Abstract

We perform stimulated emission depletion (STED) microscopy with a novel light source consisting of a fiber-amplified, frequency doubled laser operating with a 1 MHz repetition rate and a 530 nm output coupled into a standard single mode fiber to produce a tunable spectrum of discrete peaks via stimulated Raman scattering (SRS). Using peaks at 585, 600, and 616 nm as STED light we perform STED microscopy with resolution down to 20-30 nm. The nanosecond pulsed light source should prove valuable for all forms of microscopy requiring both brilliance and multiple wavelengths in the visible range.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. W. Hell and J. Wichmann, “Breaking the Diffraction Resolution Limit by Stimulated-Emission - Stimulated-Emission-Depletion Fluorescence Microscopy,” Opt. Lett. 19(11), 780–782 (1994).
    [CrossRef] [PubMed]
  2. B. Hein, K. I. Willig, and S. W. Hell, “Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell,” Proc. Natl. Acad. Sci. U.S.A. 105(38), 14271–14276 (2008).
    [CrossRef] [PubMed]
  3. E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009).
    [CrossRef]
  4. T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97(15), 8206–8210 (2000).
    [CrossRef] [PubMed]
  5. G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A. 103(31), 11440–11445 (2006).
    [CrossRef] [PubMed]
  6. V. Westphal, C. M. Blanca, M. Dyba, L. Kastrup, and S. W. Hell, “Laser-diode-stimulated emission depletion microscopy,” Appl. Phys. Lett. 82(18), 3125–3127 (2003).
    [CrossRef]
  7. K. I. Willig, B. Harke, R. Medda, and S. W. Hell, “STED microscopy with continuous wave beams,” Nat. Methods 4(11), 915–918 (2007).
    [CrossRef] [PubMed]
  8. D. Wildanger, E. Rittweger, L. Kastrup, and S. W. Hell, “STED microscopy with a supercontinuum laser source,” Opt. Express 16(13), 9614–9621 (2008).
    [CrossRef] [PubMed]
  9. B. R. Rankin, R. R. Kellner, and S. W. Hell, “Stimulated-emission-depletion microscopy with a multicolor stimulated-Raman-scattering light source,” Opt. Lett. 33(21), 2491–2493 (2008).
    [CrossRef] [PubMed]
  10. R. H. Stolen, A. R. Tynes, and E. P. Ippen, “Raman Oscillation in Glass Optical Waveguide,” Appl. Phys. Lett. 20(2), 62–64 (1972).
    [CrossRef]
  11. P. J. Gao, C. J. Nie, T. L. Yang, and H. Z. Su, “Stimulated Raman-Scattering up to 10 Orders in an Optical Fiber,” Appl. Phys. (Berl.) 24(4), 303–306 (1981).
    [CrossRef]
  12. G. Rosman, “High-Order Comb Spectrum from Stimulated Raman-Scattering in a Silica-Core Fiber,” Opt. Quantum Electron. 14(1), 92–93 (1982).
    [CrossRef]
  13. G. Agrawal, Nonlinear Fiber Optics, Fourth Edition ed. (Academic Press, Burlington, 2007).
  14. T. J. Kane, L. A. Smoliar, F. Adams, M. A. Arbore, D. R. Balsley, M. Byer, G. Conway, W. M. Grossman, G. Keaton, J. D. Kmetec, M. Leonardo, J. J. Morehead, and W. Wiechmann, “> 10 watt fiber laser structure with 0.5-5 MHz repetition rate and 0.5-1.5 pulse width,” Fifth International Symposium on Laser Precision Microfabrication 5662, 496–500 (2004).
  15. M. J. Leonardo, M. W. Byer, G. L. Keaton, D. J. Richard, F. J. Adams, J. L. Nightingale, M. A. Arbore, S. Guzsella, and L. A. Smoliar, “Fiber amplifier based UV laser source,” Proc. SPIE 7195, 7195F(2009).

2009

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009).
[CrossRef]

M. J. Leonardo, M. W. Byer, G. L. Keaton, D. J. Richard, F. J. Adams, J. L. Nightingale, M. A. Arbore, S. Guzsella, and L. A. Smoliar, “Fiber amplifier based UV laser source,” Proc. SPIE 7195, 7195F(2009).

