opt. Phys. 41(7), 074008 (2008).
[CrossRef]

H. Suchowski, D. Oron, and Y. Silberberg, “Generation of a dark nonlinear focus by spatio-temporal coherent control,” Opt. Commun. 264(2), 482–487 (2006).
[CrossRef]

D. Oron, E. Tal, and Y. Silberberg, “Scanningless depth-resolved microscopy,” Opt. Express 13(5), 1468–1476 (2005).
[CrossRef] [PubMed]

Squier, J.

Squier, J. A.

Suchowski, H.

H. Suchowski, A. Natan, B. D. Bruner, and Y. Silberberg, “Spatio-temporal coherent control of atomic systems: weak to strong field transition and breaking of symmetry in 2D maps,” J. Phys. At. Mol. Opt. Phys. 41(7), 074008 (2008).
[CrossRef]

H. Suchowski, D. Oron, and Y. Silberberg, “Generation of a dark nonlinear focus by spatio-temporal coherent control,” Opt. Commun. 264(2), 482–487 (2006).
[CrossRef]

Szabo, G.

Z. Bor, B. Racz, G. Szabo, M. Hilbert, and H. A. Hazim, “Femtosecond pulse front tilt caused by angular dispersion,” Opt. Eng. 32(10), 2501–2504 (1993).
[CrossRef]

Tal, E.

Trebino, R.

van Howe, J.

Vaughan, J. C.

T. Feurer, J. C. Vaughan, and K. A. Nelson, “Spatiotemporal coherent control of lattice vibrational waves,” Science 299(5605), 374–377 (2003).
[CrossRef] [PubMed]

T. Feurer, J. C. Vaughan, R. M. Koehl, and K. A. Nelson, “Multidimensional control of femtosecond pulses by use of a programmable liquid-crystal matrix,” Opt. Lett. 27(8), 652–654 (2002).
[CrossRef]

Vetter, F.

S. M. Weber, A. Lindinger, F. Vetter, M. Plewicki, A. Merli, and L. Wöste, “Application of parametric time and frequency domain shaping,” Eur. Phys. J. D 33, 39–42 (2005).
[CrossRef]

Weber, S. M.

S. M. Weber, F. Weise, M. Plewicki, and A. Lindinger, “Interferometric generation of parametrically shaped polarization pulses,” Appl. Opt. 46(23), 5987–5990 (2007).
[CrossRef] [PubMed]

S. M. Weber, A. Lindinger, F. Vetter, M. Plewicki, A. Merli, and L. Wöste, “Application of parametric time and frequency domain shaping,” Eur. Phys. J. D 33, 39–42 (2005).
[CrossRef]

M. A. Coughlan, M. Plewicki, S. M. Weber, P. Bowlan, R. Trebino, and R. J. Levis, “Shaped pulse electric-field construction and interferometric characterization: The SPECIFIC method,” N. J. Phys. Submitted.

Wefers, M. M.

M. M. Wefers and K. A. Nelson, “Space-time profiles of shaped ultrafast optical waveforms,” IEEE J. Quantum Electron. 32(1), 161–172 (1996).
[CrossRef]

Weiner, A. M.

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[CrossRef]

Weise, F.

Wöste, L.

S. M. Weber, A. Lindinger, F. Vetter, M. Plewicki, A. Merli, and L. Wöste, “Application of parametric time and frequency domain shaping,” Eur. Phys. J. D 33, 39–42 (2005).
[CrossRef]

Xu, C.

Zeek, E.

Zeitner, U. D.

Zhu, G.

Zipfel, W.

Appl. Opt.

Eur. Phys. J. D

S. M. Weber, A. Lindinger, F. Vetter, M. Plewicki, A. Merli, and L. Wöste, “Application of parametric time and frequency domain shaping,” Eur. Phys. J. D 33, 39–42 (2005).
[CrossRef]

IEEE J. Quantum Electron.

