Abstract

Abstract: We show a method for distortion-free quasi storage of light which is based on the coherence between the spectrum and the time representation of pulse sequences. The whole system can be considered as a black box that stores the light until it will be extracted. In the experiment we delayed several 5 bit patterns with bit durations of 500ps up to 38ns. The delay can be tuned in fine and coarse range. The method works in the entire transparency range of optical fibers and only uses standard components of optical telecommunications. Hence, it can easily be integrated into existing systems.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Boyd, and D. J. Gauthier, “Slow and Fast Light,” in Progress in Optics 43, E Wolf, ed. (Elsevier, Amsterdam, 2002) 497 – 530.
  2. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
    [CrossRef]
  3. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003).
    [CrossRef] [PubMed]
  4. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  5. S. E. Harris and L. V. Hau, “Nonlinear Optics at Low Light Levels,” Phys. Rev. Lett. 82(23), 4611–4614 (1999).
    [CrossRef]
  6. J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” IEEE Photon. Technol. Lett. 9(11), 1529–1531 (1997).
    [CrossRef]
  7. E. F. Burmeister, D. J. Blumenthal, and J. E. Bowers, “A comparison of optical buffering technologies,” Opt. Switching Networking 5(1), 10–18 (2008).
    [CrossRef]
  8. J. B. Khurgin, “Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis,” J. Opt. Soc. Am. B 22(5), 1062–1074 (2005).
    [CrossRef]
  9. R. S. Tucker, P. C. Ku, and C. J. C. Hasnain, “Slow-Light Optical Buffers: Capabilities and Fundamental Limitations,” J. Lightwave Technol. 23(12), 4046–4066 (2005).
    [CrossRef]
  10. E. Choi, J. Na, S. Y. Ryu, G. Mudhana, and B. H. Lee, “All-fiber variable optical delay line for applications in optical coherence tomography: feasibility study for a novel delay line,” Opt. Express 13(4), 1334–1345 (2005).
    [CrossRef] [PubMed]
  11. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
    [CrossRef]
  12. K. Y. Song, M. G. Herráez, and L. Thévenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express 13(1), 82–88 (2005).
    [CrossRef] [PubMed]
  13. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
    [CrossRef] [PubMed]
  14. Z. Dutton and L. V. Hau, “Storing and processing optical information with ultra-slow light in Bose-Einstein condensates,” Phys. Rev. A 70(5), 053831 (2004).
    [CrossRef]
  15. Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318(5857), 1748–1750 (2007).
    [CrossRef] [PubMed]
  16. T. Sakamoto, T. Kawanishi, and M. Izutsu, “19x10 GHz Electro-Optic Ultra-Flat Frequency Comb Generation Only Using Single Conventional Mach-Zehnder Modulator,” in Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science (Long Beach, CA, 2006), pp. 1–2
  17. G. A. Sefler and K.-I. Kitayama, “Frequency Comb Generation by Four-Wave Mixing and the Role of Fiber Dispersion,” J. Lightwave Technol. 16(9), 1596–1605 (1998).
    [CrossRef]
  18. T. Schneider, M. Junker, and K. U. Lauterbach, “Theoretical and experimental investigation of Brillouin scattering for the generation of millimeter waves,” J. Opt. Soc. Am. B 23(6), 1012–1019 (2006).
    [CrossRef]
  19. T. Schneider, Nonlinear Optics in Telecommunications (Springer-Verlag, Berlin, 2004).
  20. T. Schneider, M. Junker, and K. U. Lauterbach, “Potential ultrawide slow-light bandwidth enhancement,” Opt. Express 14(23), 11082 (2006).
    [CrossRef] [PubMed]
  21. R. Henker, A. Wiatrek, K.-U. Lauterbach, M. J. Ammann, A. T. Schwarzbacher, and T. Schneider, “Group velocity dispersion reduction in fibre-based slow light systems via stimulated Brillouin scattering,” Electron. Lett. 44(20), 1185–1186 (2008).
    [CrossRef]
  22. P. Shen, N. J. Gomes, P. A. Davies, and W. P. Shillue, Generation of 2 THz Span Optical Comb in a Tunable Fiber Ring Based Optical Frequency Comb Generator” in Proceedings of IEEE International Topical Meeting on Microwave Photonics (Fairmont Empress Hotel, Victoria, BC, 2007), 46–49.
  23. A. Yeniay, J. M. Delavaux, and J. Toulouse, “Spontaneous and Stimulated Brillouin Scattering Gain Spectra in Optical Fibers,” J. Lightwave Technol. 20(8), 1425–1432 (2002).
    [CrossRef]

2008

E. F. Burmeister, D. J. Blumenthal, and J. E. Bowers, “A comparison of optical buffering technologies,” Opt. Switching Networking 5(1), 10–18 (2008).
[CrossRef]