2008

2007

K. I. Willig, B. Harke, R. Medda, and S. W. Hell, “STED microscopy with continuous wave beams,” Nat. Methods 4(11), 915–918 (2007).
[CrossRef] [PubMed]

2006

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A. 103(31), 11440–11445 (2006).
[CrossRef] [PubMed]

2003

V. Westphal, C. M. Blanca, M. Dyba, L. Kastrup, and S. W. Hell, “Laser-diode-stimulated emission depletion microscopy,” Appl. Phys. Lett. 82(18), 3125–3127 (2003).
[CrossRef]

2000

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97(15), 8206–8210 (2000).
[CrossRef] [PubMed]

1994

1982

G. Rosman, “High-Order Comb Spectrum from Stimulated Raman-Scattering in a Silica-Core Fiber,” Opt. Quantum Electron. 14(1), 92–93 (1982).
[CrossRef]

1981

P. J. Gao, C. J. Nie, T. L. Yang, and H. Z. Su, “Stimulated Raman-Scattering up to 10 Orders in an Optical Fiber,” Appl. Phys. (Berl.) 24(4), 303–306 (1981).
[CrossRef]

1972

R. H. Stolen, A. R. Tynes, and E. P. Ippen, “Raman Oscillation in Glass Optical Waveguide,” Appl. Phys. Lett. 20(2), 62–64 (1972).
[CrossRef]

Adams, F. J.

M. J. Leonardo, M. W. Byer, G. L. Keaton, D. J. Richard, F. J. Adams, J. L. Nightingale, M. A. Arbore, S. Guzsella, and L. A. Smoliar, “Fiber amplifier based UV laser source,” Proc. SPIE 7195, 7195F(2009).

Andrei, M. A.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A. 103(31), 11440–11445 (2006).
[CrossRef] [PubMed]

Arbore, M. A.

M. J. Leonardo, M. W. Byer, G. L. Keaton, D. J. Richard, F. J. Adams, J. L. Nightingale, M. A. Arbore, S. Guzsella, and L. A. Smoliar, “Fiber amplifier based UV laser source,” Proc. SPIE 7195, 7195F(2009).

Blanca, C. M.

V. Westphal, C. M. Blanca, M. Dyba, L. Kastrup, and S. W. Hell, “Laser-diode-stimulated emission depletion microscopy,” Appl. Phys. Lett. 82(18), 3125–3127 (2003).
[CrossRef]

Byer, M. W.

M. J. Leonardo, M. W. Byer, G. L. Keaton, D. J. Richard, F. J. Adams, J. L. Nightingale, M. A. Arbore, S. Guzsella, and L. A. Smoliar, “Fiber amplifier based UV laser source,” Proc. SPIE 7195, 7195F(2009).

Donnert, G.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A. 103(31), 11440–11445 (2006).
[CrossRef] [PubMed]

Dyba, M.

V. Westphal, C. M. Blanca, M. Dyba, L. Kastrup, and S. W. Hell, “Laser-diode-stimulated emission depletion microscopy,” Appl. Phys. Lett. 82(18), 3125–3127 (2003).
[CrossRef]

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97(15), 8206–8210 (2000).
[CrossRef] [PubMed]

Eggeling, C.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009).
[CrossRef]

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A. 103(31), 11440–11445 (2006).
[CrossRef] [PubMed]

Egner, A.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97(15), 8206–8210 (2000).
[CrossRef] [PubMed]

Gao, P. J.

P. J. Gao, C. J. Nie, T. L. Yang, and H. Z. Su, “Stimulated Raman-Scattering up to 10 Orders in an Optical Fiber,” Appl. Phys. (Berl.) 24(4), 303–306 (1981).
[CrossRef]

Guzsella, S.

M. J. Leonardo, M. W. Byer, G. L. Keaton, D. J. Richard, F. J. Adams, J. L. Nightingale, M. A. Arbore, S. Guzsella, and L. A. Smoliar, “Fiber amplifier based UV laser source,” Proc. SPIE 7195, 7195F(2009).

