Abstract

Optically deformable membranes and cantilevers based on azobenzene liquid crystal polymer networks (azo-LCN) are demonstrated in the context of dynamic optical systems. Large modulations in laser beam propagation direction or amplitude directed by laser-induced changes in material shape are demonstrated. These macroscopic shape changes are induced by local changes to the liquid crystalline order induced by photoisomerization processes. We demonstrate herein a number of concepts including the focusing and defocusing action of an azo-LCN membrane, laser beam steering from a bimorph azo-LCN/metal cantilever, and surface initiated bending and blocking of a parallel propagating laser beam. High speed and large angle deformations of an incident or reference beam is demonstrated when coupled into suitable optical architectures. The concepts under discussion appear to be highly practical for a number of applications due to the significant nonlinearity and photosensitivity of azo-LCN materials.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Nonlinear Transmission of Photosensitive Cholesteric Liquid Crystals Due to Spectral Bandwidth Auto-Tuning or Restoration,” J. Nonlinear Opt. Phys. Mater. 16(04), 471–483 (2007).
    [CrossRef]
  2. N. Tabiryan, U. Hrozhyk, and S. Serak, “Nonlinear refraction in photoinduced isotropic state of liquid crystalline azobenzenes,” Phys. Rev. Lett. 93(11), 113901 (2004).
    [CrossRef] [PubMed]
  3. N. V. Tabiryan, S. V. Serak, and V. A. Grozhik, “Photoinduced critical opalescence and reversible all-optical switching in photosensitive liquid crystals,” J. Opt. Soc. Am. B 20(3), 538–544 (2003).
    [CrossRef]
  4. I. C. Khoo, “Nonlinear optics of liquid crystalline materials,” Phys. Rep. 471(5-6), 221–267 (2009).
    [CrossRef]
  5. I. C. Khoo, M. V. Wood, P. Chen, M.-Y. Shih, and B. D. Guenther, “Self-defocusing and optical limiting of nanowatt cw laser and image processing at micro Watt/cm2 intensity with nematic liquid crystals,” Proc. SPIE 3475, 143–149 (1998).
    [CrossRef]
  6. S. V. Serak, and N. V. Tabiryan, “Microwatt power optically controlled spatial solitons in azobenzene liquid crystal,” Proc. SPIE 6332, 63320Y/63321–63320Y/63313 (2006).
  7. N. K. Viswanathan, D. U. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, and S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9(9), 1941–1955 (1999).
    [CrossRef]
  8. Y. Yu, M. Nakano, and T. Ikeda, “Photomechanics: directed bending of a polymer film by light,” Nature 425(6954), 145 (2003).
    [CrossRef] [PubMed]
  9. Y. Yu, M. Nakano, A. Shishido, T. Shiono, and T. Ikeda, “Effect of Cross-linking Density on Photoinduced Bending Behavior of Oriented Liquid-Crystalline Network Films Containing Azobenzene,” Chem. Mater. 16(9), 1637–1643 (2004).
    [CrossRef]
  10. K. D. Harris, R. Cuypers, P. Scheibe, C. L. van Oosten, C. W. M. Bastiaansen, J. Lub, and D. J. Broer, “Large amplitude light-induced motion in high elastic modulus polymer actuators,” J. Mater. Chem. 15(47), 5043–5048 (2005).
    [CrossRef]
  11. C. L. van Oosten, D. Corbett, D. Davies, M. Warner, C. W. M. Bastiaansen, and D. J. Broer, “Bending Dynamics and Directionality Reversal in Liquid Crystal Network Photoactuators,” Macromolecules 41(22), 8592–8596 (2008).
    [CrossRef]
  12. C. L. van Oosten, K. D. Harris, C. W. M. Bastiaansen, and D. J. Broer, ““Glassy photomechanical liquid-crystal network actuators for microscale devices,” E. Phys. J. E: Soft Matter 23(3), 329–336 (2007).
    [CrossRef]
  13. T. Ikeda, M. Nakano, Y. Yu, O. Tsutsumi, and A. Kanazawa, “Anisotropic bending and unbending behavior of azobenzene liquid-crystalline gels by light exposure,” Adv. Mater. 15(3), 201–205 (2003).
    [CrossRef]
  14. Y. Yu and T. Ikeda, “Alignment modulation of azobenzene-containing liquid crystal systems by photochemical reactions,” J. Photochem. Photobiol. 5(3), 247–265 (2004).
    [CrossRef]
  15. Y. Yu, M. Nakano, and T. Ikeda, “Photoinduced bending and unbending behavior of liquid-crystalline gels and elastomers,” Pure Appl. Chem. 76(7-8), 1467–1477 (2004).
    [CrossRef]
  16. C. L. van Oosten, K. D. Harris, C. W. M. Bastiaansen, and D. J. Broer, “Glassy photomechanical liquid-crystal network actuators for microscale devices,” Eur Phys J E Soft Matter 23(3), 329–336 (2007).
    [CrossRef] [PubMed]
  17. N. Tabiryan, S. Serak, X.-M. Dai, and T. Bunning, “Polymer film with optically controlled form and actuation,” Opt. Express 13(19), 7442–7448 (2005).
    [CrossRef] [PubMed]
  18. T. J. White, J. J. Koval, V. P. Tondiglia, L. V. Natarajan, R. A. Vaia, S. Serak, V. Grozhik, N. Tabirian, and T. J. Bunning, “Polarization dependent photoactuation in azobenzene LC polymers,” Proc. SPIE 6654, 665403/665401–665403/665405 (2007).
  19. U. Hrozhyk, S. Serak, N. Tabiryan, T. J. White, and T. J. Bunning, “Bidirectional photoresponse of surface pretreated azobenzene liquid crystal polymer networks,” Opt. Express 17(2), 716–722 (2009).
    [CrossRef] [PubMed]
  20. T. J. White, S. V. Serak, N. V. Tabiryan, R. A. Vaia, and T. J. Bunning, “Polarization-controlled, photodriven bending in monodomain liquid crystal elastomer cantilevers,” J. Mater. Chem. 19(8), 1080–1085 (2009).
    [CrossRef]
  21. N. Tabiryan, S. Serak, X.-M. Dai, and T. Bunning, “Polymer film with optically controlled form and actuation,” Opt. Photon. News 13, 40 (2006).

