Abstract

High power erbium-ytterbium co-doped fiber amplifier (EYDFA) has been radiated to the dose of 50krad at the dose rate of 40rad/s. Some key parameters have been measured to investigate the radiation effect on the EYDFA for space optical communication. Considering the dose of 50krad is big enough to the most of low-dose radiation environment, these experimental results will be a good reference for the low-dose inter-satellite optical communication designers.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Mochida, N. Yamaguchi, and G. Ishikawa, “Technology-oriented review and vision of 40-Gb/s-based optical transport networks,” J. Lightwave Technol. 20(12), 2272–2281 (2002).
  2. M. Lopez-Amo, L. T. Blair, and P. Urquhart, “Wavelength-division-multiplexed distributed optical fiber amplifier bus network for data and sensors,” Opt. Lett. 18(14), 1159–1161 (1993).
    [PubMed]
  3. D. M. Boroson, A. Biswas, and B. L. Edwards, “MLCD: Overview of NASA’s mars laser communications demonstration system,” Proc. SPIE 5338, 16–28 (2004).
  4. H. Hemmati, A. Biswas, and D. M. Boroson, “30-dB data rate improvement for interplanetary laser communication,” Proc. SPIE 6877, 687707–1-687707–8 (2008).
  5. G. M. Williams and E. J. Friebele, “Space radiation effects on erbium-doped fiber devices: sources, amplifiers, and passive measurements,” IEEE Trans. Nucl. Sci. 45(3), 1531–1536 (1998).
  6. G. M. Williams, B. M. Wright, W. D. Mack, and E. J. Friebele, “Projecting the performance of erbium-doped fiber devices in a space radiation environment,” Proc. SPIE 3848, 271–280 (1999).
  7. O. Berne, M. Caussanel, and O. Gilard, “A Model for the prediction of EDFA gain in a space radiation environment,” IEEE Photon. Technol. Lett. 16(10), 2227–2229 (2004).
  8. Y. Chigusa, M. Watanabe, M. Kyoto, M. Ooe, T. Matsubara, S. Okamoto, T. Yamamoto, T. Iida, and K. Sumita, “γ-ray and neutron irradiation characteristics of pure silica core single mode fiber and its life time estimation,” IEEE Trans. Nucl. Sci. 35(1), 894–897 (1988).
  9. E. Korevaar, R. J. Hofmeister, J. Schuster, et al., “Design of satellite terminal for BMDO lasercom technology demonstration,” Proc. SPIE 2381, 60–71 (1995).
  10. J. Shoemaker, P. Brooks, E. Korevaar, G. Arnold, A. Das, J. Stubstad, and R. G. Hay, “The space technology research vehicle (STRV) −2 program,” Proc. SPIE 4136, 36–47 (2000).
  11. B. Laurent and O. Duchmann, “The Silex Project: The first European optical intersatellite link experiment,” Proc. SPIE 1417, 2–12 (1991).
  12. R. Craig, B. Li, and B. Chan, “Laser qualification for the SILEX program,” Proc. SPIE 2123, 238–242 (1994).
  13. T. Nielsenetal, “In orbit test results of the first SILEX termina,” Proc. SPIE 3615, 31–42 (1999).
  14. T. S. Rose, D. Gunn, and G. C. Valley, “Gamma and proton radiation effect in erbium-doped amplifiers: Active and passive measurements,” J. Lightwave Technol. 19(12), 1918–1923 (2001).
  15. H. Ohyama, E. Simoen, C. Claeys, T. Hakata, T. Kudou, M. Yoneoka, K. Kobayashi, M. Nakabayashi, Y. Takami, and H. Sunaga, “Radiation-induced lattice defects in InGaAsP laser diodes and their effects on device performance,” Physica B 273–274(1-3), 1031–1033 (1999).
  16. S. L. Waterhouse, and K. K. Jobbins, “Radiation effects on laser diodes: A literary review,” Proc. SPIE 7070, 70700E–1–70700E–10 (2008).
  17. W. C. Goitsos, “Radiation-induced loss studies in Er-doped fiber amplifier systems,” Proc. SPIE 2699, 304–309 (1996).

