Abstract

Optical forces in guided-wave nanostructures have recently been proposed as an effective means of mechanically actuating and tuning optical components. In this work, we study the properties of a photonic crystal optomechanical cavity consisting of a pair of patterned Si3N4 nanobeams. Internal stresses in the stoichiometric Si3N4 thin-film are used to produce inter-beam slot-gaps ranging from 560-40 nm. A general pump-probe measurement scheme is described which determines, self-consistently, the contributions of thermo-mechanical, thermo-optic, and radiation pressure effects. For devices with 40 nm slot-gap, the optical gradient force is measured to be 134 fN per cavity photon for the strongly coupled symmetric cavity supermode, producing a static cavity tuning greater than five times that of either the parasitic thermo-mechanical or thermo-optic effects.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. J. Kippenberg and K. J. Vahala, "Cavity Optomechanics: Back-Action at the Mesoscale," Science 321(8), 1172-1176 (2008).
  2. I. Favero and K. Karrai, "Optomechanics of deformable optical cavities," Nat. Photonics 3(4), 201-205 (2009).
  3. A. Dorsel, J. McCullen, P. Meystre, E. Vignes, and H. Walther, "Optical bistability and mirror confinement induced by radiation pressure," Phys. Rev. Lett. 51(17), 1550-1553 (1983).
  4. P. F. Cohadon, A. Heidmann, and M. Pinard, "Cooling of a Mirror by Radiation Pressure," Phys. Rev. Lett. 83(16), 3174-3177 (1999).
  5. S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, "Self-cooling of a micromirror by radiation pressure," Nature 444, 67-70 (2006).
    [PubMed]
  6. D. Kleckner and D. Bouwmeester, "Sub-kelvin optical cooling of a micromechanical resonator," Nature 444, 75-78 (2006).
    [PubMed]
  7. T. Corbitt, C. Wipf, T. Bodiya, D. Ottaway, D. Sigg, N. Smith, S. Whitcomb, and N. Mavalvala, "Optical Dilution and Feedback Cooling of a Gram-Scale Oscillator to 6.9 mK," Phys. Rev. Lett. 99, 160801 (2007).
    [PubMed]
  8. J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, "Strong dispersive coupling of a high-finesse cavity to micromechanical membrane," Nature 452(6), 72-75 (2008).
  9. A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, "Radiation Pressure Cooling of a Micromechanical Oscillator Using Dynamical Backaction," Phys. Rev. Lett. 97, 243905 (2006).
  10. M. L. Povinelli, M. Loncar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, "Evanescent-wave bonding between optical waveguides," Opt. Lett. 30(22), 3042-3044 (2005).
  11. M. Notomi, H. Taniyama, S. Mitsugi, and E. Kuramochi, "Optomechanical Wavelength and Energy Conversion in High-Q Double-Layer Cavities of Photonic Crystal Slabs," Phys. Rev. Lett. 97, 023903 (2006).
    [PubMed]
  12. M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, "Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces," Nat. Photonics 1, 416 (2007).
  13. M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, "Harnessing optical forces in integrated photonic cicruits," Nature 456(27), 480-484 (2008).
  14. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, "A picogram- and nanometre-scale photonic crystal optomechanical cavity," Nature doi:10.1038 (2009).
  15. G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, "Near-field cavity optomechanics with nanomechanical oscillators," ArXiv:0904.4051v1 (2009).
  16. Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, "Mechanical oscillation and cooling actuated by the optical gradient force," arXiv:0905.2716v1 (2009).
  17. W. H. P. Pernice, M. Li, and H. X. Tang, "Photothermal actuation in nanomechanical waveguide devices," J. Appl. Phys. 105, 014508 (2009).
  18. E. F. Nichols and G. F. Hull, "A preliminary communication on the pressure of heat and light radiation," Phys. Rev. 13, 307-320 (1901).
  19. C. H¨ohberger and K. Karrai, "Cavity cooling of a microlever," Nature 432(7020), 1002-1005 (2004).
  20. B. Ilic, S. Krylov, K. Aubin, R. Reichenbach, and H. G. Craighead, "Optical excitation of nanoelectromechanical oscillators," Appl. Phys. Lett. 86, 193114 (2005).
  21. F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, "Quantum theory of cavity-assisted sideband cooling of mechanical motion," Phys. Rev. Lett. 99(9), 093902 (2007).
  22. I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, "Theory of ground state cooling of a mechanical oscillator using dynamical backaction," Phys. Rev. Lett. 99(9), 093901 (2007).
  23. P. T. Rakich, M. A. Popovic, M. Soljacic, and E. P. Ippen, "Trapping, coralling and spectral bonding of optical resonances through optically induced potentials," Nature Photonics 1(11), 658-665 (2007).
  24. J. Rosenberg, Q. Lin, K. J. Vahala, and O. Painter, "Static and DynamicWavelength Routing via the Gradient Optical Force," arXiv:0905.3336v1 (2009).
  25. J. Chan, M. Eichenfield, R. Camacho, and O. Painter, "Optical and mechanical design of a "zipper" photonic crystal optomechanical cavity," Opt. Express 17(5), 3802-3817 (2009).
  26. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, "Coupled photonic crystal nanobeam cavities," arXiv:0905.0109v1 (2009).
  27. S. S. Verbridge, J. M. Parpia, R. B. Reichenbach, L. M. Bellan, and H. G. Craighead, "High quality factor resonance at room temperature with nanostrings under high tensile stress," J. Appl. Phys. 99, 124304 (2006).
  28. C. P. Michael, M. Borselli, T. J. Johnson, C. Chrystal, and O. Painter, "An optical fiber-taper probe for wafer-scale microphotonic device characterization," Opt. Express 15(8), 4745-4752 (2007).
  29. C. K. Law, "Effective Hamiltonian for the radiation in a cavity with a moving mirror and a time-varying dielectric medium," Phys. Rev. A 49(1), 433-437 (1994).
  30. P. E. Barclay, K. Srinivasan, and O. Painter, "Nonlinear response of silicon photonic crystal microcavities excited via an integrated waveguide and fiber taper," Opt. Express 13(3), 801-820 (2005).
  31. J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, "Ultrasmall Mode Volumes in Dielectric Optical Microcavities," Phys. Rev. Lett. 95, 143901 (2005).
    [PubMed]
  32. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, "All-optical high-speed signal processing with siliconorganic hybrid slot waveguides," Nature Photonics 3, 216-219 (2009).
  33. J. T. Robinson, L. Chen, and M. Lipson, "On-chip gas detection in silicon optical microcavities," Opt. Express 16(6), 4296-4301 (2008).