2009

I. C. Khoo, “Nonlinear optics of liquid crystalline materials,” Phys. Rep. 471(5-6), 221–267 (2009).
[CrossRef]

U. Hrozhyk, S. Serak, N. Tabiryan, T. J. White, and T. J. Bunning, “Bidirectional photoresponse of surface pretreated azobenzene liquid crystal polymer networks,” Opt. Express 17(2), 716–722 (2009).
[CrossRef] [PubMed]

T. J. White, S. V. Serak, N. V. Tabiryan, R. A. Vaia, and T. J. Bunning, “Polarization-controlled, photodriven bending in monodomain liquid crystal elastomer cantilevers,” J. Mater. Chem. 19(8), 1080–1085 (2009).
[CrossRef]

2008

C. L. van Oosten, D. Corbett, D. Davies, M. Warner, C. W. M. Bastiaansen, and D. J. Broer, “Bending Dynamics and Directionality Reversal in Liquid Crystal Network Photoactuators,” Macromolecules 41(22), 8592–8596 (2008).
[CrossRef]

2007

C. L. van Oosten, K. D. Harris, C. W. M. Bastiaansen, and D. J. Broer, ““Glassy photomechanical liquid-crystal network actuators for microscale devices,” E. Phys. J. E: Soft Matter 23(3), 329–336 (2007).
[CrossRef]

C. L. van Oosten, K. D. Harris, C. W. M. Bastiaansen, and D. J. Broer, “Glassy photomechanical liquid-crystal network actuators for microscale devices,” Eur Phys J E Soft Matter 23(3), 329–336 (2007).
[CrossRef] [PubMed]

S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Nonlinear Transmission of Photosensitive Cholesteric Liquid Crystals Due to Spectral Bandwidth Auto-Tuning or Restoration,” J. Nonlinear Opt. Phys. Mater. 16(04), 471–483 (2007).
[CrossRef]

2006

N. Tabiryan, S. Serak, X.-M. Dai, and T. Bunning, “Polymer film with optically controlled form and actuation,” Opt. Photon. News 13, 40 (2006).

2005

N. Tabiryan, S. Serak, X.-M. Dai, and T. Bunning, “Polymer film with optically controlled form and actuation,” Opt. Express 13(19), 7442–7448 (2005).
[CrossRef] [PubMed]

K. D. Harris, R. Cuypers, P. Scheibe, C. L. van Oosten, C. W. M. Bastiaansen, J. Lub, and D. J. Broer, “Large amplitude light-induced motion in high elastic modulus polymer actuators,” J. Mater. Chem. 15(47), 5043–5048 (2005).
[CrossRef]

2004

Y. Yu, M. Nakano, A. Shishido, T. Shiono, and T. Ikeda, “Effect of Cross-linking Density on Photoinduced Bending Behavior of Oriented Liquid-Crystalline Network Films Containing Azobenzene,” Chem. Mater. 16(9), 1637–1643 (2004).
[CrossRef]

N. Tabiryan, U. Hrozhyk, and S. Serak, “Nonlinear refraction in photoinduced isotropic state of liquid crystalline azobenzenes,” Phys. Rev. Lett. 93(11), 113901 (2004).
[CrossRef] [PubMed]

Y. Yu and T. Ikeda, “Alignment modulation of azobenzene-containing liquid crystal systems by photochemical reactions,” J. Photochem. Photobiol. 5(3), 247–265 (2004).
[CrossRef]

Y. Yu, M. Nakano, and T. Ikeda, “Photoinduced bending and unbending behavior of liquid-crystalline gels and elastomers,” Pure Appl. Chem. 76(7-8), 1467–1477 (2004).
[CrossRef]

2003

T. Ikeda, M. Nakano, Y. Yu, O. Tsutsumi, and A. Kanazawa, “Anisotropic bending and unbending behavior of azobenzene liquid-crystalline gels by light exposure,” Adv. Mater. 15(3), 201–205 (2003).
[CrossRef]