2004 (2)

D. M. Boroson, A. Biswas, and B. L. Edwards, “MLCD: Overview of NASA’s mars laser communications demonstration system,” Proc. SPIE 5338, 16–28 (2004).

O. Berne, M. Caussanel, and O. Gilard, “A Model for the prediction of EDFA gain in a space radiation environment,” IEEE Photon. Technol. Lett. 16(10), 2227–2229 (2004).

2002 (1)

2001 (1)

2000 (1)

J. Shoemaker, P. Brooks, E. Korevaar, G. Arnold, A. Das, J. Stubstad, and R. G. Hay, “The space technology research vehicle (STRV) −2 program,” Proc. SPIE 4136, 36–47 (2000).

1999 (3)

G. M. Williams, B. M. Wright, W. D. Mack, and E. J. Friebele, “Projecting the performance of erbium-doped fiber devices in a space radiation environment,” Proc. SPIE 3848, 271–280 (1999).

T. Nielsenetal, “In orbit test results of the first SILEX termina,” Proc. SPIE 3615, 31–42 (1999).

H. Ohyama, E. Simoen, C. Claeys, T. Hakata, T. Kudou, M. Yoneoka, K. Kobayashi, M. Nakabayashi, Y. Takami, and H. Sunaga, “Radiation-induced lattice defects in InGaAsP laser diodes and their effects on device performance,” Physica B 273–274(1-3), 1031–1033 (1999).

1998 (1)

G. M. Williams and E. J. Friebele, “Space radiation effects on erbium-doped fiber devices: sources, amplifiers, and passive measurements,” IEEE Trans. Nucl. Sci. 45(3), 1531–1536 (1998).

1996 (1)

W. C. Goitsos, “Radiation-induced loss studies in Er-doped fiber amplifier systems,” Proc. SPIE 2699, 304–309 (1996).

1995 (1)

E. Korevaar, R. J. Hofmeister, J. Schuster, et al., “Design of satellite terminal for BMDO lasercom technology demonstration,” Proc. SPIE 2381, 60–71 (1995).

1994 (1)

R. Craig, B. Li, and B. Chan, “Laser qualification for the SILEX program,” Proc. SPIE 2123, 238–242 (1994).

1993 (1)

1991 (1)

B. Laurent and O. Duchmann, “The Silex Project: The first European optical intersatellite link experiment,” Proc. SPIE 1417, 2–12 (1991).

1988 (1)

Y. Chigusa, M. Watanabe, M. Kyoto, M. Ooe, T. Matsubara, S. Okamoto, T. Yamamoto, T. Iida, and K. Sumita, “γ-ray and neutron irradiation characteristics of pure silica core single mode fiber and its life time estimation,” IEEE Trans. Nucl. Sci. 35(1), 894–897 (1988).

Arnold, G.

J. Shoemaker, P. Brooks, E. Korevaar, G. Arnold, A. Das, J. Stubstad, and R. G. Hay, “The space technology research vehicle (STRV) −2 program,” Proc. SPIE 4136, 36–47 (2000).

Berne, O.

O. Berne, M. Caussanel, and O. Gilard, “A Model for the prediction of EDFA gain in a space radiation environment,” IEEE Photon. Technol. Lett. 16(10), 2227–2229 (2004).

Biswas, A.

D. M. Boroson, A. Biswas, and B. L. Edwards, “MLCD: Overview of NASA’s mars laser communications demonstration system,” Proc. SPIE 5338, 16–28 (2004).

Blair, L. T.

Boroson, D. M.

D. M. Boroson, A. Biswas, and B. L. Edwards, “MLCD: Overview of NASA’s mars laser communications demonstration system,” Proc. SPIE 5338, 16–28 (2004).

Brooks, P.

J. Shoemaker, P. Brooks, E. Korevaar, G. Arnold, A. Das, J. Stubstad, and R. G. Hay, “The space technology research vehicle (STRV) −2 program,” Proc. SPIE 4136, 36–47 (2000).

Caussanel, M.