2009 (4)

I. Favero and K. Karrai, "Optomechanics of deformable optical cavities," Nat. Photonics 3(4), 201-205 (2009).

W. H. P. Pernice, M. Li, and H. X. Tang, "Photothermal actuation in nanomechanical waveguide devices," J. Appl. Phys. 105, 014508 (2009).

J. Chan, M. Eichenfield, R. Camacho, and O. Painter, "Optical and mechanical design of a "zipper" photonic crystal optomechanical cavity," Opt. Express 17(5), 3802-3817 (2009).

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, "All-optical high-speed signal processing with siliconorganic hybrid slot waveguides," Nature Photonics 3, 216-219 (2009).

2008 (4)

J. T. Robinson, L. Chen, and M. Lipson, "On-chip gas detection in silicon optical microcavities," Opt. Express 16(6), 4296-4301 (2008).

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, "Harnessing optical forces in integrated photonic cicruits," Nature 456(27), 480-484 (2008).

T. J. Kippenberg and K. J. Vahala, "Cavity Optomechanics: Back-Action at the Mesoscale," Science 321(8), 1172-1176 (2008).

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, "Strong dispersive coupling of a high-finesse cavity to micromechanical membrane," Nature 452(6), 72-75 (2008).

2007 (6)

M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, "Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces," Nat. Photonics 1, 416 (2007).

T. Corbitt, C. Wipf, T. Bodiya, D. Ottaway, D. Sigg, N. Smith, S. Whitcomb, and N. Mavalvala, "Optical Dilution and Feedback Cooling of a Gram-Scale Oscillator to 6.9 mK," Phys. Rev. Lett. 99, 160801 (2007).
[PubMed]

F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, "Quantum theory of cavity-assisted sideband cooling of mechanical motion," Phys. Rev. Lett. 99(9), 093902 (2007).

I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, "Theory of ground state cooling of a mechanical oscillator using dynamical backaction," Phys. Rev. Lett. 99(9), 093901 (2007).

P. T. Rakich, M. A. Popovic, M. Soljacic, and E. P. Ippen, "Trapping, coralling and spectral bonding of optical resonances through optically induced potentials," Nature Photonics 1(11), 658-665 (2007).

C. P. Michael, M. Borselli, T. J. Johnson, C. Chrystal, and O. Painter, "An optical fiber-taper probe for wafer-scale microphotonic device characterization," Opt. Express 15(8), 4745-4752 (2007).

2006 (5)

S. S. Verbridge, J. M. Parpia, R. B. Reichenbach, L. M. Bellan, and H. G. Craighead, "High quality factor resonance at room temperature with nanostrings under high tensile stress," J. Appl. Phys. 99, 124304 (2006).

M. Notomi, H. Taniyama, S. Mitsugi, and E. Kuramochi, "Optomechanical Wavelength and Energy Conversion in High-Q Double-Layer Cavities of Photonic Crystal Slabs," Phys. Rev. Lett. 97, 023903 (2006).
[PubMed]

A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, "Radiation Pressure Cooling of a Micromechanical Oscillator Using Dynamical Backaction," Phys. Rev. Lett. 97, 243905 (2006).

S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, "Self-cooling of a micromirror by radiation pressure," Nature 444, 67-70 (2006).
[PubMed]

D. Kleckner and D. Bouwmeester, "Sub-kelvin optical cooling of a micromechanical resonator," Nature 444, 75-78 (2006).
[PubMed]

2005 (4)

M. L. Povinelli, M. Loncar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, "Evanescent-wave bonding between optical waveguides," Opt. Lett. 30(22), 3042-3044 (2005).

