Abstract

We present an imaging system that enables real-time magnitude and phase detection of modulated signals and its application to a Live Electro-optic Imaging (LEI) system, which realizes instantaneous visualization of RF electric fields. The real-time acquisition of magnitude and phase images of a modulated optical signal at 5 kHz is demonstrated by imaging with a Si-based high-speed CMOS image sensor and real-time signal processing with a digital signal processor. In the LEI system, RF electric fields are probed with light via an electro-optic crystal plate and downconverted to an intermediate frequency by parallel optical heterodyning, which can be detected with the image sensor. The artifacts caused by the optics and the image sensor characteristics are corrected by image processing. As examples, we demonstrate real-time visualization of electric fields from RF circuits.

© 2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multi-beam confocal microscopy based on a custom image sensor with focal-plane pinhole array effect

Keiichiro Kagawa, Min-Woong Seo, Keita Yasutomi, Susumu Terakawa, and Shoji Kawahito
Opt. Express 21(2) 1417-1429 (2013)

Real-time visualization of electromagnetic waves propagating in air using live electro-optic imaging technique

Atsushi Kanno, Kiyotaka Sasagawa, Takahiro Shiozawa, and Masahiro Tsuchiya
Opt. Express 18(10) 10029-10035 (2010)

Single-event transient imaging with an ultra-high-speed temporally compressive multi-aperture CMOS image sensor

Futa Mochizuki, Keiichiro Kagawa, Shin-ichiro Okihara, Min-Woong Seo, Bo Zhang, Taishi Takasawa, Keita Yasutomi, and Shoji Kawahito
Opt. Express 24(4) 4155-4176 (2016)