R. Henker, A. Wiatrek, K.-U. Lauterbach, M. J. Ammann, A. T. Schwarzbacher, and T. Schneider, “Group velocity dispersion reduction in fibre-based slow light systems via stimulated Brillouin scattering,” Electron. Lett. 44(20), 1185–1186 (2008).
[CrossRef]

2007

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318(5857), 1748–1750 (2007).
[CrossRef] [PubMed]

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

2006

2005

2004

Z. Dutton and L. V. Hau, “Storing and processing optical information with ultra-slow light in Bose-Einstein condensates,” Phys. Rev. A 70(5), 053831 (2004).
[CrossRef]

2003

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003).
[CrossRef] [PubMed]

2002

1999

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

S. E. Harris and L. V. Hau, “Nonlinear Optics at Low Light Levels,” Phys. Rev. Lett. 82(23), 4611–4614 (1999).
[CrossRef]

1998

1997

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” IEEE Photon. Technol. Lett. 9(11), 1529–1531 (1997).
[CrossRef]

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Ammann, M. J.

R. Henker, A. Wiatrek, K.-U. Lauterbach, M. J. Ammann, A. T. Schwarzbacher, and T. Schneider, “Group velocity dispersion reduction in fibre-based slow light systems via stimulated Brillouin scattering,” Electron. Lett. 44(20), 1185–1186 (2008).
[CrossRef]

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Bigelow, M. S.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003).
[CrossRef] [PubMed]

Blumenthal, D. J.

E. F. Burmeister, D. J. Blumenthal, and J. E. Bowers, “A comparison of optical buffering technologies,” Opt. Switching Networking 5(1), 10–18 (2008).
[CrossRef]

Bowers, J. E.

E. F. Burmeister, D. J. Blumenthal, and J. E. Bowers, “A comparison of optical buffering technologies,” Opt. Switching Networking 5(1), 10–18 (2008).
[CrossRef]

Boyd, R. W.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318(5857), 1748–1750 (2007).
[CrossRef] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003).
[CrossRef] [PubMed]

Burmeister, E. F.

E. F. Burmeister, D. J. Blumenthal, and J. E. Bowers, “A comparison of optical buffering technologies,” Opt. Switching Networking 5(1), 10–18 (2008).
[CrossRef]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Choi, E.

Corral, J. L.

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” IEEE Photon. Technol. Lett. 9(11), 1529–1531 (1997).
[CrossRef]

Delavaux, J. M.

Dutton, Z.

Z. Dutton and L. V. Hau, “Storing and processing optical information with ultra-slow light in Bose-Einstein condensates,” Phys. Rev. A 70(5), 053831 (2004).
[CrossRef]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fuster, J. M.

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” IEEE Photon. Technol. Lett. 9(11), 1529–1531 (1997).
[CrossRef]

Gaeta, A. L.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

Gauthier, D. J.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318(5857), 1748–1750 (2007).
[CrossRef] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

S. E. Harris and L. V. Hau, “Nonlinear Optics at Low Light Levels,” Phys. Rev. Lett. 82(23), 4611–4614 (1999).
[CrossRef]

Hasnain, C. J. C.

Hau, L. V.

Z. Dutton and L. V. Hau, “Storing and processing optical information with ultra-slow light in Bose-Einstein condensates,” Phys. Rev. A 70(5), 053831 (2004).
[CrossRef]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

S. E. Harris and L. V. Hau, “Nonlinear Optics at Low Light Levels,” Phys. Rev. Lett. 82(23), 4611–4614 (1999).
[CrossRef]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Henker, R.

R. Henker, A. Wiatrek, K.-U. Lauterbach, M. J. Ammann, A. T. Schwarzbacher, and T. Schneider, “Group velocity dispersion reduction in fibre-based slow light systems via stimulated Brillouin scattering,” Electron. Lett. 44(20), 1185–1186 (2008).
[CrossRef]

Herráez, M. G.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Junker, M.

Khurgin, J. B.

Kitayama, K.-I.

Ku, P. C.

Laming, R. I.

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” IEEE Photon. Technol. Lett. 9(11), 1529–1531 (1997).
[CrossRef]

Lauterbach, K. U.

Lauterbach, K.-U.

R. Henker, A. Wiatrek, K.-U. Lauterbach, M. J. Ammann, A. T. Schwarzbacher, and T. Schneider, “Group velocity dispersion reduction in fibre-based slow light systems via stimulated Brillouin scattering,” Electron. Lett. 44(20), 1185–1186 (2008).
[CrossRef]

Lee, B. H.

Lepeshkin, N. N.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003).
[CrossRef] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Marti, J.

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” IEEE Photon. Technol. Lett. 9(11), 1529–1531 (1997).
[CrossRef]

Mudhana, G.

Na, J.

Okawachi, Y.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Ryu, S. Y.