O. Berne, M. Caussanel, and O. Gilard, “A Model for the prediction of EDFA gain in a space radiation environment,” IEEE Photon. Technol. Lett. 16(10), 2227–2229 (2004).

Chan, B.

R. Craig, B. Li, and B. Chan, “Laser qualification for the SILEX program,” Proc. SPIE 2123, 238–242 (1994).

Chigusa, Y.

Y. Chigusa, M. Watanabe, M. Kyoto, M. Ooe, T. Matsubara, S. Okamoto, T. Yamamoto, T. Iida, and K. Sumita, “γ-ray and neutron irradiation characteristics of pure silica core single mode fiber and its life time estimation,” IEEE Trans. Nucl. Sci. 35(1), 894–897 (1988).

Claeys, C.

H. Ohyama, E. Simoen, C. Claeys, T. Hakata, T. Kudou, M. Yoneoka, K. Kobayashi, M. Nakabayashi, Y. Takami, and H. Sunaga, “Radiation-induced lattice defects in InGaAsP laser diodes and their effects on device performance,” Physica B 273–274(1-3), 1031–1033 (1999).

Craig, R.

R. Craig, B. Li, and B. Chan, “Laser qualification for the SILEX program,” Proc. SPIE 2123, 238–242 (1994).

Das, A.

J. Shoemaker, P. Brooks, E. Korevaar, G. Arnold, A. Das, J. Stubstad, and R. G. Hay, “The space technology research vehicle (STRV) −2 program,” Proc. SPIE 4136, 36–47 (2000).

Duchmann, O.

B. Laurent and O. Duchmann, “The Silex Project: The first European optical intersatellite link experiment,” Proc. SPIE 1417, 2–12 (1991).

Edwards, B. L.

D. M. Boroson, A. Biswas, and B. L. Edwards, “MLCD: Overview of NASA’s mars laser communications demonstration system,” Proc. SPIE 5338, 16–28 (2004).

Friebele, E. J.

G. M. Williams, B. M. Wright, W. D. Mack, and E. J. Friebele, “Projecting the performance of erbium-doped fiber devices in a space radiation environment,” Proc. SPIE 3848, 271–280 (1999).

G. M. Williams and E. J. Friebele, “Space radiation effects on erbium-doped fiber devices: sources, amplifiers, and passive measurements,” IEEE Trans. Nucl. Sci. 45(3), 1531–1536 (1998).

Gilard, O.

O. Berne, M. Caussanel, and O. Gilard, “A Model for the prediction of EDFA gain in a space radiation environment,” IEEE Photon. Technol. Lett. 16(10), 2227–2229 (2004).

Goitsos, W. C.

W. C. Goitsos, “Radiation-induced loss studies in Er-doped fiber amplifier systems,” Proc. SPIE 2699, 304–309 (1996).

Gunn, D.

Hakata, T.

H. Ohyama, E. Simoen, C. Claeys, T. Hakata, T. Kudou, M. Yoneoka, K. Kobayashi, M. Nakabayashi, Y. Takami, and H. Sunaga, “Radiation-induced lattice defects in InGaAsP laser diodes and their effects on device performance,” Physica B 273–274(1-3), 1031–1033 (1999).

Hay, R. G.

J. Shoemaker, P. Brooks, E. Korevaar, G. Arnold, A. Das, J. Stubstad, and R. G. Hay, “The space technology research vehicle (STRV) −2 program,” Proc. SPIE 4136, 36–47 (2000).

Hofmeister, R. J.

E. Korevaar, R. J. Hofmeister, J. Schuster, et al., “Design of satellite terminal for BMDO lasercom technology demonstration,” Proc. SPIE 2381, 60–71 (1995).

Iida, T.

Y. Chigusa, M. Watanabe, M. Kyoto, M. Ooe, T. Matsubara, S. Okamoto, T. Yamamoto, T. Iida, and K. Sumita, “γ-ray and neutron irradiation characteristics of pure silica core single mode fiber and its life time estimation,” IEEE Trans. Nucl. Sci. 35(1), 894–897 (1988).

Ishikawa, G.

Kobayashi, K.

