Abstract

Due to their immunity to diffraction, Bessel light modes potentially offer advantages in various applications. However, they do exhibit significant intensity variations along their axial propagation length which hampers their applicability. In this paper we present a technique to generate Bessel beams with a tunable axial intensity within the accessible range of spatial frequencies. The beam may be engineered to have a constant intensity along its propagation length. Finally, we demonstrate how one can form a Bessel beam with a varying propagation constant along its axial extent which results in a tunable scaling of its lateral cross-section.

© 2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Generation of multiple Bessel beams for a biophotonics workstation

T. Čižmár, V. Kollárová, X. Tsampoula, F. Gunn-Moore, W. Sibbett, Z. Bouchal, and K. Dholakia
Opt. Express 16(18) 14024-14035 (2008)

Arbitrary shaping of on-axis amplitude of femtosecond Bessel beams with a single phase-only spatial light modulator

Ismail Ouadghiri-Idrissi, Remo Giust, Luc Froehly, Maxime Jacquot, Luca Furfaro, John M. Dudley, and Francois Courvoisier
Opt. Express 24(11) 11495-11504 (2016)

High quality quasi-Bessel beam generated by round-tip axicon

Oto Brzobohatý, Tomáš Čižmár, and Pavel Zemánek
Opt. Express 16(17) 12688-12700 (2008)

References

  • View by:
  • |
  • |
  • |

  1. J. Durnin, J. J. Miceli, and J. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
    [Crossref] [PubMed]
  2. J. Durnin, “Exact solutions for nondifracting beams. I. The scalar theory,” J. Opt. Soc. Am. A 4, 651–641 (1987).
    [Crossref]
  3. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of Accelerating Airy Beams,” Phys. Rev. Lett. 99, 213901 (2007).
    [Crossref]
  4. J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nature Photonics 2, 675–678 (2008).
    [Crossref]
  5. M. A. Bandres, J. C. Gutiérrez-Vega, and S. Chávez-Cerda, “Parabolic nondiffracting optical wave fields,” Opt. Lett. 29, 44–46 (2004).
    [Crossref] [PubMed]
  6. T. Čižmár, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86, 174,101:1–3 (2005).
  7. V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self- reconstructing light beam,” Nature 419, 145–147 (2002).
    [Crossref] [PubMed]
  8. V. Karásek, T. Čižmár, O. Brzobohatýmánek, V. Garcés-Chávez, and K. Dholakia, “Long-range one-dimensional longitudinal optical binding,” Phys. Rev. Lett. 101, 143601 (2008).
    [Crossref] [PubMed]
  9. X. Tsampoula, V. Garcés-Chávez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett. 91, 053902 (2007).
    [Crossref]
  10. K.-S. Lee and J. P. Rolland, “Bessel beam spectral-domain high-resolution optical coherence tomography with micro-optic axicon providing extended focusing range,” Opt. Lett. 33, 1696–1698 (2008).
    [Crossref] [PubMed]
  11. P. Johannisson, D. Anderson, M. Lisak, and M. Marklund, “Nonlinear Bessel beams,” Opt. Commun. 222, 107–115 (2003).
    [Crossref]
  12. P. Dufour, M. Piché, Y. D. Koninck, and N. McCarthy, “Two-photon excitation fluorescence microscopy with a high depth of field using an axicon,” Appl. Opt. 45, 9246–9252 (2006).
    [Crossref] [PubMed]
  13. Z. Bouchal, J. Wagner, and M. Chlup, “Self-reconstruction of a distorted nondiffracting beam,” Opt. Commun. 151, 207–211 (1998).
    [Crossref]
  14. O. Brzobohatß ižmár and P. Zemánek, “High quality quasi-Bessel beam generated by round-tip axicon,” Opt. Express 16, 12688–12700 (2008).
  15. T. Čižmár, V. Kollárová, X. Tsampoula, F. Gunn-Moore, W. Sibbett, Z. Bouchal, and K. Dholakia, “Generation of multiple Bessel beams for a biophotonics workstation,” Opt. Express 16, 14024–14035 (2008).
    [Crossref]
  16. V. Jarutis, R. Paškauskas, and A. Stabinis, “Focusing of Laguerre-Gaussian beams by axicon,” Opt. Commun. 184, 105–112 (2000).
    [Crossref]
  17. M. Honkanen and J. Turunen, “Tandem systems for efficient generation of uniform-axial-intensity Bessel fields,” Opt. Commun. 154, 368–375 (1998).
    [Crossref]
  18. M. Pasienski and B. DeMarco, “A high-accuracy algorithm for designing arbitrary holographic atom traps,” Opt. Express 16, 2176–2190 (2008).
    [Crossref] [PubMed]
  19. R. Gerchberg and W. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).
  20. D. Palima, C. A. Alonzo, P. J. Rodrigo, and J. Glückstad, “Generalized phase contrast matched to Gaussian illumination,” Opt. Express 15, 11971–11977 (2007).
    [Crossref] [PubMed]