B. Ilic, S. Krylov, K. Aubin, R. Reichenbach, and H. G. Craighead, "Optical excitation of nanoelectromechanical oscillators," Appl. Phys. Lett. 86, 193114 (2005).

P. E. Barclay, K. Srinivasan, and O. Painter, "Nonlinear response of silicon photonic crystal microcavities excited via an integrated waveguide and fiber taper," Opt. Express 13(3), 801-820 (2005).

J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, "Ultrasmall Mode Volumes in Dielectric Optical Microcavities," Phys. Rev. Lett. 95, 143901 (2005).
[PubMed]

2004 (1)

C. H¨ohberger and K. Karrai, "Cavity cooling of a microlever," Nature 432(7020), 1002-1005 (2004).

1999 (1)

P. F. Cohadon, A. Heidmann, and M. Pinard, "Cooling of a Mirror by Radiation Pressure," Phys. Rev. Lett. 83(16), 3174-3177 (1999).

1994 (1)

C. K. Law, "Effective Hamiltonian for the radiation in a cavity with a moving mirror and a time-varying dielectric medium," Phys. Rev. A 49(1), 433-437 (1994).

1983 (1)

A. Dorsel, J. McCullen, P. Meystre, E. Vignes, and H. Walther, "Optical bistability and mirror confinement induced by radiation pressure," Phys. Rev. Lett. 51(17), 1550-1553 (1983).

1901 (1)

E. F. Nichols and G. F. Hull, "A preliminary communication on the pressure of heat and light radiation," Phys. Rev. 13, 307-320 (1901).

Aspelmeyer, M.

S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, "Self-cooling of a micromirror by radiation pressure," Nature 444, 67-70 (2006).
[PubMed]

Aubin, K.

B. Ilic, S. Krylov, K. Aubin, R. Reichenbach, and H. G. Craighead, "Optical excitation of nanoelectromechanical oscillators," Appl. Phys. Lett. 86, 193114 (2005).

Baehr-Jones, T.

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, "Harnessing optical forces in integrated photonic cicruits," Nature 456(27), 480-484 (2008).

Baets, R.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, "All-optical high-speed signal processing with siliconorganic hybrid slot waveguides," Nature Photonics 3, 216-219 (2009).

Barclay, P. E.

Bäuerle, D.

S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, "Self-cooling of a micromirror by radiation pressure," Nature 444, 67-70 (2006).
[PubMed]

Bellan, L. M.

S. S. Verbridge, J. M. Parpia, R. B. Reichenbach, L. M. Bellan, and H. G. Craighead, "High quality factor resonance at room temperature with nanostrings under high tensile stress," J. Appl. Phys. 99, 124304 (2006).

Biaggio, I.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, "All-optical high-speed signal processing with siliconorganic hybrid slot waveguides," Nature Photonics 3, 216-219 (2009).

Blaser, F.

S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, "Self-cooling of a micromirror by radiation pressure," Nature 444, 67-70 (2006).
[PubMed]

Bodiya, T.

T. Corbitt, C. Wipf, T. Bodiya, D. Ottaway, D. Sigg, N. Smith, S. Whitcomb, and N. Mavalvala, "Optical Dilution and Feedback Cooling of a Gram-Scale Oscillator to 6.9 mK," Phys. Rev. Lett. 99, 160801 (2007).
[PubMed]

Bogaerts, W.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, "All-optical high-speed signal processing with siliconorganic hybrid slot waveguides," Nature Photonics 3, 216-219 (2009).

Böhm, H. R.

S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, "Self-cooling of a micromirror by radiation pressure," Nature 444, 67-70 (2006).
[PubMed]

Borselli, M.

Bouwmeester, D.

D. Kleckner and D. Bouwmeester, "Sub-kelvin optical cooling of a micromechanical resonator," Nature 444, 75-78 (2006).
[PubMed]

Camacho, R.

Capasso, F.

Chan, J.

Chen, J. P.

F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, "Quantum theory of cavity-assisted sideband cooling of mechanical motion," Phys. Rev. Lett. 99(9), 093902 (2007).

Chen, L.

J. T. Robinson, L. Chen, and M. Lipson, "On-chip gas detection in silicon optical microcavities," Opt. Express 16(6), 4296-4301 (2008).

J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, "Ultrasmall Mode Volumes in Dielectric Optical Microcavities," Phys. Rev. Lett. 95, 143901 (2005).
[PubMed]

Chrystal, C.

Clerk, A. A.

F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, "Quantum theory of cavity-assisted sideband cooling of mechanical motion," Phys. Rev. Lett. 99(9), 093902 (2007).

Cohadon, P. F.

P. F. Cohadon, A. Heidmann, and M. Pinard, "Cooling of a Mirror by Radiation Pressure," Phys. Rev. Lett. 83(16), 3174-3177 (1999).

Corbitt, T.

T. Corbitt, C. Wipf, T. Bodiya, D. Ottaway, D. Sigg, N. Smith, S. Whitcomb, and N. Mavalvala, "Optical Dilution and Feedback Cooling of a Gram-Scale Oscillator to 6.9 mK," Phys. Rev. Lett. 99, 160801 (2007).
[PubMed]

Craighead, H. G.