H. Ohyama, E. Simoen, C. Claeys, T. Hakata, T. Kudou, M. Yoneoka, K. Kobayashi, M. Nakabayashi, Y. Takami, and H. Sunaga, “Radiation-induced lattice defects in InGaAsP laser diodes and their effects on device performance,” Physica B 273–274(1-3), 1031–1033 (1999).

Korevaar, E.

J. Shoemaker, P. Brooks, E. Korevaar, G. Arnold, A. Das, J. Stubstad, and R. G. Hay, “The space technology research vehicle (STRV) −2 program,” Proc. SPIE 4136, 36–47 (2000).

E. Korevaar, R. J. Hofmeister, J. Schuster, et al., “Design of satellite terminal for BMDO lasercom technology demonstration,” Proc. SPIE 2381, 60–71 (1995).

Kudou, T.

H. Ohyama, E. Simoen, C. Claeys, T. Hakata, T. Kudou, M. Yoneoka, K. Kobayashi, M. Nakabayashi, Y. Takami, and H. Sunaga, “Radiation-induced lattice defects in InGaAsP laser diodes and their effects on device performance,” Physica B 273–274(1-3), 1031–1033 (1999).

Kyoto, M.

Y. Chigusa, M. Watanabe, M. Kyoto, M. Ooe, T. Matsubara, S. Okamoto, T. Yamamoto, T. Iida, and K. Sumita, “γ-ray and neutron irradiation characteristics of pure silica core single mode fiber and its life time estimation,” IEEE Trans. Nucl. Sci. 35(1), 894–897 (1988).

Laurent, B.

B. Laurent and O. Duchmann, “The Silex Project: The first European optical intersatellite link experiment,” Proc. SPIE 1417, 2–12 (1991).

Li, B.

R. Craig, B. Li, and B. Chan, “Laser qualification for the SILEX program,” Proc. SPIE 2123, 238–242 (1994).

Lopez-Amo, M.

Mack, W. D.

G. M. Williams, B. M. Wright, W. D. Mack, and E. J. Friebele, “Projecting the performance of erbium-doped fiber devices in a space radiation environment,” Proc. SPIE 3848, 271–280 (1999).

Matsubara, T.

Y. Chigusa, M. Watanabe, M. Kyoto, M. Ooe, T. Matsubara, S. Okamoto, T. Yamamoto, T. Iida, and K. Sumita, “γ-ray and neutron irradiation characteristics of pure silica core single mode fiber and its life time estimation,” IEEE Trans. Nucl. Sci. 35(1), 894–897 (1988).

Mochida, Y.

Nakabayashi, M.

H. Ohyama, E. Simoen, C. Claeys, T. Hakata, T. Kudou, M. Yoneoka, K. Kobayashi, M. Nakabayashi, Y. Takami, and H. Sunaga, “Radiation-induced lattice defects in InGaAsP laser diodes and their effects on device performance,” Physica B 273–274(1-3), 1031–1033 (1999).

Nielsenetal, T.

T. Nielsenetal, “In orbit test results of the first SILEX termina,” Proc. SPIE 3615, 31–42 (1999).

Ohyama, H.

H. Ohyama, E. Simoen, C. Claeys, T. Hakata, T. Kudou, M. Yoneoka, K. Kobayashi, M. Nakabayashi, Y. Takami, and H. Sunaga, “Radiation-induced lattice defects in InGaAsP laser diodes and their effects on device performance,” Physica B 273–274(1-3), 1031–1033 (1999).

Okamoto, S.

Y. Chigusa, M. Watanabe, M. Kyoto, M. Ooe, T. Matsubara, S. Okamoto, T. Yamamoto, T. Iida, and K. Sumita, “γ-ray and neutron irradiation characteristics of pure silica core single mode fiber and its life time estimation,” IEEE Trans. Nucl. Sci. 35(1), 894–897 (1988).

Ooe, M.

Y. Chigusa, M. Watanabe, M. Kyoto, M. Ooe, T. Matsubara, S. Okamoto, T. Yamamoto, T. Iida, and K. Sumita, “γ-ray and neutron irradiation characteristics of pure silica core single mode fiber and its life time estimation,” IEEE Trans. Nucl. Sci. 35(1), 894–897 (1988).