References

  • View by:
  • |
  • |
  • |

  1. K. Sasagawa, A. Kanno, T. Kawanishi, and M. Tsuchiya, “Live electro-optic imaging of microwave near-fields via ultra-parallel photonic heterodyne,” IEEE 2007 MTT-S International Microwave Symposium Digest, 401–404 (2007).
  2. K. Sasagawa, A. Kanno, T. Kawanishi, and M. Tsuchiya, “Live electro-optic imaging system based on ultra-parallel photonic heterodyne for microwave near-fields,” IEEE Trans. Microwave Theory Tech. 55, 2782–2791 (2007).
    [Crossref]
  3. K. Sasagawa, A. Kanno, and M. Tsuchiya, “Instantaneous Visualization of K-Band Electric Near-Fields by Live Electrooptic Imaging System Based on Double Sideband Suppressed Carrier Modulation,” J. Lightwave Technol. 26, 2782–2788 (2008).
    [Crossref]
  4. A. Kanno, K. Sasagawa, and M. Tsuchiya, “W-Band live electro-Optic imaging system,” presented at European Microwave Conf. 2008, the Netherlands, 27–31 Oct. 2008.
  5. K. Sasagawa and M. Tsuchiya, “Real-time monitoring system of RF near-field distribution images on the basis of 64-channel parallel electro-optic data acquisition,” IEICE Electron. Express 2, 600–606 (2005).
    [Crossref]
  6. A. Kanno, K. Sasagawa, and M. Tsuchiya, “Instantaneous microwave transmission imaging of aqueous samples,” presented at 2007 IEEE Int. Topical Meeting Microwave Photon., Canada, 3–5 Oct. 2007.
  7. F. Pockels, “Lehrbuch der Kristalloptik,” Teubner, Leipzig (1906).
  8. J. A. Valdmanis, G. Mourou, and C. W. Gabel, “Picosecond electro-optic sampling system,” Appl. Phys. Lett. 41, 211–212 (1982).
    [Crossref]
  9. K. J. Weingarten, M. J.W. Rodwell, and D. M. Bloom, “Picosecond optical sampling of GaAs integrated circuits,” IEEE J. Quantum Electron. 24, 198–220 (1988).
    [Crossref]
  10. T. Nagatsuma, “Measurement of high-speed devices and integrated circuits using electro-optic sampling technique,” IEICE Trans. Electron. 76-C, 55–63 (1993).
  11. A. Sasaki and T. Nagatsuma, “Electric-field scanning system using electro-optic sensor,” IEICE Trans. Electron. E86-C, 1345–1351 (2003).
  12. M. Takahashi, E. Suzuki, S. Arakawa, H. Ota, K. Arai, and R. Sato, “High speed system for measureing electro-magnetic field distribution,” IEICE Trans. Commun. E89-B, 2905–2911 (2006).
    [Crossref]
  13. S. Wakana, T. Ohara, M. Abe, E. Yamazaki, M. Kishi, and M. Tsuchiya, “Fiber-edge electrooptic/magnetooptic probe for spectral-domain analysis of electromagnetic field,” IEEE Trans. Microwave Theory Tech. 48, 2611–2616 (2000).
    [Crossref]
  14. M. Iwanami, M. Nakada, H. Tsuda, K. Ohashi, and J. Akedo, “Ultra small electro-optic field probe fabricated by aerosol deposition,” IEICE Electron. Express 4, 26–32 (2007).
    [Crossref]
  15. D.-J. Lee and J. F. Whitaker, “An optical-fiber-scale electro-optic probe for minimally invasive high-frequency field sensing,” Opt. Express 16, 21587–21597 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-26-21587.
    [Crossref] [PubMed]
  16. H. Togo, N. Shimizu, and T. Nagatsuma, “Near-field mapping system using fiber-based electro-opticprobe for specific absorption rate measurement,” IEICE Trans. Electron.,  E90-C, 436–442 (2007).
    [Crossref]
  17. K. Yang, G. David, J.-G. Yook, I. Papapolymerou, L. P. B. Katehi, and J. F. Whitaker, “Electrooptic mapping and finite-element modeling of the near-field pattern of a microstrip patch antenna,” IEEE Trans. Microwave Theory Tech. 48, 288–293 (2000).
    [Crossref]
  18. K. Sasagawa and M. Tsuchiya, “Low noise and high frequency resolution electrooptic sensing of RF near-fields using an external optical modulator,” J. Lightwave Technol. 26, 1242–1248 (2008).
    [Crossref]
  19. D. J. Lee and J. F. Whitaker, “Bandwidth enhancement of electro-optic field sensing using photonic down-mixing with harmonic sidebands,” Opt. Express 16, 14771–14779 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-19-14771.
    [Crossref] [PubMed]
  20. K. Sasagawa and M. Tsuchiya, “Modulation depth enhancement for highly sensitive electrooptic RF near-field measurement,” Electron. Lett. 42, 1357–1358 (2006).
    [Crossref]

2008 (4)

2007 (3)

H. Togo, N. Shimizu, and T. Nagatsuma, “Near-field mapping system using fiber-based electro-opticprobe for specific absorption rate measurement,” IEICE Trans. Electron.,  E90-C, 436–442 (2007).
[Crossref]

M. Iwanami, M. Nakada, H. Tsuda, K. Ohashi, and J. Akedo, “Ultra small electro-optic field probe fabricated by aerosol deposition,” IEICE Electron. Express 4, 26–32 (2007).
[Crossref]

K. Sasagawa, A. Kanno, T. Kawanishi, and M. Tsuchiya, “Live electro-optic imaging system based on ultra-parallel photonic heterodyne for microwave near-fields,” IEEE Trans. Microwave Theory Tech. 55, 2782–2791 (2007).
[Crossref]

2006 (2)

M. Takahashi, E. Suzuki, S. Arakawa, H. Ota, K. Arai, and R. Sato, “High speed system for measureing electro-magnetic field distribution,” IEICE Trans. Commun. E89-B, 2905–2911 (2006).
[Crossref]

K. Sasagawa and M. Tsuchiya, “Modulation depth enhancement for highly sensitive electrooptic RF near-field measurement,” Electron. Lett. 42, 1357–1358 (2006).
[Crossref]

2005 (1)

K. Sasagawa and M. Tsuchiya, “Real-time monitoring system of RF near-field distribution images on the basis of 64-channel parallel electro-optic data acquisition,” IEICE Electron. Express 2, 600–606 (2005).
[Crossref]

2003 (1)

A. Sasaki and T. Nagatsuma, “Electric-field scanning system using electro-optic sensor,” IEICE Trans. Electron. E86-C, 1345–1351 (2003).

