Abstract

We present the microoptical adaption of the natural superposition compound eye, which is termed “Gabor superlens”. Enabled by state-of-the-art microoptics technology, this well known principle has been adapted for ultra-compact imaging systems for the first time. By numerical ray tracing optimization, and by adding diaphragm layers and a field lens array, the optical performance of the Gabor superlens is potentially comparable to miniaturized conventional lens modules, such as currently integrated in mobile phones. However, in contrast to those, the Gabor superlens is fabricated using a standard microlens array technology with low sag heights and small diameter microlenses. Hence, there is no need for complex diamond turning for the generation of the master structures. This results in a simple and well controllable lens manufacturing process with the potential to high yield.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Lim, M. Choi, H. Kim, and S. Kang, “Fabrication of Hybrid Microoptics Using UV Imprinting Process with Shrinkage Compensation Method,” Jpn. J. Appl. Phys. 47(8), 6719–6722 (2008).
    [CrossRef]
  2. Z. D. Popovic, R. A. Sprague, and G. A. N. Connell, “Technique for monolithic fabrication of microlens arrays,” Appl. Opt. 27(7), 1281–1284 (1988).
    [CrossRef] [PubMed]
  3. G. A. Horridge, “The compound eye of insects,” Sci. Am. 237, 108–120 (1977).
    [CrossRef]
  4. J. S. Sanders and C. E. Halford, “Design and analysis of apposition compound eye optical sensors,” Opt. Eng. 34(1), 222–235 (1995).
    [CrossRef]
  5. M. F. Land, “The optical structures of animal eyes,” Curr. Biol. 15(9), R319–R323 (2005).
    [CrossRef] [PubMed]
  6. R. Navarro and N. Franceschini, “On image quality of microlens arrays in diurnal superposition eyes,” J. Opt. A, Pure Appl. Opt. 7, L69–L78 (1998).
  7. J. Duparré, P. Dannberg, P. Schreiber, A. Bräuer, and A. Tünnermann, “Artificial apposition compound eye fabricated by micro-optics technology,” Appl. Opt. 43(22), 4303–4310 (2004).
    [CrossRef] [PubMed]
  8. J. Duparré, P. Dannberg, P. Schreiber, A. Bräuer, and A. Tünnermann, “Thin compound-eye camera,” Appl. Opt. 44(15), 2949–2956 (2005).
    [CrossRef] [PubMed]
  9. A. Brückner, J. Duparré, P. Dannberg, A. Bräuer, and A. Tünnermann, “Artificial neural superposition eye,” Opt. Express 15(19), 11922–11933 (2007).
    [CrossRef] [PubMed]
  10. L. P. Lee and R. Szema, “Inspirations from biological optics for advanced photonic systems,” Science 310(5751), 1148–1150 (2005).
    [CrossRef] [PubMed]
  11. R. H. Anderson, “Close-up imaging of documents and displays with lens arrays,” Appl. Opt. 18(4), 477–484 (1979).
    [CrossRef] [PubMed]
  12. M. Kawazu and Y. Ogura, “Application of gradient-index fiber arrays to copying machines,” Appl. Opt. 19(7), 1105–1112 (1980).
    [CrossRef] [PubMed]
  13. M. Toyama and M. Takami, “Luminous intensity of a gradient-index lens array,” Appl. Opt. 21(6), 1013–1016 (1982).
    [CrossRef] [PubMed]
  14. N. F. Borrelli, R. H. Bellman, J. A. Durbin, and W. Lama, “Imaging and radiometric properties of microlens arrays,” Appl. Opt. 30(25), 3633–3642 (1991).
    [CrossRef] [PubMed]
  15. V. Shaoulov and J. P. Rolland, “Design and assessment of microlenslet-array relay optics,” Appl. Opt. 42(34), 6838–6845 (2003).
    [CrossRef] [PubMed]
  16. D. Gabor, UK Patent 541 753, (1940).
  17. M. C. Hutley, and R. F. Stevens, “The formation of Integral Images by Afocal Pairs of Lens Arrays (“Superlens”),” IOP Short Meeting Series 30, 147–154 (Bristol: IOP Publishing, 1991).
  18. C. Hembd-Sölner, R. F. Stevens, and M. C. Hutley, “Imaging properties of the Gabor Superlens,” J. Opt. A, Pure Appl. Opt. 1(1), 94–102 (1999).
    [CrossRef]
  19. E. Hecht, Optics, 3rd edition (Addison-Wesley, 1994).
    [PubMed]
  20. W. J. Smith, Modern Optical Engineering, third edition (McGraw-Hill, 2000).
  21. N. Lindlein, “Simulation of micro-optical systems including microlens arrays,” J. Opt. A, Pure Appl. Opt. 4(4), S1–S9 (2002).
    [CrossRef]
  22. J. Duparré, D. Radtke, and P. Dannberg, “Implementation of field lens arrays in beam-deflecting microlens array telescopes,” Appl. Opt. 43(25), 4854–4861 (2004).
    [CrossRef] [PubMed]
  23. J. Duparré, P. Schreiber, A. Matthes, E. Pshenay-Severin, A. Bräuer, and A. Tünnermann, “Microoptical telescope compound eye,” Opt. Exp. 13(3), 889–903 (2005).
    [CrossRef]
  24. N. F. Borrelli and L. D. Morse, “Microlens arrays produced by a photolytic technique,” Appl. Opt. 27(3), 476–479 (1988).
    [CrossRef] [PubMed]
  25. P. Dannberg, G. Mann, L. Wagner, and A. Bräuer, “Polymer UV-moulding for micro-optical systems and O/E-integration,” Proc. SPIE 4179(16), 137–145 (2000).
    [CrossRef]
  26. J. Duparré, F. Wippermann, P. Dannberg, and A. Reimann, “Chirped arrays of refractive ellipsoidal microlenses for aberration correction under oblique incidence,” Opt. Exp. 13(26), 10539–10551 (2005).
    [CrossRef]

