Abstract

Continuously pumped regenerative amplifiers are subject to energy instability at high pulse repetition rates due to period doubling bifurcation. Theoretical and experimental data are presented, in order to differentiate and understand instability effects in Nd:YVO4 regenerative amplifier, and possible techniques for performance optimization are analyzed. An increase in the seed pulse energy is demonstrated to improve amplification dynamics. Addition of a preamplifier is shown as an efficient way to achieve seed energy high enough to provide stable operation at repetition rates up to 200 kHz with average output power near the theoretical limit.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Miura and S. Ito, “High-energy and high-power Yb:KGW femtosecond regenerative amplifier,” Proc. SPIE 7203, 72030U (2009).
    [CrossRef]
  2. D. Nickel, C. Stolzenburg, A. Giesen, and F. Butze, “Ultrafast thin-disk Yb:KY(WO4)2 regenerative amplifier with a 200-kHz repetition rate,” Opt. Lett. 29(23), 2764–2766 (2004).
    [CrossRef] [PubMed]
  3. J. Kleinbauer, D. Eckert, S. Weiler, and D. Sutter, “80 W ultrafast CPA-free disk laser,” Proc. SPIE 6871, 68711B (2008).
    [CrossRef]
  4. J. Kleinbauer, R. Knappe, and R. Wallenstein, “A powerful diode-pumped laser source for micro-machining with ps pulses in the infrared, the visible and the ultraviolet,” Appl. Phys. B 80(3), 315–320 (2005).
    [CrossRef]
  5. J. Kleinbauer, R. Knappe, and R. Wallenstein, “13-W picoseconds Nd:GdVO4 regenerative amplifier with 200-kHz repetition rate,” Appl. Phys. B 81(2-3), 163–166 (2005).
    [CrossRef]
  6. J. Dörring, A. Killi, U. Morgner, A. Lang, M. Lederer, and D. Kopf, “Period doubling and deterministic chaos in continuously pumped regenerative amplifiers,” Opt. Express 12(8), 1759–1768 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-8-1759 .
    [CrossRef] [PubMed]
  7. M. Grishin, V. Gulbinas, and A. Michailovas, “Dynamics of high repetition rate regenerative amplifiers,” Opt. Express 15(15), 9434–9443 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-15-9434 .
    [CrossRef] [PubMed]
  8. R. D. Peterson, H. P. Jenssen, and A. Cassanho, “Investigation of the spectroscopic properties of Nd:YVO4,” Proc. OSA TOPS, Advanced Solid-State Lasers, M.E. Fermann and L.R. Marshall, eds., 68, 294 (2002).

2009 (1)

T. Miura and S. Ito, “High-energy and high-power Yb:KGW femtosecond regenerative amplifier,” Proc. SPIE 7203, 72030U (2009).
[CrossRef]

2008 (1)

J. Kleinbauer, D. Eckert, S. Weiler, and D. Sutter, “80 W ultrafast CPA-free disk laser,” Proc. SPIE 6871, 68711B (2008).
[CrossRef]

2007 (1)

2005 (2)

J. Kleinbauer, R. Knappe, and R. Wallenstein, “A powerful diode-pumped laser source for micro-machining with ps pulses in the infrared, the visible and the ultraviolet,” Appl. Phys. B 80(3), 315–320 (2005).
[CrossRef]

J. Kleinbauer, R. Knappe, and R. Wallenstein, “13-W picoseconds Nd:GdVO4 regenerative amplifier with 200-kHz repetition rate,” Appl. Phys. B 81(2-3), 163–166 (2005).
[CrossRef]

2004 (2)

Butze, F.

Dörring, J.

Eckert, D.

J. Kleinbauer, D. Eckert, S. Weiler, and D. Sutter, “80 W ultrafast CPA-free disk laser,” Proc. SPIE 6871, 68711B (2008).
[CrossRef]

Giesen, A.

Grishin, M.

Gulbinas, V.

Ito, S.

T. Miura and S. Ito, “High-energy and high-power Yb:KGW femtosecond regenerative amplifier,” Proc. SPIE 7203, 72030U (2009).
[CrossRef]

Killi, A.

Kleinbauer, J.

J. Kleinbauer, D. Eckert, S. Weiler, and D. Sutter, “80 W ultrafast CPA-free disk laser,” Proc. SPIE 6871, 68711B (2008).
[CrossRef]

J. Kleinbauer, R. Knappe, and R. Wallenstein, “13-W picoseconds Nd:GdVO4 regenerative amplifier with 200-kHz repetition rate,” Appl. Phys. B 81(2-3), 163–166 (2005).
[CrossRef]

J. Kleinbauer, R. Knappe, and R. Wallenstein, “A powerful diode-pumped laser source for micro-machining with ps pulses in the infrared, the visible and the ultraviolet,” Appl. Phys. B 80(3), 315–320 (2005).
[CrossRef]

Knappe, R.