N. V. Tabiryan, S. V. Serak, and V. A. Grozhik, “Photoinduced critical opalescence and reversible all-optical switching in photosensitive liquid crystals,” J. Opt. Soc. Am. B 20(3), 538–544 (2003).
[CrossRef]

Y. Yu, M. Nakano, and T. Ikeda, “Photomechanics: directed bending of a polymer film by light,” Nature 425(6954), 145 (2003).
[CrossRef] [PubMed]

1999

N. K. Viswanathan, D. U. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, and S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9(9), 1941–1955 (1999).
[CrossRef]

1998

I. C. Khoo, M. V. Wood, P. Chen, M.-Y. Shih, and B. D. Guenther, “Self-defocusing and optical limiting of nanowatt cw laser and image processing at micro Watt/cm2 intensity with nematic liquid crystals,” Proc. SPIE 3475, 143–149 (1998).
[CrossRef]

Bastiaansen, C. W. M.

C. L. van Oosten, D. Corbett, D. Davies, M. Warner, C. W. M. Bastiaansen, and D. J. Broer, “Bending Dynamics and Directionality Reversal in Liquid Crystal Network Photoactuators,” Macromolecules 41(22), 8592–8596 (2008).
[CrossRef]

C. L. van Oosten, K. D. Harris, C. W. M. Bastiaansen, and D. J. Broer, ““Glassy photomechanical liquid-crystal network actuators for microscale devices,” E. Phys. J. E: Soft Matter 23(3), 329–336 (2007).
[CrossRef]

C. L. van Oosten, K. D. Harris, C. W. M. Bastiaansen, and D. J. Broer, “Glassy photomechanical liquid-crystal network actuators for microscale devices,” Eur Phys J E Soft Matter 23(3), 329–336 (2007).
[CrossRef] [PubMed]

K. D. Harris, R. Cuypers, P. Scheibe, C. L. van Oosten, C. W. M. Bastiaansen, J. Lub, and D. J. Broer, “Large amplitude light-induced motion in high elastic modulus polymer actuators,” J. Mater. Chem. 15(47), 5043–5048 (2005).
[CrossRef]

Bian, S.

N. K. Viswanathan, D. U. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, and S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9(9), 1941–1955 (1999).
[CrossRef]

Broer, D. J.

C. L. van Oosten, D. Corbett, D. Davies, M. Warner, C. W. M. Bastiaansen, and D. J. Broer, “Bending Dynamics and Directionality Reversal in Liquid Crystal Network Photoactuators,” Macromolecules 41(22), 8592–8596 (2008).
[CrossRef]

C. L. van Oosten, K. D. Harris, C. W. M. Bastiaansen, and D. J. Broer, ““Glassy photomechanical liquid-crystal network actuators for microscale devices,” E. Phys. J. E: Soft Matter 23(3), 329–336 (2007).
[CrossRef]

C. L. van Oosten, K. D. Harris, C. W. M. Bastiaansen, and D. J. Broer, “Glassy photomechanical liquid-crystal network actuators for microscale devices,” Eur Phys J E Soft Matter 23(3), 329–336 (2007).
[CrossRef] [PubMed]

K. D. Harris, R. Cuypers, P. Scheibe, C. L. van Oosten, C. W. M. Bastiaansen, J. Lub, and D. J. Broer, “Large amplitude light-induced motion in high elastic modulus polymer actuators,” J. Mater. Chem. 15(47), 5043–5048 (2005).
[CrossRef]

Bunning, T.

N. Tabiryan, S. Serak, X.-M. Dai, and T. Bunning, “Polymer film with optically controlled form and actuation,” Opt. Photon. News 13, 40 (2006).

N. Tabiryan, S. Serak, X.-M. Dai, and T. Bunning, “Polymer film with optically controlled form and actuation,” Opt. Express 13(19), 7442–7448 (2005).
[CrossRef] [PubMed]

Bunning, T. J.

U. Hrozhyk, S. Serak, N. Tabiryan, T. J. White, and T. J. Bunning, “Bidirectional photoresponse of surface pretreated azobenzene liquid crystal polymer networks,” Opt. Express 17(2), 716–722 (2009).
[CrossRef] [PubMed]

T. J. White, S. V. Serak, N. V. Tabiryan, R. A. Vaia, and T. J. Bunning, “Polarization-controlled, photodriven bending in monodomain liquid crystal elastomer cantilevers,” J. Mater. Chem. 19(8), 1080–1085 (2009).
[CrossRef]

S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Nonlinear Transmission of Photosensitive Cholesteric Liquid Crystals Due to Spectral Bandwidth Auto-Tuning or Restoration,” J. Nonlinear Opt. Phys. Mater. 16(04), 471–483 (2007).
[CrossRef]

Chen, P.

I. C. Khoo, M. V. Wood, P. Chen, M.-Y. Shih, and B. D. Guenther, “Self-defocusing and optical limiting of nanowatt cw laser and image processing at micro Watt/cm2 intensity with nematic liquid crystals,” Proc. SPIE 3475, 143–149 (1998).
[CrossRef]

Corbett, D.