2008

J. Lim, M. Choi, H. Kim, and S. Kang, “Fabrication of Hybrid Microoptics Using UV Imprinting Process with Shrinkage Compensation Method,” Jpn. J. Appl. Phys. 47(8), 6719–6722 (2008).
[CrossRef]

2007

2005

L. P. Lee and R. Szema, “Inspirations from biological optics for advanced photonic systems,” Science 310(5751), 1148–1150 (2005).
[CrossRef] [PubMed]

M. F. Land, “The optical structures of animal eyes,” Curr. Biol. 15(9), R319–R323 (2005).
[CrossRef] [PubMed]

J. Duparré, P. Dannberg, P. Schreiber, A. Bräuer, and A. Tünnermann, “Thin compound-eye camera,” Appl. Opt. 44(15), 2949–2956 (2005).
[CrossRef] [PubMed]

J. Duparré, P. Schreiber, A. Matthes, E. Pshenay-Severin, A. Bräuer, and A. Tünnermann, “Microoptical telescope compound eye,” Opt. Exp. 13(3), 889–903 (2005).
[CrossRef]

J. Duparré, F. Wippermann, P. Dannberg, and A. Reimann, “Chirped arrays of refractive ellipsoidal microlenses for aberration correction under oblique incidence,” Opt. Exp. 13(26), 10539–10551 (2005).
[CrossRef]

2004

2003

2002

N. Lindlein, “Simulation of micro-optical systems including microlens arrays,” J. Opt. A, Pure Appl. Opt. 4(4), S1–S9 (2002).
[CrossRef]

2000

P. Dannberg, G. Mann, L. Wagner, and A. Bräuer, “Polymer UV-moulding for micro-optical systems and O/E-integration,” Proc. SPIE 4179(16), 137–145 (2000).
[CrossRef]

1999

C. Hembd-Sölner, R. F. Stevens, and M. C. Hutley, “Imaging properties of the Gabor Superlens,” J. Opt. A, Pure Appl. Opt. 1(1), 94–102 (1999).
[CrossRef]

1998

R. Navarro and N. Franceschini, “On image quality of microlens arrays in diurnal superposition eyes,” J. Opt. A, Pure Appl. Opt. 7, L69–L78 (1998).

1995

J. S. Sanders and C. E. Halford, “Design and analysis of apposition compound eye optical sensors,” Opt. Eng. 34(1), 222–235 (1995).
[CrossRef]

1991

1988

1982

1980

1979

1977

G. A. Horridge, “The compound eye of insects,” Sci. Am. 237, 108–120 (1977).
[CrossRef]

Anderson, R. H.

Bellman, R. H.

Borrelli, N. F.

Bräuer, A.

Brückner, A.

Choi, M.

J. Lim, M. Choi, H. Kim, and S. Kang, “Fabrication of Hybrid Microoptics Using UV Imprinting Process with Shrinkage Compensation Method,” Jpn. J. Appl. Phys. 47(8), 6719–6722 (2008).
[CrossRef]

Connell, G. A. N.

Dannberg, P.

Duparré, J.

Durbin, J. A.

Franceschini, N.

R. Navarro and N. Franceschini, “On image quality of microlens arrays in diurnal superposition eyes,” J. Opt. A, Pure Appl. Opt. 7, L69–L78 (1998).