2000 (2)

S. Wakana, T. Ohara, M. Abe, E. Yamazaki, M. Kishi, and M. Tsuchiya, “Fiber-edge electrooptic/magnetooptic probe for spectral-domain analysis of electromagnetic field,” IEEE Trans. Microwave Theory Tech. 48, 2611–2616 (2000).
[Crossref]

K. Yang, G. David, J.-G. Yook, I. Papapolymerou, L. P. B. Katehi, and J. F. Whitaker, “Electrooptic mapping and finite-element modeling of the near-field pattern of a microstrip patch antenna,” IEEE Trans. Microwave Theory Tech. 48, 288–293 (2000).
[Crossref]

1993 (1)

T. Nagatsuma, “Measurement of high-speed devices and integrated circuits using electro-optic sampling technique,” IEICE Trans. Electron. 76-C, 55–63 (1993).

1988 (1)

K. J. Weingarten, M. J.W. Rodwell, and D. M. Bloom, “Picosecond optical sampling of GaAs integrated circuits,” IEEE J. Quantum Electron. 24, 198–220 (1988).
[Crossref]

1982 (1)

J. A. Valdmanis, G. Mourou, and C. W. Gabel, “Picosecond electro-optic sampling system,” Appl. Phys. Lett. 41, 211–212 (1982).
[Crossref]

Abe, M.

S. Wakana, T. Ohara, M. Abe, E. Yamazaki, M. Kishi, and M. Tsuchiya, “Fiber-edge electrooptic/magnetooptic probe for spectral-domain analysis of electromagnetic field,” IEEE Trans. Microwave Theory Tech. 48, 2611–2616 (2000).
[Crossref]

Akedo, J.

M. Iwanami, M. Nakada, H. Tsuda, K. Ohashi, and J. Akedo, “Ultra small electro-optic field probe fabricated by aerosol deposition,” IEICE Electron. Express 4, 26–32 (2007).
[Crossref]

Arai, K.

M. Takahashi, E. Suzuki, S. Arakawa, H. Ota, K. Arai, and R. Sato, “High speed system for measureing electro-magnetic field distribution,” IEICE Trans. Commun. E89-B, 2905–2911 (2006).
[Crossref]

Arakawa, S.

M. Takahashi, E. Suzuki, S. Arakawa, H. Ota, K. Arai, and R. Sato, “High speed system for measureing electro-magnetic field distribution,” IEICE Trans. Commun. E89-B, 2905–2911 (2006).
[Crossref]

Bloom, D. M.

K. J. Weingarten, M. J.W. Rodwell, and D. M. Bloom, “Picosecond optical sampling of GaAs integrated circuits,” IEEE J. Quantum Electron. 24, 198–220 (1988).
[Crossref]

David, G.

K. Yang, G. David, J.-G. Yook, I. Papapolymerou, L. P. B. Katehi, and J. F. Whitaker, “Electrooptic mapping and finite-element modeling of the near-field pattern of a microstrip patch antenna,” IEEE Trans. Microwave Theory Tech. 48, 288–293 (2000).
[Crossref]

Gabel, C. W.

J. A. Valdmanis, G. Mourou, and C. W. Gabel, “Picosecond electro-optic sampling system,” Appl. Phys. Lett. 41, 211–212 (1982).
[Crossref]

Iwanami, M.

M. Iwanami, M. Nakada, H. Tsuda, K. Ohashi, and J. Akedo, “Ultra small electro-optic field probe fabricated by aerosol deposition,” IEICE Electron. Express 4, 26–32 (2007).
[Crossref]

Kanno, A.