S. S. Verbridge, J. M. Parpia, R. B. Reichenbach, L. M. Bellan, and H. G. Craighead, "High quality factor resonance at room temperature with nanostrings under high tensile stress," J. Appl. Phys. 99, 124304 (2006).

B. Ilic, S. Krylov, K. Aubin, R. Reichenbach, and H. G. Craighead, "Optical excitation of nanoelectromechanical oscillators," Appl. Phys. Lett. 86, 193114 (2005).

Del’Haye, P.

A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, "Radiation Pressure Cooling of a Micromechanical Oscillator Using Dynamical Backaction," Phys. Rev. Lett. 97, 243905 (2006).

Diederich, F.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, "All-optical high-speed signal processing with siliconorganic hybrid slot waveguides," Nature Photonics 3, 216-219 (2009).

Dorsel, A.

A. Dorsel, J. McCullen, P. Meystre, E. Vignes, and H. Walther, "Optical bistability and mirror confinement induced by radiation pressure," Phys. Rev. Lett. 51(17), 1550-1553 (1983).

Dumon, P.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, "All-optical high-speed signal processing with siliconorganic hybrid slot waveguides," Nature Photonics 3, 216-219 (2009).

Eichenfield, M.

J. Chan, M. Eichenfield, R. Camacho, and O. Painter, "Optical and mechanical design of a "zipper" photonic crystal optomechanical cavity," Opt. Express 17(5), 3802-3817 (2009).

M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, "Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces," Nat. Photonics 1, 416 (2007).

Esembeson, B.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, "All-optical high-speed signal processing with siliconorganic hybrid slot waveguides," Nature Photonics 3, 216-219 (2009).

Favero, I.

I. Favero and K. Karrai, "Optomechanics of deformable optical cavities," Nat. Photonics 3(4), 201-205 (2009).

Freude, W.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, "All-optical high-speed signal processing with siliconorganic hybrid slot waveguides," Nature Photonics 3, 216-219 (2009).

Gigan, S.

S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, "Self-cooling of a micromirror by radiation pressure," Nature 444, 67-70 (2006).
[PubMed]

Girvin, S. M.

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, "Strong dispersive coupling of a high-finesse cavity to micromechanical membrane," Nature 452(6), 72-75 (2008).

F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, "Quantum theory of cavity-assisted sideband cooling of mechanical motion," Phys. Rev. Lett. 99(9), 093902 (2007).

H¨ohberger, C.

C. H¨ohberger and K. Karrai, "Cavity cooling of a microlever," Nature 432(7020), 1002-1005 (2004).

Harris, J. G. E.

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, "Strong dispersive coupling of a high-finesse cavity to micromechanical membrane," Nature 452(6), 72-75 (2008).

Heidmann, A.

P. F. Cohadon, A. Heidmann, and M. Pinard, "Cooling of a Mirror by Radiation Pressure," Phys. Rev. Lett. 83(16), 3174-3177 (1999).

Hertzberg, J. B.

S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, "Self-cooling of a micromirror by radiation pressure," Nature 444, 67-70 (2006).
[PubMed]

Hochberg, M.

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, "Harnessing optical forces in integrated photonic cicruits," Nature 456(27), 480-484 (2008).

Hull, G. F.

E. F. Nichols and G. F. Hull, "A preliminary communication on the pressure of heat and light radiation," Phys. Rev. 13, 307-320 (1901).

Ibanescu, M.

Ilic, B.

B. Ilic, S. Krylov, K. Aubin, R. Reichenbach, and H. G. Craighead, "Optical excitation of nanoelectromechanical oscillators," Appl. Phys. Lett. 86, 193114 (2005).

Ippen, E. P.

P. T. Rakich, M. A. Popovic, M. Soljacic, and E. P. Ippen, "Trapping, coralling and spectral bonding of optical resonances through optically induced potentials," Nature Photonics 1(11), 658-665 (2007).

Jayich, A. M.

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, "Strong dispersive coupling of a high-finesse cavity to micromechanical membrane," Nature 452(6), 72-75 (2008).

Joannopoulos, J. D.

Johnson, S. G.

Johnson, T. J.

Karrai, K.

I. Favero and K. Karrai, "Optomechanics of deformable optical cavities," Nat. Photonics 3(4), 201-205 (2009).

C. H¨ohberger and K. Karrai, "Cavity cooling of a microlever," Nature 432(7020), 1002-1005 (2004).

Kippenberg, T. J.

T. J. Kippenberg and K. J. Vahala, "Cavity Optomechanics: Back-Action at the Mesoscale," Science 321(8), 1172-1176 (2008).

I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, "Theory of ground state cooling of a mechanical oscillator using dynamical backaction," Phys. Rev. Lett. 99(9), 093901 (2007).

A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, "Radiation Pressure Cooling of a Micromechanical Oscillator Using Dynamical Backaction," Phys. Rev. Lett. 97, 243905 (2006).

Kleckner, D.