Halford, C. E.

J. S. Sanders and C. E. Halford, “Design and analysis of apposition compound eye optical sensors,” Opt. Eng. 34(1), 222–235 (1995).
[CrossRef]

Hembd-Sölner, C.

C. Hembd-Sölner, R. F. Stevens, and M. C. Hutley, “Imaging properties of the Gabor Superlens,” J. Opt. A, Pure Appl. Opt. 1(1), 94–102 (1999).
[CrossRef]

Horridge, G. A.

G. A. Horridge, “The compound eye of insects,” Sci. Am. 237, 108–120 (1977).
[CrossRef]

Hutley, M. C.

C. Hembd-Sölner, R. F. Stevens, and M. C. Hutley, “Imaging properties of the Gabor Superlens,” J. Opt. A, Pure Appl. Opt. 1(1), 94–102 (1999).
[CrossRef]

Kang, S.

J. Lim, M. Choi, H. Kim, and S. Kang, “Fabrication of Hybrid Microoptics Using UV Imprinting Process with Shrinkage Compensation Method,” Jpn. J. Appl. Phys. 47(8), 6719–6722 (2008).
[CrossRef]

Kawazu, M.

Kim, H.

J. Lim, M. Choi, H. Kim, and S. Kang, “Fabrication of Hybrid Microoptics Using UV Imprinting Process with Shrinkage Compensation Method,” Jpn. J. Appl. Phys. 47(8), 6719–6722 (2008).
[CrossRef]

Lama, W.

Land, M. F.

M. F. Land, “The optical structures of animal eyes,” Curr. Biol. 15(9), R319–R323 (2005).
[CrossRef] [PubMed]

Lee, L. P.

L. P. Lee and R. Szema, “Inspirations from biological optics for advanced photonic systems,” Science 310(5751), 1148–1150 (2005).
[CrossRef] [PubMed]

Lim, J.

J. Lim, M. Choi, H. Kim, and S. Kang, “Fabrication of Hybrid Microoptics Using UV Imprinting Process with Shrinkage Compensation Method,” Jpn. J. Appl. Phys. 47(8), 6719–6722 (2008).
[CrossRef]

Lindlein, N.

N. Lindlein, “Simulation of micro-optical systems including microlens arrays,” J. Opt. A, Pure Appl. Opt. 4(4), S1–S9 (2002).
[CrossRef]

Mann, G.

P. Dannberg, G. Mann, L. Wagner, and A. Bräuer, “Polymer UV-moulding for micro-optical systems and O/E-integration,” Proc. SPIE 4179(16), 137–145 (2000).
[CrossRef]

Matthes, A.

J. Duparré, P. Schreiber, A. Matthes, E. Pshenay-Severin, A. Bräuer, and A. Tünnermann, “Microoptical telescope compound eye,” Opt. Exp. 13(3), 889–903 (2005).
[CrossRef]

Morse, L. D.

Navarro, R.

R. Navarro and N. Franceschini, “On image quality of microlens arrays in diurnal superposition eyes,” J. Opt. A, Pure Appl. Opt. 7, L69–L78 (1998).

Ogura, Y.

Popovic, Z. D.

Pshenay-Severin, E.

J. Duparré, P. Schreiber, A. Matthes, E. Pshenay-Severin, A. Bräuer, and A. Tünnermann, “Microoptical telescope compound eye,” Opt. Exp. 13(3), 889–903 (2005).
[CrossRef]

Radtke, D.

Reimann, A.

J. Duparré, F. Wippermann, P. Dannberg, and A. Reimann, “Chirped arrays of refractive ellipsoidal microlenses for aberration correction under oblique incidence,” Opt. Exp. 13(26), 10539–10551 (2005).
[CrossRef]

Rolland, J. P.

Sanders, J. S.

J. S. Sanders and C. E. Halford, “Design and analysis of apposition compound eye optical sensors,” Opt. Eng. 34(1), 222–235 (1995).
[CrossRef]

Schreiber, P.

Shaoulov, V.

Sprague, R. A.

Stevens, R. F.

C. Hembd-Sölner, R. F. Stevens, and M. C. Hutley, “Imaging properties of the Gabor Superlens,” J. Opt. A, Pure Appl. Opt. 1(1), 94–102 (1999).
[CrossRef]

Szema, R.

L. P. Lee and R. Szema, “Inspirations from biological optics for advanced photonic systems,” Science 310(5751), 1148–1150 (2005).
[CrossRef] [PubMed]

Takami, M.

Toyama, M.

Tünnermann, A.

Wagner, L.