C. L. van Oosten, D. Corbett, D. Davies, M. Warner, C. W. M. Bastiaansen, and D. J. Broer, “Bending Dynamics and Directionality Reversal in Liquid Crystal Network Photoactuators,” Macromolecules 41(22), 8592–8596 (2008).
[CrossRef]

Cuypers, R.

K. D. Harris, R. Cuypers, P. Scheibe, C. L. van Oosten, C. W. M. Bastiaansen, J. Lub, and D. J. Broer, “Large amplitude light-induced motion in high elastic modulus polymer actuators,” J. Mater. Chem. 15(47), 5043–5048 (2005).
[CrossRef]

Dai, X.-M.

N. Tabiryan, S. Serak, X.-M. Dai, and T. Bunning, “Polymer film with optically controlled form and actuation,” Opt. Photon. News 13, 40 (2006).

N. Tabiryan, S. Serak, X.-M. Dai, and T. Bunning, “Polymer film with optically controlled form and actuation,” Opt. Express 13(19), 7442–7448 (2005).
[CrossRef] [PubMed]

Davies, D.

C. L. van Oosten, D. Corbett, D. Davies, M. Warner, C. W. M. Bastiaansen, and D. J. Broer, “Bending Dynamics and Directionality Reversal in Liquid Crystal Network Photoactuators,” Macromolecules 41(22), 8592–8596 (2008).
[CrossRef]

Grozhik, V. A.

Guenther, B. D.

I. C. Khoo, M. V. Wood, P. Chen, M.-Y. Shih, and B. D. Guenther, “Self-defocusing and optical limiting of nanowatt cw laser and image processing at micro Watt/cm2 intensity with nematic liquid crystals,” Proc. SPIE 3475, 143–149 (1998).
[CrossRef]

Harris, K. D.

C. L. van Oosten, K. D. Harris, C. W. M. Bastiaansen, and D. J. Broer, ““Glassy photomechanical liquid-crystal network actuators for microscale devices,” E. Phys. J. E: Soft Matter 23(3), 329–336 (2007).
[CrossRef]

C. L. van Oosten, K. D. Harris, C. W. M. Bastiaansen, and D. J. Broer, “Glassy photomechanical liquid-crystal network actuators for microscale devices,” Eur Phys J E Soft Matter 23(3), 329–336 (2007).
[CrossRef] [PubMed]

K. D. Harris, R. Cuypers, P. Scheibe, C. L. van Oosten, C. W. M. Bastiaansen, J. Lub, and D. J. Broer, “Large amplitude light-induced motion in high elastic modulus polymer actuators,” J. Mater. Chem. 15(47), 5043–5048 (2005).
[CrossRef]

Hrozhyk, U.

U. Hrozhyk, S. Serak, N. Tabiryan, T. J. White, and T. J. Bunning, “Bidirectional photoresponse of surface pretreated azobenzene liquid crystal polymer networks,” Opt. Express 17(2), 716–722 (2009).
[CrossRef] [PubMed]

N. Tabiryan, U. Hrozhyk, and S. Serak, “Nonlinear refraction in photoinduced isotropic state of liquid crystalline azobenzenes,” Phys. Rev. Lett. 93(11), 113901 (2004).
[CrossRef] [PubMed]

Ikeda, T.

Y. Yu, M. Nakano, A. Shishido, T. Shiono, and T. Ikeda, “Effect of Cross-linking Density on Photoinduced Bending Behavior of Oriented Liquid-Crystalline Network Films Containing Azobenzene,” Chem. Mater. 16(9), 1637–1643 (2004).
[CrossRef]

Y. Yu, M. Nakano, and T. Ikeda, “Photoinduced bending and unbending behavior of liquid-crystalline gels and elastomers,” Pure Appl. Chem. 76(7-8), 1467–1477 (2004).
[CrossRef]

Y. Yu and T. Ikeda, “Alignment modulation of azobenzene-containing liquid crystal systems by photochemical reactions,” J. Photochem. Photobiol. 5(3), 247–265 (2004).
[CrossRef]

T. Ikeda, M. Nakano, Y. Yu, O. Tsutsumi, and A. Kanazawa, “Anisotropic bending and unbending behavior of azobenzene liquid-crystalline gels by light exposure,” Adv. Mater. 15(3), 201–205 (2003).
[CrossRef]

Y. Yu, M. Nakano, and T. Ikeda, “Photomechanics: directed bending of a polymer film by light,” Nature 425(6954), 145 (2003).
[CrossRef] [PubMed]

Kanazawa, A.

T. Ikeda, M. Nakano, Y. Yu, O. Tsutsumi, and A. Kanazawa, “Anisotropic bending and unbending behavior of azobenzene liquid-crystalline gels by light exposure,” Adv. Mater. 15(3), 201–205 (2003).
[CrossRef]

Khoo, I. C.

