Abstract

This paper fundamentally investigates the peak-to-average power ratio (PAPR) theory in all optical orthogonal frequency division multiplexing (OFDM) systems which employ intensity modulation-direct detection (IM-DD) scheme. We propose a low-complexity PAPR reduction scheme based on phase pre-emphasis. Simulations show that the proposed scheme brings about a 3.74 dB PAPR reduction and better nonlinear impairment tolerance in a 16×10Gb/s IM-DD all optical OFDM system.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Armstrong, "OFDM for Optical Communications," J. Lightwave. Technol. 27, 189-204 (2009).
    [CrossRef]
  2. W. Shieh, H. Bao, and Y. Tang, "Coherent optical OFDM: theory and design," Opt. Express 16, 841-859 (2006).
    [CrossRef]
  3. J. Armstrong, "OFDM: From Copper and Wireless to Optical," in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OMM1.
  4. K. Lee, T. T. Chan and J. K. Rhee, "All optical discrete Fourier transform processor for 100 Gbps OFDM transmission," Opt. Express 16, 4023-4028 (2008).
    [CrossRef] [PubMed]
  5. E. Yamada, A. Sano, H. Masuda, T. Kobayashi, E. Yoshida, Y. Miyamoto, Y. Hibino, K. Ishihara, Y. Takatori1, K. Okada, K. Hagimoto, T. Yamada, and H. Yamazaki, "Novel No-Guard-Interval PDM CO-OFDM Transmission in 4.1Tb/s (50 x 88.8-Gb/s) DWDM Link over 800 km SMF Including 50-GHz Spaced ROADM Nodes," in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper PDP8.
  6. Y. Huang, D. Qian, R. E. Saperstein, P. N. Ji, N. Cvijetic, L. Xu, and T. Wang, "Dual-Polarization 2x2 IFFT/FFT Optical Signal Processing for 100-Gb/s QPSK-PDM All-Optical OFDM," in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OTuM4.
  7. K. Takiguchi, M. Oguma, T. Shibata, and H. Takahashi, "Optical OFDM Demultiplexer Using Silica PLC Based Optical FFT Circuit," in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OWO3.
  8. Y. Tang, K. P. Ho, and W. Shieh, "Coherent Optical OFDM Transmitter Design Employing Predistortion," IEEE Photon. Tech. Lett. 20, 954-956 (2008).
    [CrossRef]
  9. J. Armstrong, "New OFDM peak-to-average power reduction scheme," in Proceedings of IEEE on Vehicular Technology, (IEEE, 2001), pp 756-760.
  10. K. Tanaka and S. Norimatsu, "Transmission Performance of WDM/OFDM Hybrid Systems over Optical Fibers," Electron. Commun. Japan, Part 1,  90, 14-24(2007).
    [CrossRef]
  11. N. Shiryaev, Probability (New York, springer-verlag, 1996).
  12. S. H. Han and J. H. Lee, "An overview of peak-to-average power ratio reduction techniques for multicarrier transmission," Wireless Commun. IEEE 12(2), 56-65 (2005).

2009

J. Armstrong, "OFDM for Optical Communications," J. Lightwave. Technol. 27, 189-204 (2009).
[CrossRef]

2008

K. Lee, T. T. Chan and J. K. Rhee, "All optical discrete Fourier transform processor for 100 Gbps OFDM transmission," Opt. Express 16, 4023-4028 (2008).
[CrossRef] [PubMed]

Y. Tang, K. P. Ho, and W. Shieh, "Coherent Optical OFDM Transmitter Design Employing Predistortion," IEEE Photon. Tech. Lett. 20, 954-956 (2008).
[CrossRef]

2007

K. Tanaka and S. Norimatsu, "Transmission Performance of WDM/OFDM Hybrid Systems over Optical Fibers," Electron. Commun. Japan, Part 1,  90, 14-24(2007).
[CrossRef]

2006

2005

S. H. Han and J. H. Lee, "An overview of peak-to-average power ratio reduction techniques for multicarrier transmission," Wireless Commun. IEEE 12(2), 56-65 (2005).

Armstrong, J.

J. Armstrong, "OFDM for Optical Communications," J. Lightwave. Technol. 27, 189-204 (2009).
[CrossRef]

Bao, H.

Chan, T. T.

Han, S. H.

S. H. Han and J. H. Lee, "An overview of peak-to-average power ratio reduction techniques for multicarrier transmission," Wireless Commun. IEEE 12(2), 56-65 (2005).

Ho, K. P.

Y. Tang, K. P. Ho, and W. Shieh, "Coherent Optical OFDM Transmitter Design Employing Predistortion," IEEE Photon. Tech. Lett. 20, 954-956 (2008).
[CrossRef]

Lee, J. H.

S. H. Han and J. H. Lee, "An overview of peak-to-average power ratio reduction techniques for multicarrier transmission," Wireless Commun. IEEE 12(2), 56-65 (2005).