D. Kleckner and D. Bouwmeester, "Sub-kelvin optical cooling of a micromechanical resonator," Nature 444, 75-78 (2006).
[PubMed]

Koos, C.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, "All-optical high-speed signal processing with siliconorganic hybrid slot waveguides," Nature Photonics 3, 216-219 (2009).

Krylov, S.

B. Ilic, S. Krylov, K. Aubin, R. Reichenbach, and H. G. Craighead, "Optical excitation of nanoelectromechanical oscillators," Appl. Phys. Lett. 86, 193114 (2005).

Kuramochi, E.

M. Notomi, H. Taniyama, S. Mitsugi, and E. Kuramochi, "Optomechanical Wavelength and Energy Conversion in High-Q Double-Layer Cavities of Photonic Crystal Slabs," Phys. Rev. Lett. 97, 023903 (2006).
[PubMed]

Langer, G.

S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, "Self-cooling of a micromirror by radiation pressure," Nature 444, 67-70 (2006).
[PubMed]

Law, C. K.

C. K. Law, "Effective Hamiltonian for the radiation in a cavity with a moving mirror and a time-varying dielectric medium," Phys. Rev. A 49(1), 433-437 (1994).

Leuthold, J.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, "All-optical high-speed signal processing with siliconorganic hybrid slot waveguides," Nature Photonics 3, 216-219 (2009).

Li, M.

W. H. P. Pernice, M. Li, and H. X. Tang, "Photothermal actuation in nanomechanical waveguide devices," J. Appl. Phys. 105, 014508 (2009).

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, "Harnessing optical forces in integrated photonic cicruits," Nature 456(27), 480-484 (2008).

Lipson, M.

J. T. Robinson, L. Chen, and M. Lipson, "On-chip gas detection in silicon optical microcavities," Opt. Express 16(6), 4296-4301 (2008).

J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, "Ultrasmall Mode Volumes in Dielectric Optical Microcavities," Phys. Rev. Lett. 95, 143901 (2005).
[PubMed]

Loncar, M.

Manolatou, C.

J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, "Ultrasmall Mode Volumes in Dielectric Optical Microcavities," Phys. Rev. Lett. 95, 143901 (2005).
[PubMed]

Marquardt, F.

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, "Strong dispersive coupling of a high-finesse cavity to micromechanical membrane," Nature 452(6), 72-75 (2008).

F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, "Quantum theory of cavity-assisted sideband cooling of mechanical motion," Phys. Rev. Lett. 99(9), 093902 (2007).

Mavalvala, N.

T. Corbitt, C. Wipf, T. Bodiya, D. Ottaway, D. Sigg, N. Smith, S. Whitcomb, and N. Mavalvala, "Optical Dilution and Feedback Cooling of a Gram-Scale Oscillator to 6.9 mK," Phys. Rev. Lett. 99, 160801 (2007).
[PubMed]

McCullen, J.

A. Dorsel, J. McCullen, P. Meystre, E. Vignes, and H. Walther, "Optical bistability and mirror confinement induced by radiation pressure," Phys. Rev. Lett. 51(17), 1550-1553 (1983).

Meystre, P.

A. Dorsel, J. McCullen, P. Meystre, E. Vignes, and H. Walther, "Optical bistability and mirror confinement induced by radiation pressure," Phys. Rev. Lett. 51(17), 1550-1553 (1983).

Michael, C. P.

M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, "Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces," Nat. Photonics 1, 416 (2007).

C. P. Michael, M. Borselli, T. J. Johnson, C. Chrystal, and O. Painter, "An optical fiber-taper probe for wafer-scale microphotonic device characterization," Opt. Express 15(8), 4745-4752 (2007).

Michinobu, T.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, "All-optical high-speed signal processing with siliconorganic hybrid slot waveguides," Nature Photonics 3, 216-219 (2009).

Mitsugi, S.

M. Notomi, H. Taniyama, S. Mitsugi, and E. Kuramochi, "Optomechanical Wavelength and Energy Conversion in High-Q Double-Layer Cavities of Photonic Crystal Slabs," Phys. Rev. Lett. 97, 023903 (2006).
[PubMed]

Nichols, E. F.

E. F. Nichols and G. F. Hull, "A preliminary communication on the pressure of heat and light radiation," Phys. Rev. 13, 307-320 (1901).

Nooshi, N.

I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, "Theory of ground state cooling of a mechanical oscillator using dynamical backaction," Phys. Rev. Lett. 99(9), 093901 (2007).

A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, "Radiation Pressure Cooling of a Micromechanical Oscillator Using Dynamical Backaction," Phys. Rev. Lett. 97, 243905 (2006).

Notomi, M.

M. Notomi, H. Taniyama, S. Mitsugi, and E. Kuramochi, "Optomechanical Wavelength and Energy Conversion in High-Q Double-Layer Cavities of Photonic Crystal Slabs," Phys. Rev. Lett. 97, 023903 (2006).
[PubMed]

Ottaway, D.