I. C. Khoo, “Nonlinear optics of liquid crystalline materials,” Phys. Rep. 471(5-6), 221–267 (2009).
[CrossRef]

I. C. Khoo, M. V. Wood, P. Chen, M.-Y. Shih, and B. D. Guenther, “Self-defocusing and optical limiting of nanowatt cw laser and image processing at micro Watt/cm2 intensity with nematic liquid crystals,” Proc. SPIE 3475, 143–149 (1998).
[CrossRef]

Kim, D. U.

N. K. Viswanathan, D. U. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, and S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9(9), 1941–1955 (1999).
[CrossRef]

Kumar, J.

N. K. Viswanathan, D. U. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, and S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9(9), 1941–1955 (1999).
[CrossRef]

Li, L.

N. K. Viswanathan, D. U. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, and S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9(9), 1941–1955 (1999).
[CrossRef]

Liu, W.

N. K. Viswanathan, D. U. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, and S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9(9), 1941–1955 (1999).
[CrossRef]

Lub, J.

K. D. Harris, R. Cuypers, P. Scheibe, C. L. van Oosten, C. W. M. Bastiaansen, J. Lub, and D. J. Broer, “Large amplitude light-induced motion in high elastic modulus polymer actuators,” J. Mater. Chem. 15(47), 5043–5048 (2005).
[CrossRef]

Nakano, M.

Y. Yu, M. Nakano, and T. Ikeda, “Photoinduced bending and unbending behavior of liquid-crystalline gels and elastomers,” Pure Appl. Chem. 76(7-8), 1467–1477 (2004).
[CrossRef]

Y. Yu, M. Nakano, A. Shishido, T. Shiono, and T. Ikeda, “Effect of Cross-linking Density on Photoinduced Bending Behavior of Oriented Liquid-Crystalline Network Films Containing Azobenzene,” Chem. Mater. 16(9), 1637–1643 (2004).
[CrossRef]

Y. Yu, M. Nakano, and T. Ikeda, “Photomechanics: directed bending of a polymer film by light,” Nature 425(6954), 145 (2003).
[CrossRef] [PubMed]

T. Ikeda, M. Nakano, Y. Yu, O. Tsutsumi, and A. Kanazawa, “Anisotropic bending and unbending behavior of azobenzene liquid-crystalline gels by light exposure,” Adv. Mater. 15(3), 201–205 (2003).
[CrossRef]

Samuelson, L.

N. K. Viswanathan, D. U. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, and S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9(9), 1941–1955 (1999).
[CrossRef]

Scheibe, P.

K. D. Harris, R. Cuypers, P. Scheibe, C. L. van Oosten, C. W. M. Bastiaansen, J. Lub, and D. J. Broer, “Large amplitude light-induced motion in high elastic modulus polymer actuators,” J. Mater. Chem. 15(47), 5043–5048 (2005).
[CrossRef]

Serak, S.

U. Hrozhyk, S. Serak, N. Tabiryan, T. J. White, and T. J. Bunning, “Bidirectional photoresponse of surface pretreated azobenzene liquid crystal polymer networks,” Opt. Express 17(2), 716–722 (2009).
[CrossRef] [PubMed]

N. Tabiryan, S. Serak, X.-M. Dai, and T. Bunning, “Polymer film with optically controlled form and actuation,” Opt. Photon. News 13, 40 (2006).

N. Tabiryan, S. Serak, X.-M. Dai, and T. Bunning, “Polymer film with optically controlled form and actuation,” Opt. Express 13(19), 7442–7448 (2005).
[CrossRef] [PubMed]

N. Tabiryan, U. Hrozhyk, and S. Serak, “Nonlinear refraction in photoinduced isotropic state of liquid crystalline azobenzenes,” Phys. Rev. Lett. 93(11), 113901 (2004).
[CrossRef] [PubMed]

Serak, S. V.

T. J. White, S. V. Serak, N. V. Tabiryan, R. A. Vaia, and T. J. Bunning, “Polarization-controlled, photodriven bending in monodomain liquid crystal elastomer cantilevers,” J. Mater. Chem. 19(8), 1080–1085 (2009).
[CrossRef]

S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Nonlinear Transmission of Photosensitive Cholesteric Liquid Crystals Due to Spectral Bandwidth Auto-Tuning or Restoration,” J. Nonlinear Opt. Phys. Mater. 16(04), 471–483 (2007).
[CrossRef]

N. V. Tabiryan, S. V. Serak, and V. A. Grozhik, “Photoinduced critical opalescence and reversible all-optical switching in photosensitive liquid crystals,” J. Opt. Soc. Am. B 20(3), 538–544 (2003).
[CrossRef]

Shih, M.-Y.

I. C. Khoo, M. V. Wood, P. Chen, M.-Y. Shih, and B. D. Guenther, “Self-defocusing and optical limiting of nanowatt cw laser and image processing at micro Watt/cm2 intensity with nematic liquid crystals,” Proc. SPIE 3475, 143–149 (1998).
[CrossRef]

Shiono, T.

Y. Yu, M. Nakano, A. Shishido, T. Shiono, and T. Ikeda, “Effect of Cross-linking Density on Photoinduced Bending Behavior of Oriented Liquid-Crystalline Network Films Containing Azobenzene,” Chem. Mater. 16(9), 1637–1643 (2004).
[CrossRef]

Shishido, A.