K. Sasagawa, A. Kanno, and M. Tsuchiya, “Instantaneous Visualization of K-Band Electric Near-Fields by Live Electrooptic Imaging System Based on Double Sideband Suppressed Carrier Modulation,” J. Lightwave Technol. 26, 2782–2788 (2008).
[Crossref]

K. Sasagawa, A. Kanno, T. Kawanishi, and M. Tsuchiya, “Live electro-optic imaging system based on ultra-parallel photonic heterodyne for microwave near-fields,” IEEE Trans. Microwave Theory Tech. 55, 2782–2791 (2007).
[Crossref]

K. Sasagawa, A. Kanno, T. Kawanishi, and M. Tsuchiya, “Live electro-optic imaging of microwave near-fields via ultra-parallel photonic heterodyne,” IEEE 2007 MTT-S International Microwave Symposium Digest, 401–404 (2007).

A. Kanno, K. Sasagawa, and M. Tsuchiya, “W-Band live electro-Optic imaging system,” presented at European Microwave Conf. 2008, the Netherlands, 27–31 Oct. 2008.

A. Kanno, K. Sasagawa, and M. Tsuchiya, “Instantaneous microwave transmission imaging of aqueous samples,” presented at 2007 IEEE Int. Topical Meeting Microwave Photon., Canada, 3–5 Oct. 2007.

Katehi, L. P. B.

K. Yang, G. David, J.-G. Yook, I. Papapolymerou, L. P. B. Katehi, and J. F. Whitaker, “Electrooptic mapping and finite-element modeling of the near-field pattern of a microstrip patch antenna,” IEEE Trans. Microwave Theory Tech. 48, 288–293 (2000).
[Crossref]

Kawanishi, T.

K. Sasagawa, A. Kanno, T. Kawanishi, and M. Tsuchiya, “Live electro-optic imaging system based on ultra-parallel photonic heterodyne for microwave near-fields,” IEEE Trans. Microwave Theory Tech. 55, 2782–2791 (2007).
[Crossref]

K. Sasagawa, A. Kanno, T. Kawanishi, and M. Tsuchiya, “Live electro-optic imaging of microwave near-fields via ultra-parallel photonic heterodyne,” IEEE 2007 MTT-S International Microwave Symposium Digest, 401–404 (2007).

Kishi, M.

S. Wakana, T. Ohara, M. Abe, E. Yamazaki, M. Kishi, and M. Tsuchiya, “Fiber-edge electrooptic/magnetooptic probe for spectral-domain analysis of electromagnetic field,” IEEE Trans. Microwave Theory Tech. 48, 2611–2616 (2000).
[Crossref]

Lee, D. J.

Lee, D.-J.

Mourou, G.

J. A. Valdmanis, G. Mourou, and C. W. Gabel, “Picosecond electro-optic sampling system,” Appl. Phys. Lett. 41, 211–212 (1982).
[Crossref]

Nagatsuma, T.

H. Togo, N. Shimizu, and T. Nagatsuma, “Near-field mapping system using fiber-based electro-opticprobe for specific absorption rate measurement,” IEICE Trans. Electron.,  E90-C, 436–442 (2007).
[Crossref]

A. Sasaki and T. Nagatsuma, “Electric-field scanning system using electro-optic sensor,” IEICE Trans. Electron. E86-C, 1345–1351 (2003).

T. Nagatsuma, “Measurement of high-speed devices and integrated circuits using electro-optic sampling technique,” IEICE Trans. Electron. 76-C, 55–63 (1993).

Nakada, M.

M. Iwanami, M. Nakada, H. Tsuda, K. Ohashi, and J. Akedo, “Ultra small electro-optic field probe fabricated by aerosol deposition,” IEICE Electron. Express 4, 26–32 (2007).
[Crossref]

Ohara, T.

S. Wakana, T. Ohara, M. Abe, E. Yamazaki, M. Kishi, and M. Tsuchiya, “Fiber-edge electrooptic/magnetooptic probe for spectral-domain analysis of electromagnetic field,” IEEE Trans. Microwave Theory Tech. 48, 2611–2616 (2000).
[Crossref]

Ohashi, K.

M. Iwanami, M. Nakada, H. Tsuda, K. Ohashi, and J. Akedo, “Ultra small electro-optic field probe fabricated by aerosol deposition,” IEICE Electron. Express 4, 26–32 (2007).
[Crossref]

Ota, H.