M. M. Wefers and K. A. Nelson, “Space-time profiles of shaped ultrafast optical waveforms,” IEEE J. Quantum Electron. 32(1), 161–172 (1996).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. At. Mol. Opt. Phys.

H. Suchowski, A. Natan, B. D. Bruner, and Y. Silberberg, “Spatio-temporal coherent control of atomic systems: weak to strong field transition and breaking of symmetry in 2D maps,” J. Phys. At. Mol. Opt. Phys. 41(7), 074008 (2008).
[CrossRef]

N. J. Phys.

M. A. Coughlan, M. Plewicki, S. M. Weber, P. Bowlan, R. Trebino, and R. J. Levis, “Shaped pulse electric-field construction and interferometric characterization: The SPECIFIC method,” N. J. Phys. Submitted.

Nat. Neurosci.

G. Duemani Reddy, K. Kelleher, R. Fink, and P. Saggau, “Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity,” Nat. Neurosci. 11(6), 713–720 (2008).
[CrossRef] [PubMed]

Opt. Commun.

M. E. Durst, G. Zhu, and C. Xu, “Simultaneous spatial and temporal focusing in nonlinear microscopy,” Opt. Commun. 281(7), 1796–1805 (2008).
[CrossRef] [PubMed]

H. Suchowski, D. Oron, and Y. Silberberg, “Generation of a dark nonlinear focus by spatio-temporal coherent control,” Opt. Commun. 264(2), 482–487 (2006).
[CrossRef]

Opt. Eng.

Z. Bor, B. Racz, G. Szabo, M. Hilbert, and H. A. Hazim, “Femtosecond pulse front tilt caused by angular dispersion,” Opt. Eng. 32(10), 2501–2504 (1993).
[CrossRef]

Opt. Express

S. Akturk, X. Gu, E. Zeek, and R. Trebino, “Pulse-front tilt caused by spatial and temporal chirp,” Opt. Express 12(19), 4399–4410 (2004).
[CrossRef] [PubMed]

D. Oron, E. Tal, and Y. Silberberg, “Scanningless depth-resolved microscopy,” Opt. Express 13(5), 1468–1476 (2005).
[CrossRef] [PubMed]

G. Zhu, J. van Howe, M. Durst, W. Zipfel, and C. Xu, “Simultaneous spatial and temporal focusing of femtosecond pulses,” Opt. Express 13(6), 2153–2159 (2005).
[CrossRef] [PubMed]

M. E. Durst, G. Zhu, and C. Xu, “Simultaneous spatial and temporal focusing for axial scanning,” Opt. Express 14(25), 12243–12254 (2006).
[CrossRef] [PubMed]

R. Carriles, K. E. Sheetz, E. E. Hoover, J. A. Squier, and V. Barzda, “Simultaneous multifocal, multiphoton, photon counting microscopy,” Opt. Express 16(14), 10364–10371 (2008).
[CrossRef] [PubMed]

P. Bowlan, U. Fuchs, R. Trebino, and U. D. Zeitner, “Measuring the spatiotemporal electric field of tightly focused ultrashort pulses with sub-micron spatial resolution,” Opt. Express 16(18), 13663–13675 (2008).
[CrossRef] [PubMed]

K. E. Sheetz, E. E. Hoover, R. Carriles, D. Kleinfeld, and J. A. Squier, “Advancing multifocal nonlinear microscopy: development and application of a novel multibeam Yb:KGd(WO4)2 oscillator,” Opt. Express 16(22), 17574–17584 (2008).
[CrossRef] [PubMed]

E. Papagiakoumou, V. de Sars, D. Oron, and V. Emiliani, “Patterned two-photon illumination by spatiotemporal shaping of ultrashort pulses,” Opt. Express 16(26), 22039–22047 (2008).
[CrossRef] [PubMed]

E. Papagiakoumou, V. de Sars, V. Emiliani, and D. Oron, “Temporal focusing with spatially modulated excitation,” Opt. Express 17(7), 5391–5401 (2009).
[CrossRef] [PubMed]

P. Bowlan, P. Gabolde, and R. Trebino, “Directly measuring the spatio-temporal electric field of focusing ultrashort pulses,” Opt. Express 15(16), 10219–10230 (2007).
[CrossRef] [PubMed]

Opt. Lett.

