Abstract

We have experimentally implemented a non-degenerate sequential time-bin entangled photon-pair source using a periodically poled potassium titanyl phosphate waveguide at a clock rate of 1 GHz. The wavelengths of the signal and idler are 895 nm and 1310 nm, which are suitable for local and long distance optical communications, respectively and the 895 nm signal is also suitable for quantum memory research. A silicon avalanche photodiode is used to detect the photons at 895 nm while a periodically poled lithium niobate waveguide based up-conversion detector is used to detect the photons at 1310 nm. The measured entangled-photon-pair flux rate is 650 Hz and the fringe visibility for two-photon interference is 79.4% without noise subtraction.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed Energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82(12), 2594–2597 (1999).
    [CrossRef]
  2. S. Tanzilli, W. Tittel, H. Riedmatten, H. Zbinden, P. Baldi, M. Micheli, D. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18(2), 155–160 (2002).
    [CrossRef]
  3. I. Marcikic, H. Riedmattern, W. Tittel, V. Scarani, H. Zbinden, and N. Gisin, “Time-bin entangled qubits for quantum communication created by femtosecond pulses,” Phys. Rev. A 66(6), 062308 (2002).
    [CrossRef]
  4. I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett. 93(18), 180502 (2004).
    [CrossRef] [PubMed]
  5. H. Takesue and K. Inoue, “Generation of 1.5-μm band entanglement using spontaneous fiber four-wave mixing and planar light-wave circuit interferometers,” Phys. Rev. A 72(4), 041804 (2005).
    [CrossRef]
  6. T. Honjo, H. Takesue, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, and K. Inoue, “Long-distance distribution of time-bin entangled photon pairs over 100 km using frequency up-conversion detectors,” Opt. Express 15(21), 13957–13964 (2007).
    [CrossRef] [PubMed]
  7. Q. Zhang, C. Langrock, H. Takesue, X. Xie, M. Fejer, and Y. Yamamoto, “Generation of 10-GHz clock sequential time-bin entanglement,” Opt. Express 16(5), 3293–3298 (2008).
    [CrossRef] [PubMed]
  8. J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett. 62(19), 2205–2208 (1989).
    [CrossRef] [PubMed]
  9. H. Xu, L. Ma, and X. Tang, “Low noise PPLN-based single photon detector”, SPIE Optics East 07,” Proc. SPIE 6780, 67800U–1 (2007).
    [CrossRef]
  10. H. Xu, L. Ma, A. Mink, B. Hershman, and X. Tang, “1310-nm quantum key distribution system with up-conversion pump wavelength at 1550 nm,” Opt. Express 15(12), 7247–7260 (2007).
    [CrossRef] [PubMed]
  11. Q. Zhang, C. Langrock, M. M. Fejer, and Y. Yamamoto, “Waveguide-based single-pixel up-conversion infrared spectrometer,” Opt. Express 16(24), 19557–19561 (2008).
    [CrossRef] [PubMed]
  12. Q. Zhang, H. Takesue, S. W. Nam, C. Langrock, X. Xie, B. Baek, M. M. Fejer, and Y. Yamamoto, “Distribution of time-energy entanglement over 100 km fiber using superconducting single-photon detectors,” Opt. Express 16(8), 5776–5781 (2008).
    [CrossRef] [PubMed]
  13. J. Clauser, M. Horne, A. Shimony, and R. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23(15), 880–884 (1969).
    [CrossRef]

2008

2007

2005

H. Takesue and K. Inoue, “Generation of 1.5-μm band entanglement using spontaneous fiber four-wave mixing and planar light-wave circuit interferometers,” Phys. Rev. A 72(4), 041804 (2005).
[CrossRef]

2004

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett. 93(18), 180502 (2004).
[CrossRef] [PubMed]

2002

S. Tanzilli, W. Tittel, H. Riedmatten, H. Zbinden, P. Baldi, M. Micheli, D. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18(2), 155–160 (2002).
[CrossRef]

I. Marcikic, H. Riedmattern, W. Tittel, V. Scarani, H. Zbinden, and N. Gisin, “Time-bin entangled qubits for quantum communication created by femtosecond pulses,” Phys. Rev. A 66(6), 062308 (2002).
[CrossRef]

1999

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed Energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82(12), 2594–2597 (1999).
[CrossRef]

1989

J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett. 62(19), 2205–2208 (1989).
[CrossRef] [PubMed]

1969

J. Clauser, M. Horne, A. Shimony, and R. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23(15), 880–884 (1969).
[CrossRef]

Asobe, M.

Baek, B.

Baldi, P.

S. Tanzilli, W. Tittel, H. Riedmatten, H. Zbinden, P. Baldi, M. Micheli, D. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18(2), 155–160 (2002).
[CrossRef]

Brendel, J.