Y. Yu, M. Nakano, A. Shishido, T. Shiono, and T. Ikeda, “Effect of Cross-linking Density on Photoinduced Bending Behavior of Oriented Liquid-Crystalline Network Films Containing Azobenzene,” Chem. Mater. 16(9), 1637–1643 (2004).
[CrossRef]

Tabiryan, N.

U. Hrozhyk, S. Serak, N. Tabiryan, T. J. White, and T. J. Bunning, “Bidirectional photoresponse of surface pretreated azobenzene liquid crystal polymer networks,” Opt. Express 17(2), 716–722 (2009).
[CrossRef] [PubMed]

N. Tabiryan, S. Serak, X.-M. Dai, and T. Bunning, “Polymer film with optically controlled form and actuation,” Opt. Photon. News 13, 40 (2006).

N. Tabiryan, S. Serak, X.-M. Dai, and T. Bunning, “Polymer film with optically controlled form and actuation,” Opt. Express 13(19), 7442–7448 (2005).
[CrossRef] [PubMed]

N. Tabiryan, U. Hrozhyk, and S. Serak, “Nonlinear refraction in photoinduced isotropic state of liquid crystalline azobenzenes,” Phys. Rev. Lett. 93(11), 113901 (2004).
[CrossRef] [PubMed]

Tabiryan, N. V.

T. J. White, S. V. Serak, N. V. Tabiryan, R. A. Vaia, and T. J. Bunning, “Polarization-controlled, photodriven bending in monodomain liquid crystal elastomer cantilevers,” J. Mater. Chem. 19(8), 1080–1085 (2009).
[CrossRef]

S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Nonlinear Transmission of Photosensitive Cholesteric Liquid Crystals Due to Spectral Bandwidth Auto-Tuning or Restoration,” J. Nonlinear Opt. Phys. Mater. 16(04), 471–483 (2007).
[CrossRef]

N. V. Tabiryan, S. V. Serak, and V. A. Grozhik, “Photoinduced critical opalescence and reversible all-optical switching in photosensitive liquid crystals,” J. Opt. Soc. Am. B 20(3), 538–544 (2003).
[CrossRef]

Tripathy, S. K.

N. K. Viswanathan, D. U. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, and S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9(9), 1941–1955 (1999).
[CrossRef]

Tsutsumi, O.

T. Ikeda, M. Nakano, Y. Yu, O. Tsutsumi, and A. Kanazawa, “Anisotropic bending and unbending behavior of azobenzene liquid-crystalline gels by light exposure,” Adv. Mater. 15(3), 201–205 (2003).
[CrossRef]

Vaia, R. A.

T. J. White, S. V. Serak, N. V. Tabiryan, R. A. Vaia, and T. J. Bunning, “Polarization-controlled, photodriven bending in monodomain liquid crystal elastomer cantilevers,” J. Mater. Chem. 19(8), 1080–1085 (2009).
[CrossRef]

van Oosten, C. L.

C. L. van Oosten, D. Corbett, D. Davies, M. Warner, C. W. M. Bastiaansen, and D. J. Broer, “Bending Dynamics and Directionality Reversal in Liquid Crystal Network Photoactuators,” Macromolecules 41(22), 8592–8596 (2008).
[CrossRef]

C. L. van Oosten, K. D. Harris, C. W. M. Bastiaansen, and D. J. Broer, ““Glassy photomechanical liquid-crystal network actuators for microscale devices,” E. Phys. J. E: Soft Matter 23(3), 329–336 (2007).
[CrossRef]

C. L. van Oosten, K. D. Harris, C. W. M. Bastiaansen, and D. J. Broer, “Glassy photomechanical liquid-crystal network actuators for microscale devices,” Eur Phys J E Soft Matter 23(3), 329–336 (2007).
[CrossRef] [PubMed]

K. D. Harris, R. Cuypers, P. Scheibe, C. L. van Oosten, C. W. M. Bastiaansen, J. Lub, and D. J. Broer, “Large amplitude light-induced motion in high elastic modulus polymer actuators,” J. Mater. Chem. 15(47), 5043–5048 (2005).
[CrossRef]

Viswanathan, N. K.

N. K. Viswanathan, D. U. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, and S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9(9), 1941–1955 (1999).
[CrossRef]

Warner, M.

C. L. van Oosten, D. Corbett, D. Davies, M. Warner, C. W. M. Bastiaansen, and D. J. Broer, “Bending Dynamics and Directionality Reversal in Liquid Crystal Network Photoactuators,” Macromolecules 41(22), 8592–8596 (2008).
[CrossRef]

White, T. J.

U. Hrozhyk, S. Serak, N. Tabiryan, T. J. White, and T. J. Bunning, “Bidirectional photoresponse of surface pretreated azobenzene liquid crystal polymer networks,” Opt. Express 17(2), 716–722 (2009).
[CrossRef] [PubMed]

T. J. White, S. V. Serak, N. V. Tabiryan, R. A. Vaia, and T. J. Bunning, “Polarization-controlled, photodriven bending in monodomain liquid crystal elastomer cantilevers,” J. Mater. Chem. 19(8), 1080–1085 (2009).
[CrossRef]

Williams, J.