M. Takahashi, E. Suzuki, S. Arakawa, H. Ota, K. Arai, and R. Sato, “High speed system for measureing electro-magnetic field distribution,” IEICE Trans. Commun. E89-B, 2905–2911 (2006).
[Crossref]

Papapolymerou, I.

K. Yang, G. David, J.-G. Yook, I. Papapolymerou, L. P. B. Katehi, and J. F. Whitaker, “Electrooptic mapping and finite-element modeling of the near-field pattern of a microstrip patch antenna,” IEEE Trans. Microwave Theory Tech. 48, 288–293 (2000).
[Crossref]

Pockels, F.

F. Pockels, “Lehrbuch der Kristalloptik,” Teubner, Leipzig (1906).

Rodwell, M. J.W.

K. J. Weingarten, M. J.W. Rodwell, and D. M. Bloom, “Picosecond optical sampling of GaAs integrated circuits,” IEEE J. Quantum Electron. 24, 198–220 (1988).
[Crossref]

Sasagawa, K.

K. Sasagawa, A. Kanno, and M. Tsuchiya, “Instantaneous Visualization of K-Band Electric Near-Fields by Live Electrooptic Imaging System Based on Double Sideband Suppressed Carrier Modulation,” J. Lightwave Technol. 26, 2782–2788 (2008).
[Crossref]

K. Sasagawa and M. Tsuchiya, “Low noise and high frequency resolution electrooptic sensing of RF near-fields using an external optical modulator,” J. Lightwave Technol. 26, 1242–1248 (2008).
[Crossref]

K. Sasagawa, A. Kanno, T. Kawanishi, and M. Tsuchiya, “Live electro-optic imaging system based on ultra-parallel photonic heterodyne for microwave near-fields,” IEEE Trans. Microwave Theory Tech. 55, 2782–2791 (2007).
[Crossref]

K. Sasagawa and M. Tsuchiya, “Modulation depth enhancement for highly sensitive electrooptic RF near-field measurement,” Electron. Lett. 42, 1357–1358 (2006).
[Crossref]

K. Sasagawa and M. Tsuchiya, “Real-time monitoring system of RF near-field distribution images on the basis of 64-channel parallel electro-optic data acquisition,” IEICE Electron. Express 2, 600–606 (2005).
[Crossref]

A. Kanno, K. Sasagawa, and M. Tsuchiya, “W-Band live electro-Optic imaging system,” presented at European Microwave Conf. 2008, the Netherlands, 27–31 Oct. 2008.

A. Kanno, K. Sasagawa, and M. Tsuchiya, “Instantaneous microwave transmission imaging of aqueous samples,” presented at 2007 IEEE Int. Topical Meeting Microwave Photon., Canada, 3–5 Oct. 2007.

K. Sasagawa, A. Kanno, T. Kawanishi, and M. Tsuchiya, “Live electro-optic imaging of microwave near-fields via ultra-parallel photonic heterodyne,” IEEE 2007 MTT-S International Microwave Symposium Digest, 401–404 (2007).

Sasaki, A.

A. Sasaki and T. Nagatsuma, “Electric-field scanning system using electro-optic sensor,” IEICE Trans. Electron. E86-C, 1345–1351 (2003).

Sato, R.

M. Takahashi, E. Suzuki, S. Arakawa, H. Ota, K. Arai, and R. Sato, “High speed system for measureing electro-magnetic field distribution,” IEICE Trans. Commun. E89-B, 2905–2911 (2006).
[Crossref]

Shimizu, N.

H. Togo, N. Shimizu, and T. Nagatsuma, “Near-field mapping system using fiber-based electro-opticprobe for specific absorption rate measurement,” IEICE Trans. Electron.,  E90-C, 436–442 (2007).
[Crossref]

Suzuki, E.

M. Takahashi, E. Suzuki, S. Arakawa, H. Ota, K. Arai, and R. Sato, “High speed system for measureing electro-magnetic field distribution,” IEICE Trans. Commun. E89-B, 2905–2911 (2006).
[Crossref]

Takahashi, M.