T. Corbitt, C. Wipf, T. Bodiya, D. Ottaway, D. Sigg, N. Smith, S. Whitcomb, and N. Mavalvala, "Optical Dilution and Feedback Cooling of a Gram-Scale Oscillator to 6.9 mK," Phys. Rev. Lett. 99, 160801 (2007).
[PubMed]

Painter, O.

Parpia, J. M.

S. S. Verbridge, J. M. Parpia, R. B. Reichenbach, L. M. Bellan, and H. G. Craighead, "High quality factor resonance at room temperature with nanostrings under high tensile stress," J. Appl. Phys. 99, 124304 (2006).

Paternostro, M.

S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, "Self-cooling of a micromirror by radiation pressure," Nature 444, 67-70 (2006).
[PubMed]

Perahia, R.

M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, "Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces," Nat. Photonics 1, 416 (2007).

Pernice, W. H. P.

W. H. P. Pernice, M. Li, and H. X. Tang, "Photothermal actuation in nanomechanical waveguide devices," J. Appl. Phys. 105, 014508 (2009).

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, "Harnessing optical forces in integrated photonic cicruits," Nature 456(27), 480-484 (2008).

Pinard, M.

P. F. Cohadon, A. Heidmann, and M. Pinard, "Cooling of a Mirror by Radiation Pressure," Phys. Rev. Lett. 83(16), 3174-3177 (1999).

Popovic, M. A.

P. T. Rakich, M. A. Popovic, M. Soljacic, and E. P. Ippen, "Trapping, coralling and spectral bonding of optical resonances through optically induced potentials," Nature Photonics 1(11), 658-665 (2007).

Povinelli, M. L.

Rakich, P. T.

P. T. Rakich, M. A. Popovic, M. Soljacic, and E. P. Ippen, "Trapping, coralling and spectral bonding of optical resonances through optically induced potentials," Nature Photonics 1(11), 658-665 (2007).

Reichenbach, R.

B. Ilic, S. Krylov, K. Aubin, R. Reichenbach, and H. G. Craighead, "Optical excitation of nanoelectromechanical oscillators," Appl. Phys. Lett. 86, 193114 (2005).

Reichenbach, R. B.

S. S. Verbridge, J. M. Parpia, R. B. Reichenbach, L. M. Bellan, and H. G. Craighead, "High quality factor resonance at room temperature with nanostrings under high tensile stress," J. Appl. Phys. 99, 124304 (2006).

Robinson, J. T.

J. T. Robinson, L. Chen, and M. Lipson, "On-chip gas detection in silicon optical microcavities," Opt. Express 16(6), 4296-4301 (2008).

J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, "Ultrasmall Mode Volumes in Dielectric Optical Microcavities," Phys. Rev. Lett. 95, 143901 (2005).
[PubMed]

Schliesser, A.

A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, "Radiation Pressure Cooling of a Micromechanical Oscillator Using Dynamical Backaction," Phys. Rev. Lett. 97, 243905 (2006).

Schwab, K. C.

S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, "Self-cooling of a micromirror by radiation pressure," Nature 444, 67-70 (2006).
[PubMed]

Sigg, D.

T. Corbitt, C. Wipf, T. Bodiya, D. Ottaway, D. Sigg, N. Smith, S. Whitcomb, and N. Mavalvala, "Optical Dilution and Feedback Cooling of a Gram-Scale Oscillator to 6.9 mK," Phys. Rev. Lett. 99, 160801 (2007).
[PubMed]

Smith, N.

T. Corbitt, C. Wipf, T. Bodiya, D. Ottaway, D. Sigg, N. Smith, S. Whitcomb, and N. Mavalvala, "Optical Dilution and Feedback Cooling of a Gram-Scale Oscillator to 6.9 mK," Phys. Rev. Lett. 99, 160801 (2007).
[PubMed]

Smythe, E. J.

Soljacic, M.

P. T. Rakich, M. A. Popovic, M. Soljacic, and E. P. Ippen, "Trapping, coralling and spectral bonding of optical resonances through optically induced potentials," Nature Photonics 1(11), 658-665 (2007).

Srinivasan, K.

Tang, H. X.

W. H. P. Pernice, M. Li, and H. X. Tang, "Photothermal actuation in nanomechanical waveguide devices," J. Appl. Phys. 105, 014508 (2009).

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, "Harnessing optical forces in integrated photonic cicruits," Nature 456(27), 480-484 (2008).

Taniyama, H.

M. Notomi, H. Taniyama, S. Mitsugi, and E. Kuramochi, "Optomechanical Wavelength and Energy Conversion in High-Q Double-Layer Cavities of Photonic Crystal Slabs," Phys. Rev. Lett. 97, 023903 (2006).
[PubMed]

Thompson, J. D.

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, "Strong dispersive coupling of a high-finesse cavity to micromechanical membrane," Nature 452(6), 72-75 (2008).

Vahala, K. J.

T. J. Kippenberg and K. J. Vahala, "Cavity Optomechanics: Back-Action at the Mesoscale," Science 321(8), 1172-1176 (2008).

A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, "Radiation Pressure Cooling of a Micromechanical Oscillator Using Dynamical Backaction," Phys. Rev. Lett. 97, 243905 (2006).

