Abstract

We present a phase-shifting interferometric technique for imaging live biological cells in growth media, while optimizing spatial resolution and enabling potential real-time measurement capabilities. The technique uses slightly-off-axis interferometry which requires less detector bandwidth than traditional off-axis interferometry and fewer measurements than traditional on-axis interferometry. Experimental and theoretical comparisons between the proposed method and these traditional interferometric approaches are given. The method is experimentally demonstrated via phase microcopy of live human skin cancer cells.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005).
    [CrossRef] [PubMed]
  2. T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30(10), 1165–1167 (2005).
    [CrossRef] [PubMed]
  3. E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39(23), 4070–4075 (2000).
    [CrossRef]
  4. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22(16), 1268–1270 (1997).
    [CrossRef] [PubMed]
  5. C. P. Brophy, “Effect of intensity error correlation on the computed phase of phase-shifting interferometry,” J. Opt. Soc. Am. A 7(4), 537–541 (1990).
    [CrossRef]
  6. Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasi-phase-shifting digital holography,” Appl. Phys. Lett. 85(6), 1069–1071 (2004).
    [CrossRef]
  7. N. T. Shaked, M. T. Rinehart, and A. Wax, “Dual-interference-channel quantitative-phase microscopy of live cell dynamics,” Opt. Lett. 34(6), 767–769 (2009).
    [CrossRef] [PubMed]
  8. X. F. Meng, L. Z. Cai, X. F. Xu, X. L. Yang, X. X. Shen, G. Y. Dong, and Y. R. Wang, “Two-step phase-shifting interferometry and its application in image encryption,” Opt. Lett. 31(10), 1414–1416 (2006).
    [CrossRef] [PubMed]
  9. J. P. Liu and T. C. Poon, “Two-step-only quadrature phase-shifting digital holography,” Opt. Lett. 34(3), 250–252 (2009).
    [CrossRef] [PubMed]
  10. G. L. Chen, C. Y. Lin, H. F. Yau, M. K. Kuo, and C. C. Chang, “Wave-front reconstruction without twin-image blurring by two arbitrary step digital holograms,” Opt. Express 15(18), 11601–11607 (2007).
    [CrossRef] [PubMed]
  11. T. M. Kreis and W. P. P. Jupiter, “Suppression of the dc term in digital holography,” Opt. Eng. 36(8), 2357–2360 (1997).
    [CrossRef]
  12. Y. Takaki, H. Kawai, and H. Ohzu, “Hybrid holographic microscopy free of conjugate and zero-order images,” Appl. Opt. 38(23), 4990–4996 (1999).
    [CrossRef]
  13. Y. Zhang, Q. Lu, and B. Ge, “Elimination of zero-order diffraction in digital off-axis holography,” Opt. Commun. 240(4-6), 261–267 (2004).
    [CrossRef]
  14. E. Tajahuerce, O. Matoba, S. C. Verrall, and B. Javidi, “Optoelectronic information encryption with phase-shifting interferometry,” Appl. Opt. 39(14), 2313–2320 (2000).
    [CrossRef]
  15. K. J. Chalut, W. J. Brown, and A. Wax, “Quantitative phase microscopy with asynchronous digital holography,” Opt. Express 15(6), 3047–3052 (2007).
    [CrossRef] [PubMed]
  16. J. Schmit and K. Creath, “Extended averaging technique for derivation of error-compensating algorithms in phase-shifting interferometry,” Appl. Opt. 34(19), 3610–3619 (1995).
    [CrossRef] [PubMed]

2009

2007

2006

2005

2004

Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasi-phase-shifting digital holography,” Appl. Phys. Lett. 85(6), 1069–1071 (2004).
[CrossRef]

Y. Zhang, Q. Lu, and B. Ge, “Elimination of zero-order diffraction in digital off-axis holography,” Opt. Commun. 240(4-6), 261–267 (2004).
[CrossRef]

2000

1999

1997

I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22(16), 1268–1270 (1997).
[CrossRef] [PubMed]

T. M. Kreis and W. P. P. Jupiter, “Suppression of the dc term in digital holography,” Opt. Eng. 36(8), 2357–2360 (1997).
[CrossRef]

1995

1990

Awatsuji, Y.

Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasi-phase-shifting digital holography,” Appl. Phys. Lett. 85(6), 1069–1071 (2004).
[CrossRef]

Brophy, C. P.

Brown, W. J.

Cai, L. Z.

Chalut, K. J.

Chang, C. C.

Chen, G. L.

Colomb, T.

Creath, K.

Cuche, E.

Dasari, R. R.

Depeursinge, C.

Dong, G. Y.

Emery, Y.

Feld, M. S.

Ge, B.