Han, K. Y.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009).
[CrossRef]

Harke, B.

K. I. Willig, B. Harke, R. Medda, and S. W. Hell, “STED microscopy with continuous wave beams,” Nat. Methods 4(11), 915–918 (2007).
[CrossRef] [PubMed]

Hein, B.

B. Hein, K. I. Willig, and S. W. Hell, “Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell,” Proc. Natl. Acad. Sci. U.S.A. 105(38), 14271–14276 (2008).
[CrossRef] [PubMed]

Hell, S. W.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009).
[CrossRef]

B. Hein, K. I. Willig, and S. W. Hell, “Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell,” Proc. Natl. Acad. Sci. U.S.A. 105(38), 14271–14276 (2008).
[CrossRef] [PubMed]

D. Wildanger, E. Rittweger, L. Kastrup, and S. W. Hell, “STED microscopy with a supercontinuum laser source,” Opt. Express 16(13), 9614–9621 (2008).
[CrossRef] [PubMed]

B. R. Rankin, R. R. Kellner, and S. W. Hell, “Stimulated-emission-depletion microscopy with a multicolor stimulated-Raman-scattering light source,” Opt. Lett. 33(21), 2491–2493 (2008).
[CrossRef] [PubMed]

K. I. Willig, B. Harke, R. Medda, and S. W. Hell, “STED microscopy with continuous wave beams,” Nat. Methods 4(11), 915–918 (2007).
[CrossRef] [PubMed]

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A. 103(31), 11440–11445 (2006).
[CrossRef] [PubMed]

V. Westphal, C. M. Blanca, M. Dyba, L. Kastrup, and S. W. Hell, “Laser-diode-stimulated emission depletion microscopy,” Appl. Phys. Lett. 82(18), 3125–3127 (2003).
[CrossRef]

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97(15), 8206–8210 (2000).
[CrossRef] [PubMed]

S. W. Hell and J. Wichmann, “Breaking the Diffraction Resolution Limit by Stimulated-Emission - Stimulated-Emission-Depletion Fluorescence Microscopy,” Opt. Lett. 19(11), 780–782 (1994).
[CrossRef] [PubMed]

Ippen, E. P.

R. H. Stolen, A. R. Tynes, and E. P. Ippen, “Raman Oscillation in Glass Optical Waveguide,” Appl. Phys. Lett. 20(2), 62–64 (1972).
[CrossRef]

Irvine, S. E.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009).
[CrossRef]

Jahn, R.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A. 103(31), 11440–11445 (2006).
[CrossRef] [PubMed]

Jakobs, S.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97(15), 8206–8210 (2000).
[CrossRef] [PubMed]

Kastrup, L.

D. Wildanger, E. Rittweger, L. Kastrup, and S. W. Hell, “STED microscopy with a supercontinuum laser source,” Opt. Express 16(13), 9614–9621 (2008).
[CrossRef] [PubMed]

V. Westphal, C. M. Blanca, M. Dyba, L. Kastrup, and S. W. Hell, “Laser-diode-stimulated emission depletion microscopy,” Appl. Phys. Lett. 82(18), 3125–3127 (2003).
[CrossRef]

Keaton, G. L.

M. J. Leonardo, M. W. Byer, G. L. Keaton, D. J. Richard, F. J. Adams, J. L. Nightingale, M. A. Arbore, S. Guzsella, and L. A. Smoliar, “Fiber amplifier based UV laser source,” Proc. SPIE 7195, 7195F(2009).

Keller, J.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A. 103(31), 11440–11445 (2006).
[CrossRef] [PubMed]

Kellner, R. R.

Klar, T. A.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97(15), 8206–8210 (2000).
[CrossRef] [PubMed]

Leonardo, M. J.

M. J. Leonardo, M. W. Byer, G. L. Keaton, D. J. Richard, F. J. Adams, J. L. Nightingale, M. A. Arbore, S. Guzsella, and L. A. Smoliar, “Fiber amplifier based UV laser source,” Proc. SPIE 7195, 7195F(2009).

Lührmann, R.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A. 103(31), 11440–11445 (2006).
[CrossRef] [PubMed]

Medda, R.