Rose, T. S.

Schuster, J.

E. Korevaar, R. J. Hofmeister, J. Schuster, et al., “Design of satellite terminal for BMDO lasercom technology demonstration,” Proc. SPIE 2381, 60–71 (1995).

Shoemaker, J.

J. Shoemaker, P. Brooks, E. Korevaar, G. Arnold, A. Das, J. Stubstad, and R. G. Hay, “The space technology research vehicle (STRV) −2 program,” Proc. SPIE 4136, 36–47 (2000).

Simoen, E.

H. Ohyama, E. Simoen, C. Claeys, T. Hakata, T. Kudou, M. Yoneoka, K. Kobayashi, M. Nakabayashi, Y. Takami, and H. Sunaga, “Radiation-induced lattice defects in InGaAsP laser diodes and their effects on device performance,” Physica B 273–274(1-3), 1031–1033 (1999).

Stubstad, J.

J. Shoemaker, P. Brooks, E. Korevaar, G. Arnold, A. Das, J. Stubstad, and R. G. Hay, “The space technology research vehicle (STRV) −2 program,” Proc. SPIE 4136, 36–47 (2000).

Sumita, K.

Y. Chigusa, M. Watanabe, M. Kyoto, M. Ooe, T. Matsubara, S. Okamoto, T. Yamamoto, T. Iida, and K. Sumita, “γ-ray and neutron irradiation characteristics of pure silica core single mode fiber and its life time estimation,” IEEE Trans. Nucl. Sci. 35(1), 894–897 (1988).

Sunaga, H.

H. Ohyama, E. Simoen, C. Claeys, T. Hakata, T. Kudou, M. Yoneoka, K. Kobayashi, M. Nakabayashi, Y. Takami, and H. Sunaga, “Radiation-induced lattice defects in InGaAsP laser diodes and their effects on device performance,” Physica B 273–274(1-3), 1031–1033 (1999).

Takami, Y.

H. Ohyama, E. Simoen, C. Claeys, T. Hakata, T. Kudou, M. Yoneoka, K. Kobayashi, M. Nakabayashi, Y. Takami, and H. Sunaga, “Radiation-induced lattice defects in InGaAsP laser diodes and their effects on device performance,” Physica B 273–274(1-3), 1031–1033 (1999).

Urquhart, P.

Valley, G. C.

Watanabe, M.

Y. Chigusa, M. Watanabe, M. Kyoto, M. Ooe, T. Matsubara, S. Okamoto, T. Yamamoto, T. Iida, and K. Sumita, “γ-ray and neutron irradiation characteristics of pure silica core single mode fiber and its life time estimation,” IEEE Trans. Nucl. Sci. 35(1), 894–897 (1988).

Williams, G. M.

G. M. Williams, B. M. Wright, W. D. Mack, and E. J. Friebele, “Projecting the performance of erbium-doped fiber devices in a space radiation environment,” Proc. SPIE 3848, 271–280 (1999).

G. M. Williams and E. J. Friebele, “Space radiation effects on erbium-doped fiber devices: sources, amplifiers, and passive measurements,” IEEE Trans. Nucl. Sci. 45(3), 1531–1536 (1998).

Wright, B. M.

G. M. Williams, B. M. Wright, W. D. Mack, and E. J. Friebele, “Projecting the performance of erbium-doped fiber devices in a space radiation environment,” Proc. SPIE 3848, 271–280 (1999).

Yamaguchi, N.

Yamamoto, T.

Y. Chigusa, M. Watanabe, M. Kyoto, M. Ooe, T. Matsubara, S. Okamoto, T. Yamamoto, T. Iida, and K. Sumita, “γ-ray and neutron irradiation characteristics of pure silica core single mode fiber and its life time estimation,” IEEE Trans. Nucl. Sci. 35(1), 894–897 (1988).

Yoneoka, M.

H. Ohyama, E. Simoen, C. Claeys, T. Hakata, T. Kudou, M. Yoneoka, K. Kobayashi, M. Nakabayashi, Y. Takami, and H. Sunaga, “Radiation-induced lattice defects in InGaAsP laser diodes and their effects on device performance,” Physica B 273–274(1-3), 1031–1033 (1999).