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed Energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82(12), 2594–2597 (1999).
[CrossRef]

Clauser, J.

J. Clauser, M. Horne, A. Shimony, and R. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23(15), 880–884 (1969).
[CrossRef]

de Riedmatten, H.

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett. 93(18), 180502 (2004).
[CrossRef] [PubMed]

Fejer, M.

Fejer, M. M.

Franson, J. D.

J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett. 62(19), 2205–2208 (1989).
[CrossRef] [PubMed]

Gisin, N.

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett. 93(18), 180502 (2004).
[CrossRef] [PubMed]

I. Marcikic, H. Riedmattern, W. Tittel, V. Scarani, H. Zbinden, and N. Gisin, “Time-bin entangled qubits for quantum communication created by femtosecond pulses,” Phys. Rev. A 66(6), 062308 (2002).
[CrossRef]

S. Tanzilli, W. Tittel, H. Riedmatten, H. Zbinden, P. Baldi, M. Micheli, D. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18(2), 155–160 (2002).
[CrossRef]

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed Energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82(12), 2594–2597 (1999).
[CrossRef]

Hershman, B.

Holt, R.

J. Clauser, M. Horne, A. Shimony, and R. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23(15), 880–884 (1969).
[CrossRef]

Honjo, T.

Horne, M.

J. Clauser, M. Horne, A. Shimony, and R. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23(15), 880–884 (1969).
[CrossRef]

Inoue, K.

T. Honjo, H. Takesue, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, and K. Inoue, “Long-distance distribution of time-bin entangled photon pairs over 100 km using frequency up-conversion detectors,” Opt. Express 15(21), 13957–13964 (2007).
[CrossRef] [PubMed]

H. Takesue and K. Inoue, “Generation of 1.5-μm band entanglement using spontaneous fiber four-wave mixing and planar light-wave circuit interferometers,” Phys. Rev. A 72(4), 041804 (2005).
[CrossRef]

Kamada, H.

Langrock, C.

Legré, M.

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett. 93(18), 180502 (2004).
[CrossRef] [PubMed]

Ma, L.

Marcikic, I.

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett. 93(18), 180502 (2004).
[CrossRef] [PubMed]

I. Marcikic, H. Riedmattern, W. Tittel, V. Scarani, H. Zbinden, and N. Gisin, “Time-bin entangled qubits for quantum communication created by femtosecond pulses,” Phys. Rev. A 66(6), 062308 (2002).
[CrossRef]

Micheli, M.

S. Tanzilli, W. Tittel, H. Riedmatten, H. Zbinden, P. Baldi, M. Micheli, D. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18(2), 155–160 (2002).
[CrossRef]

Mink, A.

Nam, S. W.

Nishida, Y.

Ostrowsky, D.

S. Tanzilli, W. Tittel, H. Riedmatten, H. Zbinden, P. Baldi, M. Micheli, D. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18(2), 155–160 (2002).
[CrossRef]

Riedmatten, H.

S. Tanzilli, W. Tittel, H. Riedmatten, H. Zbinden, P. Baldi, M. Micheli, D. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18(2), 155–160 (2002).
[CrossRef]

Riedmattern, H.

I. Marcikic, H. Riedmattern, W. Tittel, V. Scarani, H. Zbinden, and N. Gisin, “Time-bin entangled qubits for quantum communication created by femtosecond pulses,” Phys. Rev. A 66(6), 062308 (2002).
[CrossRef]

Scarani, V.

I. Marcikic, H. Riedmattern, W. Tittel, V. Scarani, H. Zbinden, and N. Gisin, “Time-bin entangled qubits for quantum communication created by femtosecond pulses,” Phys. Rev. A 66(6), 062308 (2002).
[CrossRef]

Shimony, A.

J. Clauser, M. Horne, A. Shimony, and R. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23(15), 880–884 (1969).
[CrossRef]

Tadanaga, O.

Takesue, H.

Tang, X.

Tanzilli, S.

S. Tanzilli, W. Tittel, H. Riedmatten, H. Zbinden, P. Baldi, M. Micheli, D. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18(2), 155–160 (2002).
[CrossRef]

Tittel, W.

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett. 93(18), 180502 (2004).
[CrossRef] [PubMed]

S. Tanzilli, W. Tittel, H. Riedmatten, H. Zbinden, P. Baldi, M. Micheli, D. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18(2), 155–160 (2002).
[CrossRef]

I. Marcikic, H. Riedmattern, W. Tittel, V. Scarani, H. Zbinden, and N. Gisin, “Time-bin entangled qubits for quantum communication created by femtosecond pulses,” Phys. Rev. A 66(6), 062308 (2002).
[CrossRef]

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed Energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82(12), 2594–2597 (1999).
[CrossRef]

Xie, X.