Y. Zhang, Q. Lu, and B. Ge, “Elimination of zero-order diffraction in digital off-axis holography,” Opt. Commun. 240(4-6), 261–267 (2004).
[CrossRef]

Ikeda, T.

Javidi, B.

Jupiter, W. P. P.

T. M. Kreis and W. P. P. Jupiter, “Suppression of the dc term in digital holography,” Opt. Eng. 36(8), 2357–2360 (1997).
[CrossRef]

Kawai, H.

Kreis, T. M.

T. M. Kreis and W. P. P. Jupiter, “Suppression of the dc term in digital holography,” Opt. Eng. 36(8), 2357–2360 (1997).
[CrossRef]

Kubota, T.

Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasi-phase-shifting digital holography,” Appl. Phys. Lett. 85(6), 1069–1071 (2004).
[CrossRef]

Kuo, M. K.

Lin, C. Y.

Liu, J. P.

Lu, Q.

Y. Zhang, Q. Lu, and B. Ge, “Elimination of zero-order diffraction in digital off-axis holography,” Opt. Commun. 240(4-6), 261–267 (2004).
[CrossRef]

Magistretti, P. J.

Marquet, P.

Matoba, O.

Meng, X. F.

Ohzu, H.

Poon, T. C.

Popescu, G.

Rappaz, B.

Rinehart, M. T.

Sasada, M.

Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasi-phase-shifting digital holography,” Appl. Phys. Lett. 85(6), 1069–1071 (2004).
[CrossRef]

Schmit, J.

Shaked, N. T.

Shen, X. X.

Tajahuerce, E.

Takaki, Y.

Verrall, S. C.

Wang, Y. R.

Wax, A.

Xu, X. F.

Yamaguchi, I.

Yang, X. L.

Yau, H. F.

Zhang, T.

Zhang, Y.

Y. Zhang, Q. Lu, and B. Ge, “Elimination of zero-order diffraction in digital off-axis holography,” Opt. Commun. 240(4-6), 261–267 (2004).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasi-phase-shifting digital holography,” Appl. Phys. Lett. 85(6), 1069–1071 (2004).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Commun.

Y. Zhang, Q. Lu, and B. Ge, “Elimination of zero-order diffraction in digital off-axis holography,” Opt. Commun. 240(4-6), 261–267 (2004).
[CrossRef]

Opt. Eng.

T. M. Kreis and W. P. P. Jupiter, “Suppression of the dc term in digital holography,” Opt. Eng. 36(8), 2357–2360 (1997).
[CrossRef]

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Possible experimental setup for phase-shifting interferometry. SPF = Spatial filter (beam expander with a confocally-positioned pinhole), BS1, BS2 = Beam splitters; M = Mirror; λ/2 = Half wave plate; λ/4 = Quarter wave plate; O = Object/Sample; L1, L2, L3 = Lenses.

Fig. 2
Fig. 2

Schematic comparison between the spatial-frequency domains of (a) off-axis interferometry, (b) slightly-off-axis interferometry, and (c) on-axis interferometry. For simplicity, only one spatial-frequency axis is shown.

Fig. 3
Fig. 3

Static polymer microsphere (12μm in diameter): (a) Regular intensity image through the system; (b) Single off-axis interferogram; (c) The middle part of the spatial spectrum of the interferogram shown in (b). Digitally reconstructed phase obtained by: (d-f) traditional off-axis interferometry (using a single interferogram), (g-i) slightly-off-axis interferometry (using two phase-shifted interferograms), (j-l) on-axis interferometry (using four phase-shifted interferograms). (d,g,j) Wrapped phases; (e,h,k) Final unwrapped phases; (f,i,l) Surface plots of the final unwrapped phases shown in (e,h,k), respectively.

Fig. 4
Fig. 4

Live human skin cancer (A431, epithelial carcinoma) cell in growth media: (a) Regular intensity image through the system; (b) Single off-axis interferogram; (c) The middle part of the spatial spectrum of the interferogram shown in (b); (d-f) Final unwrapped phase obtained by: (d) traditional off-axis interferometry (using a single interferogram), (e) slightly-off-axis interferometry (using two phase-shifted interferograms), (f) on-axis interferometry (using four phase-shifted interferograms); (g-i) Surface plots of the final unwrapped phases shown in (d-f), respectively; (j-l) MTF images of the background of (d-f), respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Ik=|Er|2+|Es|2+|Es||Er*|exp[j(φOBJ+qx+αk)]+|Er||Es*|exp[j(φOBJ+qx+αk)],
F=[I1I2+jHT I1I2]exp(jqx)/[1exp(jβ)],φOBJ=arctanImF/ReF,

Metrics