Vallaitis, T.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, "All-optical high-speed signal processing with siliconorganic hybrid slot waveguides," Nature Photonics 3, 216-219 (2009).

Verbridge, S. S.

S. S. Verbridge, J. M. Parpia, R. B. Reichenbach, L. M. Bellan, and H. G. Craighead, "High quality factor resonance at room temperature with nanostrings under high tensile stress," J. Appl. Phys. 99, 124304 (2006).

Vignes, E.

A. Dorsel, J. McCullen, P. Meystre, E. Vignes, and H. Walther, "Optical bistability and mirror confinement induced by radiation pressure," Phys. Rev. Lett. 51(17), 1550-1553 (1983).

Vorreau, P.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, "All-optical high-speed signal processing with siliconorganic hybrid slot waveguides," Nature Photonics 3, 216-219 (2009).

Walther, H.

A. Dorsel, J. McCullen, P. Meystre, E. Vignes, and H. Walther, "Optical bistability and mirror confinement induced by radiation pressure," Phys. Rev. Lett. 51(17), 1550-1553 (1983).

Whitcomb, S.

T. Corbitt, C. Wipf, T. Bodiya, D. Ottaway, D. Sigg, N. Smith, S. Whitcomb, and N. Mavalvala, "Optical Dilution and Feedback Cooling of a Gram-Scale Oscillator to 6.9 mK," Phys. Rev. Lett. 99, 160801 (2007).
[PubMed]

Wilson-Rae, I.

I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, "Theory of ground state cooling of a mechanical oscillator using dynamical backaction," Phys. Rev. Lett. 99(9), 093901 (2007).

Wipf, C.

T. Corbitt, C. Wipf, T. Bodiya, D. Ottaway, D. Sigg, N. Smith, S. Whitcomb, and N. Mavalvala, "Optical Dilution and Feedback Cooling of a Gram-Scale Oscillator to 6.9 mK," Phys. Rev. Lett. 99, 160801 (2007).
[PubMed]

Xiong, C.

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, "Harnessing optical forces in integrated photonic cicruits," Nature 456(27), 480-484 (2008).

Zeilinger, A.

S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, "Self-cooling of a micromirror by radiation pressure," Nature 444, 67-70 (2006).
[PubMed]

Zwerger, W.

I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, "Theory of ground state cooling of a mechanical oscillator using dynamical backaction," Phys. Rev. Lett. 99(9), 093901 (2007).

Zwickl, B. M.

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, "Strong dispersive coupling of a high-finesse cavity to micromechanical membrane," Nature 452(6), 72-75 (2008).

Appl. Phys. Lett. (1)

B. Ilic, S. Krylov, K. Aubin, R. Reichenbach, and H. G. Craighead, "Optical excitation of nanoelectromechanical oscillators," Appl. Phys. Lett. 86, 193114 (2005).

J. Appl. Phys. (2)

S. S. Verbridge, J. M. Parpia, R. B. Reichenbach, L. M. Bellan, and H. G. Craighead, "High quality factor resonance at room temperature with nanostrings under high tensile stress," J. Appl. Phys. 99, 124304 (2006).

W. H. P. Pernice, M. Li, and H. X. Tang, "Photothermal actuation in nanomechanical waveguide devices," J. Appl. Phys. 105, 014508 (2009).

Nat. Photonics (2)

M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, "Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces," Nat. Photonics 1, 416 (2007).

I. Favero and K. Karrai, "Optomechanics of deformable optical cavities," Nat. Photonics 3(4), 201-205 (2009).

Nature (5)

S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, "Self-cooling of a micromirror by radiation pressure," Nature 444, 67-70 (2006).
[PubMed]

D. Kleckner and D. Bouwmeester, "Sub-kelvin optical cooling of a micromechanical resonator," Nature 444, 75-78 (2006).
[PubMed]

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, "Strong dispersive coupling of a high-finesse cavity to micromechanical membrane," Nature 452(6), 72-75 (2008).

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, "Harnessing optical forces in integrated photonic cicruits," Nature 456(27), 480-484 (2008).

C. H¨ohberger and K. Karrai, "Cavity cooling of a microlever," Nature 432(7020), 1002-1005 (2004).

Nature Photonics (2)

P. T. Rakich, M. A. Popovic, M. Soljacic, and E. P. Ippen, "Trapping, coralling and spectral bonding of optical resonances through optically induced potentials," Nature Photonics 1(11), 658-665 (2007).

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, "All-optical high-speed signal processing with siliconorganic hybrid slot waveguides," Nature Photonics 3, 216-219 (2009).

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. (1)

E. F. Nichols and G. F. Hull, "A preliminary communication on the pressure of heat and light radiation," Phys. Rev. 13, 307-320 (1901).

Phys. Rev. A (1)

C. K. Law, "Effective Hamiltonian for the radiation in a cavity with a moving mirror and a time-varying dielectric medium," Phys. Rev. A 49(1), 433-437 (1994).

Phys. Rev. Lett. (8)

F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, "Quantum theory of cavity-assisted sideband cooling of mechanical motion," Phys. Rev. Lett. 99(9), 093902 (2007).