M. Takahashi, E. Suzuki, S. Arakawa, H. Ota, K. Arai, and R. Sato, “High speed system for measureing electro-magnetic field distribution,” IEICE Trans. Commun. E89-B, 2905–2911 (2006).
[Crossref]

Togo, H.

H. Togo, N. Shimizu, and T. Nagatsuma, “Near-field mapping system using fiber-based electro-opticprobe for specific absorption rate measurement,” IEICE Trans. Electron.,  E90-C, 436–442 (2007).
[Crossref]

Tsuchiya, M.

K. Sasagawa and M. Tsuchiya, “Low noise and high frequency resolution electrooptic sensing of RF near-fields using an external optical modulator,” J. Lightwave Technol. 26, 1242–1248 (2008).
[Crossref]

K. Sasagawa, A. Kanno, and M. Tsuchiya, “Instantaneous Visualization of K-Band Electric Near-Fields by Live Electrooptic Imaging System Based on Double Sideband Suppressed Carrier Modulation,” J. Lightwave Technol. 26, 2782–2788 (2008).
[Crossref]

K. Sasagawa, A. Kanno, T. Kawanishi, and M. Tsuchiya, “Live electro-optic imaging system based on ultra-parallel photonic heterodyne for microwave near-fields,” IEEE Trans. Microwave Theory Tech. 55, 2782–2791 (2007).
[Crossref]

K. Sasagawa and M. Tsuchiya, “Modulation depth enhancement for highly sensitive electrooptic RF near-field measurement,” Electron. Lett. 42, 1357–1358 (2006).
[Crossref]

K. Sasagawa and M. Tsuchiya, “Real-time monitoring system of RF near-field distribution images on the basis of 64-channel parallel electro-optic data acquisition,” IEICE Electron. Express 2, 600–606 (2005).
[Crossref]

S. Wakana, T. Ohara, M. Abe, E. Yamazaki, M. Kishi, and M. Tsuchiya, “Fiber-edge electrooptic/magnetooptic probe for spectral-domain analysis of electromagnetic field,” IEEE Trans. Microwave Theory Tech. 48, 2611–2616 (2000).
[Crossref]

K. Sasagawa, A. Kanno, T. Kawanishi, and M. Tsuchiya, “Live electro-optic imaging of microwave near-fields via ultra-parallel photonic heterodyne,” IEEE 2007 MTT-S International Microwave Symposium Digest, 401–404 (2007).

A. Kanno, K. Sasagawa, and M. Tsuchiya, “W-Band live electro-Optic imaging system,” presented at European Microwave Conf. 2008, the Netherlands, 27–31 Oct. 2008.

A. Kanno, K. Sasagawa, and M. Tsuchiya, “Instantaneous microwave transmission imaging of aqueous samples,” presented at 2007 IEEE Int. Topical Meeting Microwave Photon., Canada, 3–5 Oct. 2007.

Tsuda, H.

M. Iwanami, M. Nakada, H. Tsuda, K. Ohashi, and J. Akedo, “Ultra small electro-optic field probe fabricated by aerosol deposition,” IEICE Electron. Express 4, 26–32 (2007).
[Crossref]

Valdmanis, J. A.

J. A. Valdmanis, G. Mourou, and C. W. Gabel, “Picosecond electro-optic sampling system,” Appl. Phys. Lett. 41, 211–212 (1982).
[Crossref]

Wakana, S.

S. Wakana, T. Ohara, M. Abe, E. Yamazaki, M. Kishi, and M. Tsuchiya, “Fiber-edge electrooptic/magnetooptic probe for spectral-domain analysis of electromagnetic field,” IEEE Trans. Microwave Theory Tech. 48, 2611–2616 (2000).
[Crossref]

Weingarten, K. J.

K. J. Weingarten, M. J.W. Rodwell, and D. M. Bloom, “Picosecond optical sampling of GaAs integrated circuits,” IEEE J. Quantum Electron. 24, 198–220 (1988).
[Crossref]

Whitaker, J. F.

Yamazaki, E.