IEEE Photon. Technol. Lett. (1)

O. Berne, M. Caussanel, and O. Gilard, “A Model for the prediction of EDFA gain in a space radiation environment,” IEEE Photon. Technol. Lett. 16(10), 2227–2229 (2004).

IEEE Trans. Nucl. Sci. (2)

Y. Chigusa, M. Watanabe, M. Kyoto, M. Ooe, T. Matsubara, S. Okamoto, T. Yamamoto, T. Iida, and K. Sumita, “γ-ray and neutron irradiation characteristics of pure silica core single mode fiber and its life time estimation,” IEEE Trans. Nucl. Sci. 35(1), 894–897 (1988).

G. M. Williams and E. J. Friebele, “Space radiation effects on erbium-doped fiber devices: sources, amplifiers, and passive measurements,” IEEE Trans. Nucl. Sci. 45(3), 1531–1536 (1998).

J. Lightwave Technol. (2)

Opt. Lett. (1)

Physica B (1)

H. Ohyama, E. Simoen, C. Claeys, T. Hakata, T. Kudou, M. Yoneoka, K. Kobayashi, M. Nakabayashi, Y. Takami, and H. Sunaga, “Radiation-induced lattice defects in InGaAsP laser diodes and their effects on device performance,” Physica B 273–274(1-3), 1031–1033 (1999).

Proc. SPIE (8)

W. C. Goitsos, “Radiation-induced loss studies in Er-doped fiber amplifier systems,” Proc. SPIE 2699, 304–309 (1996).

G. M. Williams, B. M. Wright, W. D. Mack, and E. J. Friebele, “Projecting the performance of erbium-doped fiber devices in a space radiation environment,” Proc. SPIE 3848, 271–280 (1999).

D. M. Boroson, A. Biswas, and B. L. Edwards, “MLCD: Overview of NASA’s mars laser communications demonstration system,” Proc. SPIE 5338, 16–28 (2004).

E. Korevaar, R. J. Hofmeister, J. Schuster, et al., “Design of satellite terminal for BMDO lasercom technology demonstration,” Proc. SPIE 2381, 60–71 (1995).

J. Shoemaker, P. Brooks, E. Korevaar, G. Arnold, A. Das, J. Stubstad, and R. G. Hay, “The space technology research vehicle (STRV) −2 program,” Proc. SPIE 4136, 36–47 (2000).

B. Laurent and O. Duchmann, “The Silex Project: The first European optical intersatellite link experiment,” Proc. SPIE 1417, 2–12 (1991).

R. Craig, B. Li, and B. Chan, “Laser qualification for the SILEX program,” Proc. SPIE 2123, 238–242 (1994).

T. Nielsenetal, “In orbit test results of the first SILEX termina,” Proc. SPIE 3615, 31–42 (1999).

Other (2)

H. Hemmati, A. Biswas, and D. M. Boroson, “30-dB data rate improvement for interplanetary laser communication,” Proc. SPIE 6877, 687707–1-687707–8 (2008).

S. L. Waterhouse, and K. K. Jobbins, “Radiation effects on laser diodes: A literary review,” Proc. SPIE 7070, 70700E–1–70700E–10 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experiment apparatus to measure the radiation effect on EYDFA

Fig. 2
Fig. 2

The configuration of benchtop C-band EYDFA with two special bed plates

Fig. 3
Fig. 3

Main characteristics of EYDFA as a function of radiation dose from 0rad to 50krad. (a) The gain as a function of radiation dose. (b) The NF as a function of radiation dose (c) The measured output power and the output power at the monitor pin of the OEM as a function of radiation dose. (d) The pump current as a function of radiation dose

Fig. 4
Fig. 4

Main characteristics of EYDFA as a function of time in recovery experiment. (a) The gain as a function of radiation dose. (b) The NF as a function of radiation dose (c) The pump current as a function of radiation dose.

Tables (1)

Tables Icon

Table 1 Experimental results of peak wavelength and half width

Metrics