2008 (6)

2007 (3)

X. Tsampoula, V. Garcés-Chávez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett. 91, 053902 (2007).
[Crossref]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of Accelerating Airy Beams,” Phys. Rev. Lett. 99, 213901 (2007).
[Crossref]

D. Palima, C. A. Alonzo, P. J. Rodrigo, and J. Glückstad, “Generalized phase contrast matched to Gaussian illumination,” Opt. Express 15, 11971–11977 (2007).
[Crossref] [PubMed]

2006 (1)

2005 (1)

T. Čižmár, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86, 174,101:1–3 (2005).

2004 (1)

2003 (1)

P. Johannisson, D. Anderson, M. Lisak, and M. Marklund, “Nonlinear Bessel beams,” Opt. Commun. 222, 107–115 (2003).
[Crossref]

2002 (1)

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self- reconstructing light beam,” Nature 419, 145–147 (2002).
[Crossref] [PubMed]

2000 (1)

V. Jarutis, R. Paškauskas, and A. Stabinis, “Focusing of Laguerre-Gaussian beams by axicon,” Opt. Commun. 184, 105–112 (2000).
[Crossref]

1998 (2)

M. Honkanen and J. Turunen, “Tandem systems for efficient generation of uniform-axial-intensity Bessel fields,” Opt. Commun. 154, 368–375 (1998).
[Crossref]

Z. Bouchal, J. Wagner, and M. Chlup, “Self-reconstruction of a distorted nondiffracting beam,” Opt. Commun. 151, 207–211 (1998).
[Crossref]

1987 (2)

J. Durnin, J. J. Miceli, and J. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[Crossref] [PubMed]

J. Durnin, “Exact solutions for nondifracting beams. I. The scalar theory,” J. Opt. Soc. Am. A 4, 651–641 (1987).
[Crossref]

1972 (1)

R. Gerchberg and W. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

Agate, B.

X. Tsampoula, V. Garcés-Chávez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett. 91, 053902 (2007).
[Crossref]

Alonzo, C. A.

Anderson, D.

P. Johannisson, D. Anderson, M. Lisak, and M. Marklund, “Nonlinear Bessel beams,” Opt. Commun. 222, 107–115 (2003).
[Crossref]

Bandres, M. A.

Baumgartl, J.

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nature Photonics 2, 675–678 (2008).
[Crossref]

Bouchal, Z.

Broky, J.

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of Accelerating Airy Beams,” Phys. Rev. Lett. 99, 213901 (2007).
[Crossref]

Brown, C. T. A.

X. Tsampoula, V. Garcés-Chávez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett. 91, 053902 (2007).
[Crossref]

Brzobohatß ižmár, O.

Brzobohatýmánek, O.

V. Karásek, T. Čižmár, O. Brzobohatýmánek, V. Garcés-Chávez, and K. Dholakia, “Long-range one-dimensional longitudinal optical binding,” Phys. Rev. Lett. 101, 143601 (2008).
[Crossref] [PubMed]

Chávez-Cerda, S.

Chlup, M.

Z. Bouchal, J. Wagner, and M. Chlup, “Self-reconstruction of a distorted nondiffracting beam,” Opt. Commun. 151, 207–211 (1998).
[Crossref]

Christodoulides, D. N.

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of Accelerating Airy Beams,” Phys. Rev. Lett. 99, 213901 (2007).
[Crossref]

Cižmár, T.

V. Karásek, T. Čižmár, O. Brzobohatýmánek, V. Garcés-Chávez, and K. Dholakia, “Long-range one-dimensional longitudinal optical binding,” Phys. Rev. Lett. 101, 143601 (2008).
[Crossref] [PubMed]

T. Čižmár, V. Kollárová, X. Tsampoula, F. Gunn-Moore, W. Sibbett, Z. Bouchal, and K. Dholakia, “Generation of multiple Bessel beams for a biophotonics workstation,” Opt. Express 16, 14024–14035 (2008).
[Crossref]

T. Čižmár, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86, 174,101:1–3 (2005).

Comrie, M.

X. Tsampoula, V. Garcés-Chávez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett. 91, 053902 (2007).
[Crossref]

DeMarco, B.

Dholakia, K.