S. Wakana, T. Ohara, M. Abe, E. Yamazaki, M. Kishi, and M. Tsuchiya, “Fiber-edge electrooptic/magnetooptic probe for spectral-domain analysis of electromagnetic field,” IEEE Trans. Microwave Theory Tech. 48, 2611–2616 (2000).
[Crossref]

Yang, K.

K. Yang, G. David, J.-G. Yook, I. Papapolymerou, L. P. B. Katehi, and J. F. Whitaker, “Electrooptic mapping and finite-element modeling of the near-field pattern of a microstrip patch antenna,” IEEE Trans. Microwave Theory Tech. 48, 288–293 (2000).
[Crossref]

Yook, J.-G.

K. Yang, G. David, J.-G. Yook, I. Papapolymerou, L. P. B. Katehi, and J. F. Whitaker, “Electrooptic mapping and finite-element modeling of the near-field pattern of a microstrip patch antenna,” IEEE Trans. Microwave Theory Tech. 48, 288–293 (2000).
[Crossref]

Appl. Phys. Lett. (1)

J. A. Valdmanis, G. Mourou, and C. W. Gabel, “Picosecond electro-optic sampling system,” Appl. Phys. Lett. 41, 211–212 (1982).
[Crossref]

Electron. Lett. (1)

K. Sasagawa and M. Tsuchiya, “Modulation depth enhancement for highly sensitive electrooptic RF near-field measurement,” Electron. Lett. 42, 1357–1358 (2006).
[Crossref]

IEEE J. Quantum Electron. (1)

K. J. Weingarten, M. J.W. Rodwell, and D. M. Bloom, “Picosecond optical sampling of GaAs integrated circuits,” IEEE J. Quantum Electron. 24, 198–220 (1988).
[Crossref]

IEEE Trans. Microwave Theory Tech. (3)

K. Sasagawa, A. Kanno, T. Kawanishi, and M. Tsuchiya, “Live electro-optic imaging system based on ultra-parallel photonic heterodyne for microwave near-fields,” IEEE Trans. Microwave Theory Tech. 55, 2782–2791 (2007).
[Crossref]

K. Yang, G. David, J.-G. Yook, I. Papapolymerou, L. P. B. Katehi, and J. F. Whitaker, “Electrooptic mapping and finite-element modeling of the near-field pattern of a microstrip patch antenna,” IEEE Trans. Microwave Theory Tech. 48, 288–293 (2000).
[Crossref]

S. Wakana, T. Ohara, M. Abe, E. Yamazaki, M. Kishi, and M. Tsuchiya, “Fiber-edge electrooptic/magnetooptic probe for spectral-domain analysis of electromagnetic field,” IEEE Trans. Microwave Theory Tech. 48, 2611–2616 (2000).
[Crossref]

IEICE Electron. Express (2)

M. Iwanami, M. Nakada, H. Tsuda, K. Ohashi, and J. Akedo, “Ultra small electro-optic field probe fabricated by aerosol deposition,” IEICE Electron. Express 4, 26–32 (2007).
[Crossref]

K. Sasagawa and M. Tsuchiya, “Real-time monitoring system of RF near-field distribution images on the basis of 64-channel parallel electro-optic data acquisition,” IEICE Electron. Express 2, 600–606 (2005).
[Crossref]

IEICE Trans. Commun. (1)

M. Takahashi, E. Suzuki, S. Arakawa, H. Ota, K. Arai, and R. Sato, “High speed system for measureing electro-magnetic field distribution,” IEICE Trans. Commun. E89-B, 2905–2911 (2006).
[Crossref]

IEICE Trans. Electron. (3)

H. Togo, N. Shimizu, and T. Nagatsuma, “Near-field mapping system using fiber-based electro-opticprobe for specific absorption rate measurement,” IEICE Trans. Electron.,  E90-C, 436–442 (2007).
[Crossref]

T. Nagatsuma, “Measurement of high-speed devices and integrated circuits using electro-optic sampling technique,” IEICE Trans. Electron. 76-C, 55–63 (1993).

A. Sasaki and T. Nagatsuma, “Electric-field scanning system using electro-optic sensor,” IEICE Trans. Electron. E86-C, 1345–1351 (2003).