J. Kleinbauer, R. Knappe, and R. Wallenstein, “A powerful diode-pumped laser source for micro-machining with ps pulses in the infrared, the visible and the ultraviolet,” Appl. Phys. B 80(3), 315–320 (2005).
[CrossRef]

J. Kleinbauer, R. Knappe, and R. Wallenstein, “13-W picoseconds Nd:GdVO4 regenerative amplifier with 200-kHz repetition rate,” Appl. Phys. B 81(2-3), 163–166 (2005).
[CrossRef]

Kopf, D.

Lang, A.

Lederer, M.

Michailovas, A.

Miura, T.

T. Miura and S. Ito, “High-energy and high-power Yb:KGW femtosecond regenerative amplifier,” Proc. SPIE 7203, 72030U (2009).
[CrossRef]

Morgner, U.

Nickel, D.

Stolzenburg, C.

Sutter, D.

J. Kleinbauer, D. Eckert, S. Weiler, and D. Sutter, “80 W ultrafast CPA-free disk laser,” Proc. SPIE 6871, 68711B (2008).
[CrossRef]

Wallenstein, R.

J. Kleinbauer, R. Knappe, and R. Wallenstein, “13-W picoseconds Nd:GdVO4 regenerative amplifier with 200-kHz repetition rate,” Appl. Phys. B 81(2-3), 163–166 (2005).
[CrossRef]

J. Kleinbauer, R. Knappe, and R. Wallenstein, “A powerful diode-pumped laser source for micro-machining with ps pulses in the infrared, the visible and the ultraviolet,” Appl. Phys. B 80(3), 315–320 (2005).
[CrossRef]

Weiler, S.

J. Kleinbauer, D. Eckert, S. Weiler, and D. Sutter, “80 W ultrafast CPA-free disk laser,” Proc. SPIE 6871, 68711B (2008).
[CrossRef]

Appl. Phys. B (2)

J. Kleinbauer, R. Knappe, and R. Wallenstein, “A powerful diode-pumped laser source for micro-machining with ps pulses in the infrared, the visible and the ultraviolet,” Appl. Phys. B 80(3), 315–320 (2005).
[CrossRef]

J. Kleinbauer, R. Knappe, and R. Wallenstein, “13-W picoseconds Nd:GdVO4 regenerative amplifier with 200-kHz repetition rate,” Appl. Phys. B 81(2-3), 163–166 (2005).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Proc. SPIE (2)

J. Kleinbauer, D. Eckert, S. Weiler, and D. Sutter, “80 W ultrafast CPA-free disk laser,” Proc. SPIE 6871, 68711B (2008).
[CrossRef]

T. Miura and S. Ito, “High-energy and high-power Yb:KGW femtosecond regenerative amplifier,” Proc. SPIE 7203, 72030U (2009).
[CrossRef]

Other (1)

R. D. Peterson, H. P. Jenssen, and A. Cassanho, “Investigation of the spectroscopic properties of Nd:YVO4,” Proc. OSA TOPS, Advanced Solid-State Lasers, M.E. Fermann and L.R. Marshall, eds., 68, 294 (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup.

Fig. 2
Fig. 2

Screenshots of typical regimes of RA operation. Stable energy output is obtained at 90 kHz for NRT = 14 (a) and the period doubling regime is obtained at 90 kHz for NRT = 16 (b).

Fig. 3
Fig. 3

Experimental average power (black and red dots correspond to stable and unstable regimes respectively) and pulse energy (blue dots) versus number of cavity round trips for the repetition rates of 10 kHz, 20 kHz, 75 kHz and 90 kHz. The encircled points correspond to the maximum power at stable operation.

Fig. 4
Fig. 4

(a) Parameter separatrixes (solid lines) and curves of NRTMAX (dotted lines) in space of parameters. Black, red and green lines correspond to seed pulse energies of 240 nJ, 1.1 nJ and 11 pJ, respectively. (b) Operating point trajectories (vertical dashed lines) and measured number of optimal round trips for the pulse durations of 58 ps (solid circles) and 9 ps (open circles) in respect to stability diagram for the seed energy of 1.1 nJ.

Fig. 5
Fig. 5

Experimental output power versus repetition rate for the pulse durations of 58 ps (a) and 9 ps (b). Black, red and green dots correspond to measured seed pulse energies of 700 nJ, 3.2 nJ and 32 pJ, respectively. Theoretical curve of achievable power is solid line in both diagrams.

Tables (1)

Tables Icon

Table 1 Parameters used for regenerative amplifier modeling

Metrics