Lee, K.

Norimatsu, S.

K. Tanaka and S. Norimatsu, "Transmission Performance of WDM/OFDM Hybrid Systems over Optical Fibers," Electron. Commun. Japan, Part 1,  90, 14-24(2007).
[CrossRef]

Rhee, J. K.

Shieh, W.

Y. Tang, K. P. Ho, and W. Shieh, "Coherent Optical OFDM Transmitter Design Employing Predistortion," IEEE Photon. Tech. Lett. 20, 954-956 (2008).
[CrossRef]

W. Shieh, H. Bao, and Y. Tang, "Coherent optical OFDM: theory and design," Opt. Express 16, 841-859 (2006).
[CrossRef]

Tanaka, K.

K. Tanaka and S. Norimatsu, "Transmission Performance of WDM/OFDM Hybrid Systems over Optical Fibers," Electron. Commun. Japan, Part 1,  90, 14-24(2007).
[CrossRef]

Tang, Y.

Y. Tang, K. P. Ho, and W. Shieh, "Coherent Optical OFDM Transmitter Design Employing Predistortion," IEEE Photon. Tech. Lett. 20, 954-956 (2008).
[CrossRef]

W. Shieh, H. Bao, and Y. Tang, "Coherent optical OFDM: theory and design," Opt. Express 16, 841-859 (2006).
[CrossRef]

Electron. Commun. Japan

K. Tanaka and S. Norimatsu, "Transmission Performance of WDM/OFDM Hybrid Systems over Optical Fibers," Electron. Commun. Japan, Part 1,  90, 14-24(2007).
[CrossRef]

IEEE Photon. Tech. Lett.

Y. Tang, K. P. Ho, and W. Shieh, "Coherent Optical OFDM Transmitter Design Employing Predistortion," IEEE Photon. Tech. Lett. 20, 954-956 (2008).
[CrossRef]

J. Lightwave. Technol.

J. Armstrong, "OFDM for Optical Communications," J. Lightwave. Technol. 27, 189-204 (2009).
[CrossRef]

Opt. Express

Wireless Commun. IEEE

S. H. Han and J. H. Lee, "An overview of peak-to-average power ratio reduction techniques for multicarrier transmission," Wireless Commun. IEEE 12(2), 56-65 (2005).

Other

N. Shiryaev, Probability (New York, springer-verlag, 1996).

E. Yamada, A. Sano, H. Masuda, T. Kobayashi, E. Yoshida, Y. Miyamoto, Y. Hibino, K. Ishihara, Y. Takatori1, K. Okada, K. Hagimoto, T. Yamada, and H. Yamazaki, "Novel No-Guard-Interval PDM CO-OFDM Transmission in 4.1Tb/s (50 x 88.8-Gb/s) DWDM Link over 800 km SMF Including 50-GHz Spaced ROADM Nodes," in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper PDP8.

Y. Huang, D. Qian, R. E. Saperstein, P. N. Ji, N. Cvijetic, L. Xu, and T. Wang, "Dual-Polarization 2x2 IFFT/FFT Optical Signal Processing for 100-Gb/s QPSK-PDM All-Optical OFDM," in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OTuM4.

K. Takiguchi, M. Oguma, T. Shibata, and H. Takahashi, "Optical OFDM Demultiplexer Using Silica PLC Based Optical FFT Circuit," in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OWO3.

J. Armstrong, "OFDM: From Copper and Wireless to Optical," in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OMM1.

J. Armstrong, "New OFDM peak-to-average power reduction scheme," in Proceedings of IEEE on Vehicular Technology, (IEEE, 2001), pp 756-760.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Configuration of a 16×10Gb/s IM-DD all optical OFDM system

Fig. 2.
Fig. 2.

A PLC-based OIDFT

Fig. 3.
Fig. 3.

Diagram of PAPR simulation

Fig. 4.
Fig. 4.

Probability distribution of PAPR

Fig. 5.
Fig. 5.

The CCDF of PAPR

Fig. 6.
Fig. 6.

Eye diagram of transmitted OFDM symbols (without phase pre-emphasis)

Fig. 7.
Fig. 7.

Eye diagram of transmitted OFDM symbols (with phase pre-emphasis)

Fig. 8.
Fig. 8.

BER performance versus transmitted power

Tables (1)

Tables Icon

Table 1. Simulation parameters

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

xn=IFFT{Xk}=1Nk=0N1Xkexp(j2πNnk)(n=0,1,,N1)
E{ak}=E{bk}=0
D{ak}=D{bk}=σ2
P(PAPR>PAPR0)=1(1ePAPR0)N
E{ak}=12,E{bk}=0
D{ak}=14,D{bk}=0
xn=IFFT{XK}=1NK=0N1Xkexp(k)exp(j2πNnk)(n=0,1,,N1)
Xk = Xk exp (k)(k=0,1,,N1)

Metrics