Opt. Quantum Electron.

J. Hebling, “Derivation of the pulse front tilt caused by angular dispersion,” Opt. Quantum Electron. 28(12), 1759–1763 (1996).
[CrossRef]

Rev. Sci. Instrum.

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[CrossRef]

Science

T. Feurer, J. C. Vaughan, and K. A. Nelson, “Spatiotemporal coherent control of lattice vibrational waves,” Science 299(5605), 374–377 (2003).
[CrossRef] [PubMed]

Other

M. A. Coughlan, M. Plewicki, S. M. Weber, P. Bowlan, R. Trebino, and R. J. Levis, “Shaped pulse electric-field construction and interferometric characterization: The SPECIFIC method,” arXiv:0903.1233v1 (2009).

S. M. Weber, “New concepts for optimal control experiments using femtosecond pulse shaping,” in Physics(Free University, Berlin, 2007).
[PubMed]

J. W. Goodman, Introduction to Fourier optics (Roberts & Co, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Relation between position in the spatial focus and pulse duration. The three colors represent different spectral components of a spatially and temporally chirped beam.

Fig. 2
Fig. 2

Experimental multifoci setup with elements described as follows: G1 1200 grooves/mm diffraction grating, CL Cylindrical Lens (f=15cm), SL1 Spherical Lens (f=5cm), SL2 Spherical Lens (f=10cm), TS X/Z scanning translation stage. Single mode optical fibers (core diameter = 5.6μm) are used in SEA TADPOLE and a linear translation stage is adjusted the proper temporal overlap between reference and shaped pulses.

Fig. 3
Fig. 3

Measurement of S.S.T.F. without pulse shaping. a) z=f-1mm b) z=f-0.5mm c) z=f d) z=f+0.5mm e) z=f+1mm, where f is a focal length.

Fig. 4
Fig. 4

Spectral and temporal profile designed and applied by the shaping algorithm. Two pulse separated by 1400fs with flat phases.

Fig. 5
Fig. 5

Measured evolution of the temporal intensity of the two pulse structure from Fig. 4. shaping. a) z=f-1mm b) z=f-0.5mm c) z=f d) z=f+0.5mm e) z=f+1mm, where f is a focal length.

Fig. 6
Fig. 6

Simulation of spatio-spectral distribution (top row) and spatio-temporal pulse structure (bottom row) at the wave front modulation on beam corresponding to (a and b) no phase ramp, (c and d) phase ramp corresponding to delay 1.5ps (c and d), and −1.5ps (e and f).

Fig. 7
Fig. 7

Theoretical a) spectral phase and intensity and b) temporal phase (+/− 7000fs2) and temporal intensity shape.

Fig. 8
Fig. 8

Measured evolution of the temporal intensity of the two pulse structure from Fig. 6. shaping. a) z=f-1mm b) z=f-0.5mm c) z=f d) z=f+0.5mm e) z=f+1mm, where f is a focal length.

Fig. 9
Fig. 9

a) Theoretical spectral phase, intensity and b) temporal phase and intensities. The pulses at (+/−) 700fs have an applied second order chirp of (+/− 7000fs2) and the pulse at 0fs has no applied chirp.

Fig. 10
Fig. 10

Measured evolution of the temporal intensity of the two pulse structure from Fig. 9. shaping. a) z=f-1mm b) z=f-0.5mm c) z=f d) z=f+0.5mm e) z=f+1mm, where f is a focal length.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A0(x,Δω)=A0exp(Δω2Ω2)exp((xα  ​Δω)2s2)exp(i(δ   Δω+βΔω2)),
TPE(x,z)=+(I(x,z,(tδ)))2dt

Metrics