I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, "Theory of ground state cooling of a mechanical oscillator using dynamical backaction," Phys. Rev. Lett. 99(9), 093901 (2007).

J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, "Ultrasmall Mode Volumes in Dielectric Optical Microcavities," Phys. Rev. Lett. 95, 143901 (2005).
[PubMed]

M. Notomi, H. Taniyama, S. Mitsugi, and E. Kuramochi, "Optomechanical Wavelength and Energy Conversion in High-Q Double-Layer Cavities of Photonic Crystal Slabs," Phys. Rev. Lett. 97, 023903 (2006).
[PubMed]

A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, "Radiation Pressure Cooling of a Micromechanical Oscillator Using Dynamical Backaction," Phys. Rev. Lett. 97, 243905 (2006).

T. Corbitt, C. Wipf, T. Bodiya, D. Ottaway, D. Sigg, N. Smith, S. Whitcomb, and N. Mavalvala, "Optical Dilution and Feedback Cooling of a Gram-Scale Oscillator to 6.9 mK," Phys. Rev. Lett. 99, 160801 (2007).
[PubMed]

A. Dorsel, J. McCullen, P. Meystre, E. Vignes, and H. Walther, "Optical bistability and mirror confinement induced by radiation pressure," Phys. Rev. Lett. 51(17), 1550-1553 (1983).

P. F. Cohadon, A. Heidmann, and M. Pinard, "Cooling of a Mirror by Radiation Pressure," Phys. Rev. Lett. 83(16), 3174-3177 (1999).

Science (1)

T. J. Kippenberg and K. J. Vahala, "Cavity Optomechanics: Back-Action at the Mesoscale," Science 321(8), 1172-1176 (2008).

Other (5)

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, "A picogram- and nanometre-scale photonic crystal optomechanical cavity," Nature doi:10.1038 (2009).

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, "Near-field cavity optomechanics with nanomechanical oscillators," ArXiv:0904.4051v1 (2009).

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, "Mechanical oscillation and cooling actuated by the optical gradient force," arXiv:0905.2716v1 (2009).

J. Rosenberg, Q. Lin, K. J. Vahala, and O. Painter, "Static and DynamicWavelength Routing via the Gradient Optical Force," arXiv:0905.3336v1 (2009).

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, "Coupled photonic crystal nanobeam cavities," arXiv:0905.0109v1 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Slot width vs. extension offset, simulation and experiment. Support extensions placed near the outside of the beam width cause outward bowing, but inward bowing when placed near the inside. (b) Scanning electron microscope images of a device with support extensions placed just inside of center, causing slight inward bowing resulting in approximately a slot-gap of s=40 nm at the cavity center. The device parameters that are common amongst all the devices tested in this work are: nominal lattice constant an=590 nm, extension width we =211 nm, hole width hx =190 nm, hole height hy =416 nm, beam width w=833 nm, beam length lb =18.4 µm, extension length le =33.1 µm. In order to vary the slot-gap size from 40–560 nm, the extension offset was varied between oe =70 to -235 nm.

Fig. 2.
Fig. 2.

Experimental setup for optical testing. Two separate lasers (pump and probe) with independent power control, via variable optical attenuators (VOA), and polarization control are combined into a fiber taper waveguide placed in the near-field of the photonic crystal cavity. Cavity transmission at both the pump and probe wavelengths are multiplexed and demultiplexed using a matched set of fiber-based filters and separately monitored using calibrated photodetectors.

Fig. 3.
Fig. 3.

(a) Experimentally measured optical transmission as a function of wavelength in an array of six devices (SEM images of the central cavity region on right), each with a different slot-gap. Overlayed are FEM simulations of the cavity mode dispersion versus gap size, where solid curves are for the bonded modes, dashed curves for the anti-bonded modes, and the color of the curve matches the highlighting applied to the different mode orders (red=TE±,0, green=TE±,1, blue=TE±,2). (b) Measured RF spectrum of the TE+,0 mode for the largest gap (s=560 nm) zipper cavity. Inset shows the optical transmission as a function of detuning as the pump laser is swept across the cavity resonance (dashed vertical line indicates detuning for RF spectrum measurement). (c) Plot of the FEM-simulated and experimentally measured bonded and anti-bonded mode splitting versus slot-gap. The inset shows the effective optomechanical coupling length (L OMλ/(/) in the small slot-gap region (solid curve for bonded mode, dashed curve for anti-bonded mode).

Fig. 4.
Fig. 4.

(a) Measured tuning curves for the four pump-probe configurations. The solid (dashed) lines correspond to a linear fit to the self- (cross-) mode tuning data. (b) Optomechanical, thermo-mechanical, and thermo-optic tuning contributions as determined from a fit of the model coefficients.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δ ωij = δαigj+ctoNi,
sij = (fikNi)gj+cto=(h̅(gi+gtm)k)gj+cto.
ge = ξ kh̅, Δe ,
go = ξ kh̅ Δo ,
gtm = ξ kh̅ Δc ,
cto = ξ2 (seesooseosoe),

Metrics