P. Dannberg, G. Mann, L. Wagner, and A. Bräuer, “Polymer UV-moulding for micro-optical systems and O/E-integration,” Proc. SPIE 4179(16), 137–145 (2000).
[CrossRef]

Wippermann, F.

J. Duparré, F. Wippermann, P. Dannberg, and A. Reimann, “Chirped arrays of refractive ellipsoidal microlenses for aberration correction under oblique incidence,” Opt. Exp. 13(26), 10539–10551 (2005).
[CrossRef]

Appl. Opt.

Z. D. Popovic, R. A. Sprague, and G. A. N. Connell, “Technique for monolithic fabrication of microlens arrays,” Appl. Opt. 27(7), 1281–1284 (1988).
[CrossRef] [PubMed]

J. Duparré, P. Dannberg, P. Schreiber, A. Bräuer, and A. Tünnermann, “Artificial apposition compound eye fabricated by micro-optics technology,” Appl. Opt. 43(22), 4303–4310 (2004).
[CrossRef] [PubMed]

J. Duparré, P. Dannberg, P. Schreiber, A. Bräuer, and A. Tünnermann, “Thin compound-eye camera,” Appl. Opt. 44(15), 2949–2956 (2005).
[CrossRef] [PubMed]

R. H. Anderson, “Close-up imaging of documents and displays with lens arrays,” Appl. Opt. 18(4), 477–484 (1979).
[CrossRef] [PubMed]

M. Kawazu and Y. Ogura, “Application of gradient-index fiber arrays to copying machines,” Appl. Opt. 19(7), 1105–1112 (1980).
[CrossRef] [PubMed]

M. Toyama and M. Takami, “Luminous intensity of a gradient-index lens array,” Appl. Opt. 21(6), 1013–1016 (1982).
[CrossRef] [PubMed]

N. F. Borrelli, R. H. Bellman, J. A. Durbin, and W. Lama, “Imaging and radiometric properties of microlens arrays,” Appl. Opt. 30(25), 3633–3642 (1991).
[CrossRef] [PubMed]

V. Shaoulov and J. P. Rolland, “Design and assessment of microlenslet-array relay optics,” Appl. Opt. 42(34), 6838–6845 (2003).
[CrossRef] [PubMed]

J. Duparré, D. Radtke, and P. Dannberg, “Implementation of field lens arrays in beam-deflecting microlens array telescopes,” Appl. Opt. 43(25), 4854–4861 (2004).
[CrossRef] [PubMed]

N. F. Borrelli and L. D. Morse, “Microlens arrays produced by a photolytic technique,” Appl. Opt. 27(3), 476–479 (1988).
[CrossRef] [PubMed]

Curr. Biol.

M. F. Land, “The optical structures of animal eyes,” Curr. Biol. 15(9), R319–R323 (2005).
[CrossRef] [PubMed]

J. Opt. A, Pure Appl. Opt.

R. Navarro and N. Franceschini, “On image quality of microlens arrays in diurnal superposition eyes,” J. Opt. A, Pure Appl. Opt. 7, L69–L78 (1998).

C. Hembd-Sölner, R. F. Stevens, and M. C. Hutley, “Imaging properties of the Gabor Superlens,” J. Opt. A, Pure Appl. Opt. 1(1), 94–102 (1999).
[CrossRef]

N. Lindlein, “Simulation of micro-optical systems including microlens arrays,” J. Opt. A, Pure Appl. Opt. 4(4), S1–S9 (2002).
[CrossRef]

Jpn. J. Appl. Phys.

J. Lim, M. Choi, H. Kim, and S. Kang, “Fabrication of Hybrid Microoptics Using UV Imprinting Process with Shrinkage Compensation Method,” Jpn. J. Appl. Phys. 47(8), 6719–6722 (2008).
[CrossRef]

Opt. Eng.

J. S. Sanders and C. E. Halford, “Design and analysis of apposition compound eye optical sensors,” Opt. Eng. 34(1), 222–235 (1995).
[CrossRef]

Opt. Exp.

J. Duparré, F. Wippermann, P. Dannberg, and A. Reimann, “Chirped arrays of refractive ellipsoidal microlenses for aberration correction under oblique incidence,” Opt. Exp. 13(26), 10539–10551 (2005).
[CrossRef]

J. Duparré, P. Schreiber, A. Matthes, E. Pshenay-Severin, A. Bräuer, and A. Tünnermann, “Microoptical telescope compound eye,” Opt. Exp. 13(3), 889–903 (2005).
[CrossRef]

Opt. Express

Proc. SPIE

P. Dannberg, G. Mann, L. Wagner, and A. Bräuer, “Polymer UV-moulding for micro-optical systems and O/E-integration,” Proc. SPIE 4179(16), 137–145 (2000).
[CrossRef]

Sci. Am.