N. K. Viswanathan, D. U. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, and S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9(9), 1941–1955 (1999).
[CrossRef]

Wood, M. V.

I. C. Khoo, M. V. Wood, P. Chen, M.-Y. Shih, and B. D. Guenther, “Self-defocusing and optical limiting of nanowatt cw laser and image processing at micro Watt/cm2 intensity with nematic liquid crystals,” Proc. SPIE 3475, 143–149 (1998).
[CrossRef]

Yu, Y.

Y. Yu, M. Nakano, A. Shishido, T. Shiono, and T. Ikeda, “Effect of Cross-linking Density on Photoinduced Bending Behavior of Oriented Liquid-Crystalline Network Films Containing Azobenzene,” Chem. Mater. 16(9), 1637–1643 (2004).
[CrossRef]

Y. Yu, M. Nakano, and T. Ikeda, “Photoinduced bending and unbending behavior of liquid-crystalline gels and elastomers,” Pure Appl. Chem. 76(7-8), 1467–1477 (2004).
[CrossRef]

Y. Yu and T. Ikeda, “Alignment modulation of azobenzene-containing liquid crystal systems by photochemical reactions,” J. Photochem. Photobiol. 5(3), 247–265 (2004).
[CrossRef]

T. Ikeda, M. Nakano, Y. Yu, O. Tsutsumi, and A. Kanazawa, “Anisotropic bending and unbending behavior of azobenzene liquid-crystalline gels by light exposure,” Adv. Mater. 15(3), 201–205 (2003).
[CrossRef]

Y. Yu, M. Nakano, and T. Ikeda, “Photomechanics: directed bending of a polymer film by light,” Nature 425(6954), 145 (2003).
[CrossRef] [PubMed]

Adv. Mater.

T. Ikeda, M. Nakano, Y. Yu, O. Tsutsumi, and A. Kanazawa, “Anisotropic bending and unbending behavior of azobenzene liquid-crystalline gels by light exposure,” Adv. Mater. 15(3), 201–205 (2003).
[CrossRef]

Chem. Mater.

Y. Yu, M. Nakano, A. Shishido, T. Shiono, and T. Ikeda, “Effect of Cross-linking Density on Photoinduced Bending Behavior of Oriented Liquid-Crystalline Network Films Containing Azobenzene,” Chem. Mater. 16(9), 1637–1643 (2004).
[CrossRef]

E. Phys. J. E: Soft Matter

C. L. van Oosten, K. D. Harris, C. W. M. Bastiaansen, and D. J. Broer, ““Glassy photomechanical liquid-crystal network actuators for microscale devices,” E. Phys. J. E: Soft Matter 23(3), 329–336 (2007).
[CrossRef]

Eur Phys J E Soft Matter

C. L. van Oosten, K. D. Harris, C. W. M. Bastiaansen, and D. J. Broer, “Glassy photomechanical liquid-crystal network actuators for microscale devices,” Eur Phys J E Soft Matter 23(3), 329–336 (2007).
[CrossRef] [PubMed]

J. Mater. Chem.

K. D. Harris, R. Cuypers, P. Scheibe, C. L. van Oosten, C. W. M. Bastiaansen, J. Lub, and D. J. Broer, “Large amplitude light-induced motion in high elastic modulus polymer actuators,” J. Mater. Chem. 15(47), 5043–5048 (2005).
[CrossRef]

N. K. Viswanathan, D. U. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, and S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9(9), 1941–1955 (1999).
[CrossRef]

T. J. White, S. V. Serak, N. V. Tabiryan, R. A. Vaia, and T. J. Bunning, “Polarization-controlled, photodriven bending in monodomain liquid crystal elastomer cantilevers,” J. Mater. Chem. 19(8), 1080–1085 (2009).
[CrossRef]

J. Nonlinear Opt. Phys. Mater.

S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Nonlinear Transmission of Photosensitive Cholesteric Liquid Crystals Due to Spectral Bandwidth Auto-Tuning or Restoration,” J. Nonlinear Opt. Phys. Mater. 16(04), 471–483 (2007).
[CrossRef]

J. Opt. Soc. Am. B

J. Photochem. Photobiol.

Y. Yu and T. Ikeda, “Alignment modulation of azobenzene-containing liquid crystal systems by photochemical reactions,” J. Photochem. Photobiol. 5(3), 247–265 (2004).
[CrossRef]

Macromolecules

C. L. van Oosten, D. Corbett, D. Davies, M. Warner, C. W. M. Bastiaansen, and D. J. Broer, “Bending Dynamics and Directionality Reversal in Liquid Crystal Network Photoactuators,” Macromolecules 41(22), 8592–8596 (2008).
[CrossRef]

Nature

Y. Yu, M. Nakano, and T. Ikeda, “Photomechanics: directed bending of a polymer film by light,” Nature 425(6954), 145 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Photon. News

N. Tabiryan, S. Serak, X.-M. Dai, and T. Bunning, “Polymer film with optically controlled form and actuation,” Opt. Photon. News 13, 40 (2006).