J. Lightwave Technol. (2)

Opt. Express (2)

Other (4)

K. Sasagawa, A. Kanno, T. Kawanishi, and M. Tsuchiya, “Live electro-optic imaging of microwave near-fields via ultra-parallel photonic heterodyne,” IEEE 2007 MTT-S International Microwave Symposium Digest, 401–404 (2007).

A. Kanno, K. Sasagawa, and M. Tsuchiya, “W-Band live electro-Optic imaging system,” presented at European Microwave Conf. 2008, the Netherlands, 27–31 Oct. 2008.

A. Kanno, K. Sasagawa, and M. Tsuchiya, “Instantaneous microwave transmission imaging of aqueous samples,” presented at 2007 IEEE Int. Topical Meeting Microwave Photon., Canada, 3–5 Oct. 2007.

F. Pockels, “Lehrbuch der Kristalloptik,” Teubner, Leipzig (1906).

Supplementary Material (4)

» Media 1: MPG (869 KB)     
» Media 2: MPG (228 KB)     
» Media 3: MPG (269 KB)     
» Media 4: MPG (806 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Concept of LEI where DUT is the device under test.

Fig. 2.
Fig. 2.

Electric field sensing based on the Pockels effect.

Fig. 3.
Fig. 3.

Setup of LEI system where MZM: Mach-Zehnder modulator, PBS: polarization beamsplitter, EO sensor: electro-optic sensor, DSP: digital signal processor, PC: personal computer.

Fig. 4.
Fig. 4.

(a) Raw and (b) corrected magnitude images of modulated light at 5 kHz. The number of accumulated frames was 8192.

Fig. 5.
Fig. 5.

(a) Raw and (b) corrected phase images of modulated light at 5 kHz. The number of accumulated frames was 8192.

Fig. 6.
Fig. 6.

Square root of the signal magnitude as a function of the optical modulation amplitude at the image sensor. The modulation amplitude is a digital value output from the image sensor. The plotted value is the average of 5×5 pixels.

Fig. 7.
Fig. 7.

Square root of the signal magnitude as a function of the number of accumulated frames. The optical modulation amplitude received by the image sensor is approximately 200 LSB. The magnitude value is the average of 5×5 pixels.

Fig. 8.
Fig. 8.

Schematic of a micro-strip line bandpass filter. The dashed square is the observation area. The substrate is made of FR-4.

Fig. 9.
Fig. 9.

Movie of the optical image, field magnitude, and phase of the electric field near the MSL bandpass filter (Media 1). The RF frequency and power input into the filter were 3.7 GHz and 22 dBm, respectively. The number of accumulations was 4096 and the frame rate was 5 frames per second.

Fig. 10.
Fig. 10.

Movies of the electric field above the MSL resonator. (a) Field magnitude pattern while the RF signal frequency is swept from 1.0 to 10 GHz in (Media 2). (b) Electric field phasor pattern at 3.7 GHz for a phase rotation frequency of 0.2 Hz. The input power into the filter was 22 dBm for (Media 3). The number of accumulations was 4096.

Fig. 11.
Fig. 11.

Schematic of the ring cavity andMSL. In the experiment, there was no gap between the ring and micro-strip line boards.

Fig. 12.
Fig. 12.

Movie of the optical, field magnitude, and phase images of the electric field above the MSL bandpass filter. The input power into the filter was 23 dBm for (Media 4). The number of accumulations was 4096 and the frame rate was 5 per second.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

vcos(m)=u4m+1+u4m+2u4m+3u4m+4
vsin(m)=u4m+1+u4m+2+u4m+3u4m+4,
Vcos = m=1N4vcos(m)
Vsin = m=1N4vsin(m),
M = Vcos2 + Vsin2
ϕ = arctan VsinVcos .
IIF (t) = r2I0a22 cos 2 π (fLOfRF)t,
IIF_norm (x,y,t)=IIF(x,y,t)I0(x,y),
ϕcor(x,y)=ϕraw(x,y)+Δϕ·(y÷4),

Metrics