Schneider, T.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Schwarzbacher, A. T.

R. Henker, A. Wiatrek, K.-U. Lauterbach, M. J. Ammann, A. T. Schwarzbacher, and T. Schneider, “Group velocity dispersion reduction in fibre-based slow light systems via stimulated Brillouin scattering,” Electron. Lett. 44(20), 1185–1186 (2008).
[CrossRef]

Schweinsberg, A.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

Sefler, G. A.

Sekaric, L.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

Sharping, J. E.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

Song, K. Y.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Thévenaz, L.

Toulouse, J.

Tucker, R. S.

Vlasov, Y.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

Wiatrek, A.

R. Henker, A. Wiatrek, K.-U. Lauterbach, M. J. Ammann, A. T. Schwarzbacher, and T. Schneider, “Group velocity dispersion reduction in fibre-based slow light systems via stimulated Brillouin scattering,” Electron. Lett. 44(20), 1185–1186 (2008).
[CrossRef]

Xia, F.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

Yeniay, A.

Zhu, Z.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318(5857), 1748–1750 (2007).
[CrossRef] [PubMed]

Zhu, Z. M.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

Electron. Lett.

R. Henker, A. Wiatrek, K.-U. Lauterbach, M. J. Ammann, A. T. Schwarzbacher, and T. Schneider, “Group velocity dispersion reduction in fibre-based slow light systems via stimulated Brillouin scattering,” Electron. Lett. 44(20), 1185–1186 (2008).
[CrossRef]

IEEE Photon. Technol. Lett.

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” IEEE Photon. Technol. Lett. 9(11), 1529–1531 (1997).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Nat. Photonics

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

Nature

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Opt. Express

Opt. Switching Networking

E. F. Burmeister, D. J. Blumenthal, and J. E. Bowers, “A comparison of optical buffering technologies,” Opt. Switching Networking 5(1), 10–18 (2008).
[CrossRef]

Phys. Rev. A

Z. Dutton and L. V. Hau, “Storing and processing optical information with ultra-slow light in Bose-Einstein condensates,” Phys. Rev. A 70(5), 053831 (2004).
[CrossRef]

Phys. Rev. Lett.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

S. E. Harris and L. V. Hau, “Nonlinear Optics at Low Light Levels,” Phys. Rev. Lett. 82(23), 4611–4614 (1999).
[CrossRef]

Science

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318(5857), 1748–1750 (2007).
[CrossRef] [PubMed]

Other

T. Sakamoto, T. Kawanishi, and M. Izutsu, “19x10 GHz Electro-Optic Ultra-Flat Frequency Comb Generation Only Using Single Conventional Mach-Zehnder Modulator,” in Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science (Long Beach, CA, 2006), pp. 1–2

T. Schneider, Nonlinear Optics in Telecommunications (Springer-Verlag, Berlin, 2004).

R. W. Boyd, and D. J. Gauthier, “Slow and Fast Light,” in Progress in Optics 43, E Wolf, ed. (Elsevier, Amsterdam, 2002) 497 – 530.

P. Shen, N. J. Gomes, P. A. Davies, and W. P. Shillue, Generation of 2 THz Span Optical Comb in a Tunable Fiber Ring Based Optical Frequency Comb Generator” in Proceedings of IEEE International Topical Meeting on Microwave Photonics (Fairmont Empress Hotel, Victoria, BC, 2007), 46–49.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Time and frequency-domain representation of the pulses. Time (a) and frequency (b) representation of original pulse, time (c) and frequency (d) representation of the ideal spectrally sampled pulse, time (e) and frequency (f) representation of finite bandwidth spectrally sampled pulse.

Fig. 2
Fig. 2

Principle idea. The X denotes the multiplication in the frequency-domain and the Switch is a modulator.

Fig. 3
Fig. 3

Principal experimental setup. LD: laser diode; MZM: Mach-Zehnder modulator; SSMF: standard single mode fiber; EDFA: Erbium doped fiber amplifier; Pattern: digital data analyzer; DD-MZM: dual-drive Mach-Zehnder modulator; Rect.: pulse generator to create a rectangular window; Tr.: Trigger. The insets show the measured values for (a) specific bit pattern, (b) frequency comb, (c) rectangular window and (d) extracted pattern.

Fig. 4
Fig. 4

Delayed and extracted “11101” pattern. The black line shows the reference. Because of the large delay the time axis is interrupted.

Fig. 5
Fig. 5

Different extracted patterns. (a) a “10101” pattern and (b) shows it for a “11001” pattern.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

FPulse(ν)×F(ν)fPulse(t)f(t).
FS(ν)=n=FPulse(nΔν)δ(νnΔν)=FPulse(ν)1ΔνШ(νΔν)
fS(t)=fPulse(t)Ш(Δνt)=1Δνn=fPulse(tnΔν).

Metrics