K. I. Willig, B. Harke, R. Medda, and S. W. Hell, “STED microscopy with continuous wave beams,” Nat. Methods 4(11), 915–918 (2007).
[CrossRef] [PubMed]

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A. 103(31), 11440–11445 (2006).
[CrossRef] [PubMed]

Nie, C. J.

P. J. Gao, C. J. Nie, T. L. Yang, and H. Z. Su, “Stimulated Raman-Scattering up to 10 Orders in an Optical Fiber,” Appl. Phys. (Berl.) 24(4), 303–306 (1981).
[CrossRef]

Nightingale, J. L.

M. J. Leonardo, M. W. Byer, G. L. Keaton, D. J. Richard, F. J. Adams, J. L. Nightingale, M. A. Arbore, S. Guzsella, and L. A. Smoliar, “Fiber amplifier based UV laser source,” Proc. SPIE 7195, 7195F(2009).

Rankin, B. R.

Richard, D. J.

M. J. Leonardo, M. W. Byer, G. L. Keaton, D. J. Richard, F. J. Adams, J. L. Nightingale, M. A. Arbore, S. Guzsella, and L. A. Smoliar, “Fiber amplifier based UV laser source,” Proc. SPIE 7195, 7195F(2009).

Rittweger, E.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009).
[CrossRef]

D. Wildanger, E. Rittweger, L. Kastrup, and S. W. Hell, “STED microscopy with a supercontinuum laser source,” Opt. Express 16(13), 9614–9621 (2008).
[CrossRef] [PubMed]

Rizzoli, S. O.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A. 103(31), 11440–11445 (2006).
[CrossRef] [PubMed]

Rosman, G.

G. Rosman, “High-Order Comb Spectrum from Stimulated Raman-Scattering in a Silica-Core Fiber,” Opt. Quantum Electron. 14(1), 92–93 (1982).
[CrossRef]

Smoliar, L. A.

M. J. Leonardo, M. W. Byer, G. L. Keaton, D. J. Richard, F. J. Adams, J. L. Nightingale, M. A. Arbore, S. Guzsella, and L. A. Smoliar, “Fiber amplifier based UV laser source,” Proc. SPIE 7195, 7195F(2009).

Stolen, R. H.

R. H. Stolen, A. R. Tynes, and E. P. Ippen, “Raman Oscillation in Glass Optical Waveguide,” Appl. Phys. Lett. 20(2), 62–64 (1972).
[CrossRef]

Su, H. Z.

P. J. Gao, C. J. Nie, T. L. Yang, and H. Z. Su, “Stimulated Raman-Scattering up to 10 Orders in an Optical Fiber,” Appl. Phys. (Berl.) 24(4), 303–306 (1981).
[CrossRef]

Tynes, A. R.

R. H. Stolen, A. R. Tynes, and E. P. Ippen, “Raman Oscillation in Glass Optical Waveguide,” Appl. Phys. Lett. 20(2), 62–64 (1972).
[CrossRef]

Westphal, V.

V. Westphal, C. M. Blanca, M. Dyba, L. Kastrup, and S. W. Hell, “Laser-diode-stimulated emission depletion microscopy,” Appl. Phys. Lett. 82(18), 3125–3127 (2003).
[CrossRef]

Wichmann, J.

Wildanger, D.

Willig, K. I.

B. Hein, K. I. Willig, and S. W. Hell, “Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell,” Proc. Natl. Acad. Sci. U.S.A. 105(38), 14271–14276 (2008).
[CrossRef] [PubMed]

K. I. Willig, B. Harke, R. Medda, and S. W. Hell, “STED microscopy with continuous wave beams,” Nat. Methods 4(11), 915–918 (2007).
[CrossRef] [PubMed]

Yang, T. L.

P. J. Gao, C. J. Nie, T. L. Yang, and H. Z. Su, “Stimulated Raman-Scattering up to 10 Orders in an Optical Fiber,” Appl. Phys. (Berl.) 24(4), 303–306 (1981).
[CrossRef]

Appl. Phys. (Berl.)