G. A. Horridge, “The compound eye of insects,” Sci. Am. 237, 108–120 (1977).
[CrossRef]

Science

L. P. Lee and R. Szema, “Inspirations from biological optics for advanced photonic systems,” Science 310(5751), 1148–1150 (2005).
[CrossRef] [PubMed]

Other

E. Hecht, Optics, 3rd edition (Addison-Wesley, 1994).
[PubMed]

W. J. Smith, Modern Optical Engineering, third edition (McGraw-Hill, 2000).

D. Gabor, UK Patent 541 753, (1940).

M. C. Hutley, and R. F. Stevens, “The formation of Integral Images by Afocal Pairs of Lens Arrays (“Superlens”),” IOP Short Meeting Series 30, 147–154 (Bristol: IOP Publishing, 1991).

Supplementary Material (2)

» Media 1: AVI (751 KB)     
» Media 2: AVI (2562 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

The two main types of natural compound eyes. (a) Apposition eye and (b) superposition eye. (c) Hummingbird Hawk-moth [extract of the image from “IronChris” on wikipedia.org].

Fig. 2
Fig. 2

Focusing of light by the GSL, with p and f being the pitch and focal length of the microlenses, respectively. The index denotes the first and the second MLA. Depending on the pitch difference of the two MLAs, they could form more than one GSL pattern. This results in one image formed by each GSL pattern. For infinite object distance the back focal length of the GSL is F s.

Fig. 3
Fig. 3

Notation of the parameters of the GSL.

Fig. 4
Fig. 4

Paraxial layout of the GSL for three angles of incidence (0°, 14°, 20°). The microlenses are shown as slices.

Fig. 5
Fig. 5

Layout of the ray tracing optimized Gabor Superlens. The shown field angle is zero degree.

Fig. 6
Fig. 6

(Media 1) The superposition effect. The larger the field-stop diameter the more channels superpose and due to this, the RMS-spotsize increases while the F-number decreases. (a) Layout of the GSL, (b) Spot diagram and (c) Graphs.

Fig. 7
Fig. 7

RMS-spotsize (a) versus object distance - for a constant back focal length Fs (green line) and the image in the particular focal distance (black line) – and (b) versus the angle of incidence.

Fig. 8
Fig. 8

Fabricated GSL. (a) Adjustable mounted components in front of a CCD sensor and (b) a fixed objective in comparison to a one-cent coin.

Fig. 9
Fig. 9

Setup for determining the effective focal length. A homogenous LED backlight (1) illuminates a test target with linepairs (2) that is in the focal plane of an achromatic lens (3). The GSL (4) images the object (linepairs) on an image sensor (5). The height of the object hobj and the corresponding height on the image sensor himg are measured.

Fig. 10
Fig. 10

Setup for determining the diameter of the effective entrance pupil. A homogenous LED backlight (1) illuminates the GSL (2) from the backside. An achromatic lens (3), in a telecentric configuration with an iris diaphragm (4) (i.e. the iris diaphragm is in the focal plane of the achromatic lens), images the effective entrance pupil on a image sensor (5) where the area Aimg is measured.

Fig. 11
Fig. 11

Contrast Transfer Function as a function of (a) the spatial frequency and (b) the field angle. The black solid line shows a simulation of the GSL, which is optimized to have a good average resolution over the entire field of view. The blue dashed line represents the simulation of a system, which is optimized for on-axis performance and the green solid line shows the experimental results.

Fig. 12
Fig. 12

Field dependent vignetting. The experimental data is represented by the green line and the simulation by the black line.

Fig. 13
Fig. 13

Test targets imaged by the GSL. (a) Radial star target with 52 spokes, (b) 5×5 radial star target array each with 20 spokes, (c) 3×3 array of a USAF1951 test target, (d) bar target with 30 linepairs per millimeter in image space, (e) Lena using a color image sensor and (f) the author (Media 2).

Tables (2)

Tables Icon

Table 1 Technology steps for microlens fabrication [25].

Tables Icon

Table 2 Comparison of the parameters of the simulated and the fabricated GSL.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

FS=f2p1p1p2,
si=f2p1soso(p1p2)+p2f1,
(houtαout1)=Msys(hinαin1),Msys=(M11M12M13M21M22M23001),
FS=(f1G)f2f1+f2G.
B=2αmaxf2(FSGf2GFSf2),
fGSL=fAchrhimghobj.
DEPGSL=AEPGSL4π,AEPGSL=AEPPHAimgGSLAimgPH.

Metrics