Xu, H.

Yamamoto, Y.

Zbinden, H.

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett. 93(18), 180502 (2004).
[CrossRef] [PubMed]

S. Tanzilli, W. Tittel, H. Riedmatten, H. Zbinden, P. Baldi, M. Micheli, D. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18(2), 155–160 (2002).
[CrossRef]

I. Marcikic, H. Riedmattern, W. Tittel, V. Scarani, H. Zbinden, and N. Gisin, “Time-bin entangled qubits for quantum communication created by femtosecond pulses,” Phys. Rev. A 66(6), 062308 (2002).
[CrossRef]

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed Energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82(12), 2594–2597 (1999).
[CrossRef]

Zhang, Q.

Eur. Phys. J. D

S. Tanzilli, W. Tittel, H. Riedmatten, H. Zbinden, P. Baldi, M. Micheli, D. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18(2), 155–160 (2002).
[CrossRef]

Opt. Express

Phys. Rev. A

I. Marcikic, H. Riedmattern, W. Tittel, V. Scarani, H. Zbinden, and N. Gisin, “Time-bin entangled qubits for quantum communication created by femtosecond pulses,” Phys. Rev. A 66(6), 062308 (2002).
[CrossRef]

H. Takesue and K. Inoue, “Generation of 1.5-μm band entanglement using spontaneous fiber four-wave mixing and planar light-wave circuit interferometers,” Phys. Rev. A 72(4), 041804 (2005).
[CrossRef]

Phys. Rev. Lett.

J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett. 62(19), 2205–2208 (1989).
[CrossRef] [PubMed]

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett. 93(18), 180502 (2004).
[CrossRef] [PubMed]

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed Energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82(12), 2594–2597 (1999).
[CrossRef]

J. Clauser, M. Horne, A. Shimony, and R. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23(15), 880–884 (1969).
[CrossRef]

Proc. SPIE

H. Xu, L. Ma, and X. Tang, “Low noise PPLN-based single photon detector”, SPIE Optics East 07,” Proc. SPIE 6780, 67800U–1 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup. LD: 1064 nm CW laser Diode; EOM: Electric-optic Modulator; RF: RF pulse generator; PC: Polarization controller, PPKTP: Periodically-poled KTP waveguide; DBS: 895 nm and 1310 nm dichroic beam splitter; IF: Interference filter; FC: Fiber collimator; MZI: Mach-Zehnder interferometer; Si-APD: Silicon based avalanche photo diode; PPLN: Periodically-poled LiNbO3 waveguide for frequency up-conversion; TCSPC: Time-correlated single photon counting module. Solid line: Optical path; Dash line: Electrical connection.

Fig. 2
Fig. 2

Up-conversion detector. EOM: Electric-optic Modulator; EDFA: Erbium-doped fiber amplifier; WDM: Wavelength-division multiplexing coupler; PC: Polarization controller; PPLN: Periodically-poled LiNbO3 waveguides; IF: Interference filter. Solid line: Optical fiber; Dash line: Free space optical transmission.

Fig. 3
Fig. 3

A spectrum of the idler photons generated in the PPKTP waveguide near 1310 nm.

Fig. 4
Fig. 4

Histogram of the coincidence counts of photon pairs after the two MZIs. The shaded area indicates the detection window (400 ps)

Fig. 5
Fig. 5

Coincidence interference fringes measured in the experiments. Solid line/ triangle and dash line/square are the coincidence counts when the piezo drive voltages of 850 nm interferometer are 0 and 1 volt, respectively.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

|Ψ=1Nn=0N1einϕτ|nτsignal|nτidler
Rc~1Vcos(θs+θi+ϕτ)
V=CCmaxCCminCCmax+CCmin=CCentCCent+2CCacci
CCent=μαsηsαiηi
V=CCentCCent+2(CCmulti+CCisi+2CCdarkphoton+4CCdarkdark)
CCmultiμ2αsηsαiηiCCisi=γμαsηsαiηiCCdarkphoton=μαsηsDit+μαiηiDstCCdarkdark=DiDst2
V=CCentCCintCCent+CCint
CCint=ζCCent=ζμαsηsαiηi
V=CCentCCintCCent+CCint+2CCmulti+2CCisi+4CCdarkphoton+8CCdarkdark
V=μαsηsαiηiζμαsηsαiηiμαsηsαiηi+ζμαsηsαiη+2μ2αsηsαiηi+2γμαsηsαiηi+4μαsηsDit+4μαiηiDst+8DiDst2

Metrics