P. J. Gao, C. J. Nie, T. L. Yang, and H. Z. Su, “Stimulated Raman-Scattering up to 10 Orders in an Optical Fiber,” Appl. Phys. (Berl.) 24(4), 303–306 (1981).
[CrossRef]

Appl. Phys. Lett.

R. H. Stolen, A. R. Tynes, and E. P. Ippen, “Raman Oscillation in Glass Optical Waveguide,” Appl. Phys. Lett. 20(2), 62–64 (1972).
[CrossRef]

V. Westphal, C. M. Blanca, M. Dyba, L. Kastrup, and S. W. Hell, “Laser-diode-stimulated emission depletion microscopy,” Appl. Phys. Lett. 82(18), 3125–3127 (2003).
[CrossRef]

Nat. Methods

K. I. Willig, B. Harke, R. Medda, and S. W. Hell, “STED microscopy with continuous wave beams,” Nat. Methods 4(11), 915–918 (2007).
[CrossRef] [PubMed]

Nat. Photonics

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Quantum Electron.

G. Rosman, “High-Order Comb Spectrum from Stimulated Raman-Scattering in a Silica-Core Fiber,” Opt. Quantum Electron. 14(1), 92–93 (1982).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A.

B. Hein, K. I. Willig, and S. W. Hell, “Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell,” Proc. Natl. Acad. Sci. U.S.A. 105(38), 14271–14276 (2008).
[CrossRef] [PubMed]

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97(15), 8206–8210 (2000).
[CrossRef] [PubMed]

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A. 103(31), 11440–11445 (2006).
[CrossRef] [PubMed]

Proc. SPIE

M. J. Leonardo, M. W. Byer, G. L. Keaton, D. J. Richard, F. J. Adams, J. L. Nightingale, M. A. Arbore, S. Guzsella, and L. A. Smoliar, “Fiber amplifier based UV laser source,” Proc. SPIE 7195, 7195F(2009).

Other

G. Agrawal, Nonlinear Fiber Optics, Fourth Edition ed. (Academic Press, Burlington, 2007).

T. J. Kane, L. A. Smoliar, F. Adams, M. A. Arbore, D. R. Balsley, M. Byer, G. Conway, W. M. Grossman, G. Keaton, J. D. Kmetec, M. Leonardo, J. J. Morehead, and W. Wiechmann, “> 10 watt fiber laser structure with 0.5-5 MHz repetition rate and 0.5-1.5 pulse width,” Fifth International Symposium on Laser Precision Microfabrication 5662, 496–500 (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of setup used for measurements. (b) Measured spectra produced in the standard, single mode, polarization maintaining fiber by the 530 nm pump laser at three different powers (before coupling into the fiber): 360 mW (top), 240 mW (center), and 200 mW (bottom). In each case pump power is chosen to maximize the output power of the last line in the spectrum.

Fig. 2
Fig. 2

Raw STED images using 585 nm with confocal images (far left) for comparison. (a) 43 nm yellow-green fluorescent beads. Images are 4 µm × 4 µm and enlarged areas have dimensions of 1 µm × 1 µm, with an intensity line profile taken at the image position specified by the arrows. (b) Images in both confocal and STED mode of vimentin fibers in PtK2 cells stained with Chromeo 488 via secondary antibody labeling. Images are 10 µm × 10 µm, enlarged areas have dimensions of 3 µm × 3 µm. All images show the complete dynamic range present within each image pane. Photon counts are shown in the color scale in the bottom right of each image pane.

Fig. 3
Fig. 3

Raw STED images using 600 nm with confocal images (far left) for comparison. (a) 43 nm yellow-green fluorescent beads. (b) Vimentin fibers in PtK2 cells stained with Chromeo 488. Images and enlargements have the same dimensions as Fig. 2 showing the complete dynamic range of each image pane.

Fig. 4
Fig. 4

Raw STED images using 616 nm with confocal images (far left) for comparison. (a) 43 nm yellow-green fluorescent beads. (b) Vimentin fibers in PtK2 cells stained with Chromeo 488. Images and enlargements have the same dimensions as Fig. 2, showing the complete dynamic range of each image pane.

Metrics