Phys. Rep.

I. C. Khoo, “Nonlinear optics of liquid crystalline materials,” Phys. Rep. 471(5-6), 221–267 (2009).
[CrossRef]

Phys. Rev. Lett.

N. Tabiryan, U. Hrozhyk, and S. Serak, “Nonlinear refraction in photoinduced isotropic state of liquid crystalline azobenzenes,” Phys. Rev. Lett. 93(11), 113901 (2004).
[CrossRef] [PubMed]

Proc. SPIE

I. C. Khoo, M. V. Wood, P. Chen, M.-Y. Shih, and B. D. Guenther, “Self-defocusing and optical limiting of nanowatt cw laser and image processing at micro Watt/cm2 intensity with nematic liquid crystals,” Proc. SPIE 3475, 143–149 (1998).
[CrossRef]

Pure Appl. Chem.

Y. Yu, M. Nakano, and T. Ikeda, “Photoinduced bending and unbending behavior of liquid-crystalline gels and elastomers,” Pure Appl. Chem. 76(7-8), 1467–1477 (2004).
[CrossRef]

Other

T. J. White, J. J. Koval, V. P. Tondiglia, L. V. Natarajan, R. A. Vaia, S. Serak, V. Grozhik, N. Tabirian, and T. J. Bunning, “Polarization dependent photoactuation in azobenzene LC polymers,” Proc. SPIE 6654, 665403/665401–665403/665405 (2007).

S. V. Serak, and N. V. Tabiryan, “Microwatt power optically controlled spatial solitons in azobenzene liquid crystal,” Proc. SPIE 6332, 63320Y/63321–63320Y/63313 (2006).

Supplementary Material (3)

» Media 1: MPG (5100 KB)     
» Media 2: MPG (3886 KB)     
» Media 3: MPG (2400 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

The concept of using reflective azo-LCN components for designing optical systems with photoresponsive features: (a) reflection of a low power light from an undistorted azo-LCN membrane; (b) reflection of higher power light from a distorted azo-LCN membrane; (c) reflection of a low power light by an azo-LCN cantilever into the optical system comprising a mirror; (d) deflection of a high power light from an optical system due to deformation of the cantilever.

Fig. 2
Fig. 2

(a) Divergence (tanα) of a laser beam reflected from the azo-LCN as a function of power. (b) Concave and convex deformation of azo-LCN membrane. Photos correspond to the following power levels: (c) 0.54 mW (68 mW/cm2); (d) 2.4 mW (0.3 W/cm2); (e) 3.6 mW (0.46 W/cm2); (f 5.3 mW (0.68 W/cm2).

Fig. 3
Fig. 3

(a) Reflected power vs input beam power. (b) Reflected beam power density on the axis of the reflected beam as a function of input beam power density.

Fig. 4
Fig. 4

(a) Decrease of reflected power in time for different levels of input beam power. (b) Response time vs input beam power.

Fig. 5
Fig. 5

Evolution of the reflected beam spot profile in time for 7.2 mW (0.9 W/cm2) input power (Media 1).

Fig. 6
Fig. 6

Periodic switching of the on-axis intensity of the reflected beam when unblocking/blocking of the input beam.

Fig. 7
Fig. 7

Schematic of the setup for demonstrating deflection of a laser beam due to photoinduced bending of an azo-LCN cantilever.

Fig. 8
Fig. 8

Deflection angle of the probe He-Ne laser beam as a function of power density of pump Ar+ laser beam. The insert shows the azo-LCN film and its surface with silver film.

Fig. 9
Fig. 9

Dynamics of beam deflection angle by an azo-LCN cantilever for different power density values of the pump beam: (1) 0.14 W/cm2 ; (2) 0.22 W/cm2. Arrows show the moments when the pump laser beam was blocked.

Fig. 10
Fig. 10

Dynamics of beam deflection angle by an azo-LCN cantilever for orthogonal (1) and parallel (2) polarization of the pump laser beam at 0.14 W/cm2 power density. Arrows show the moments when the pump laser beam was blocked.

Fig. 11
Fig. 11

The position of the probe laser beam reflected from the azo-LCN surface with silver film at different time moments upon (a) unblocking and (b) blocking the laser beam (Media 2). Upper numbers correspond to time in seconds.

Fig. 12
Fig. 12

Deformation of an azo-LCN cantilever with a laser beam propagating along its surface: (a) initial configuration – the beam is propagating along the cantilever axis such as the azo-LCN is illuminated by the light at the peripheries of the beam; (b) cantilever bends changing the propagation direction and properties of the beam; (c) and (d) are experimentally obtained photos of the azo-LCN cantilever in nascent and bent states; (e) and (f) are the photos of a the beam corresponding to (a) and (b), taken on a screen behind the azo-LCN.

Fig. 13
Fig. 13

(a) Response and relaxation dynamics of bending of an azo-LCN due to the effect of light propagating parallel to its axis. The arrow shows the moment when the beam was blocked. (b) Photos corresponded to response dynamics (Media 3).

Metrics