T. Čižmár, V. Kollárová, X. Tsampoula, F. Gunn-Moore, W. Sibbett, Z. Bouchal, and K. Dholakia, “Generation of multiple Bessel beams for a biophotonics workstation,” Opt. Express 16, 14024–14035 (2008).
[Crossref]

V. Karásek, T. Čižmár, O. Brzobohatýmánek, V. Garcés-Chávez, and K. Dholakia, “Long-range one-dimensional longitudinal optical binding,” Phys. Rev. Lett. 101, 143601 (2008).
[Crossref] [PubMed]

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nature Photonics 2, 675–678 (2008).
[Crossref]

X. Tsampoula, V. Garcés-Chávez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett. 91, 053902 (2007).
[Crossref]

T. Čižmár, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86, 174,101:1–3 (2005).

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self- reconstructing light beam,” Nature 419, 145–147 (2002).
[Crossref] [PubMed]

Dogariu, A.

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of Accelerating Airy Beams,” Phys. Rev. Lett. 99, 213901 (2007).
[Crossref]

Dufour, P.

Durnin, J.

J. Durnin, J. J. Miceli, and J. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[Crossref] [PubMed]

J. Durnin, “Exact solutions for nondifracting beams. I. The scalar theory,” J. Opt. Soc. Am. A 4, 651–641 (1987).
[Crossref]

Eberly, J.

J. Durnin, J. J. Miceli, and J. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[Crossref] [PubMed]

Garcés-Chávez, V.

V. Karásek, T. Čižmár, O. Brzobohatýmánek, V. Garcés-Chávez, and K. Dholakia, “Long-range one-dimensional longitudinal optical binding,” Phys. Rev. Lett. 101, 143601 (2008).
[Crossref] [PubMed]

X. Tsampoula, V. Garcés-Chávez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett. 91, 053902 (2007).
[Crossref]

T. Čižmár, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86, 174,101:1–3 (2005).

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self- reconstructing light beam,” Nature 419, 145–147 (2002).
[Crossref] [PubMed]

Gerchberg, R.

R. Gerchberg and W. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

Glückstad, J.

Gunn-Moore, F.

T. Čižmár, V. Kollárová, X. Tsampoula, F. Gunn-Moore, W. Sibbett, Z. Bouchal, and K. Dholakia, “Generation of multiple Bessel beams for a biophotonics workstation,” Opt. Express 16, 14024–14035 (2008).
[Crossref]

X. Tsampoula, V. Garcés-Chávez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett. 91, 053902 (2007).
[Crossref]

Gutiérrez-Vega, J. C.

Honkanen, M.

M. Honkanen and J. Turunen, “Tandem systems for efficient generation of uniform-axial-intensity Bessel fields,” Opt. Commun. 154, 368–375 (1998).
[Crossref]

Jarutis, V.

V. Jarutis, R. Paškauskas, and A. Stabinis, “Focusing of Laguerre-Gaussian beams by axicon,” Opt. Commun. 184, 105–112 (2000).
[Crossref]

Johannisson, P.

P. Johannisson, D. Anderson, M. Lisak, and M. Marklund, “Nonlinear Bessel beams,” Opt. Commun. 222, 107–115 (2003).
[Crossref]

Karásek, V.

V. Karásek, T. Čižmár, O. Brzobohatýmánek, V. Garcés-Chávez, and K. Dholakia, “Long-range one-dimensional longitudinal optical binding,” Phys. Rev. Lett. 101, 143601 (2008).
[Crossref] [PubMed]

Kollárová, V.

Koninck, Y. D.

Lee, K.-S.

Lisak, M.

P. Johannisson, D. Anderson, M. Lisak, and M. Marklund, “Nonlinear Bessel beams,” Opt. Commun. 222, 107–115 (2003).
[Crossref]

Marklund, M.

P. Johannisson, D. Anderson, M. Lisak, and M. Marklund, “Nonlinear Bessel beams,” Opt. Commun. 222, 107–115 (2003).
[Crossref]

Mazilu, M.

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nature Photonics 2, 675–678 (2008).
[Crossref]

McCarthy, N.

McGloin, D.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self- reconstructing light beam,” Nature 419, 145–147 (2002).
[Crossref] [PubMed]

Melville, H.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self- reconstructing light beam,” Nature 419, 145–147 (2002).
[Crossref] [PubMed]

Miceli, J. J.

J. Durnin, J. J. Miceli, and J. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[Crossref] [PubMed]

Palima, D.

Pasienski, M.

Paškauskas, R.

V. Jarutis, R. Paškauskas, and A. Stabinis, “Focusing of Laguerre-Gaussian beams by axicon,” Opt. Commun. 184, 105–112 (2000).
[Crossref]

Piché, M.

Rodrigo, P. J.

Rolland, J. P.

Saxton, W.

R. Gerchberg and W. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

Sibbett, W.

T. Čižmár, V. Kollárová, X. Tsampoula, F. Gunn-Moore, W. Sibbett, Z. Bouchal, and K. Dholakia, “Generation of multiple Bessel beams for a biophotonics workstation,” Opt. Express 16, 14024–14035 (2008).
[Crossref]

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self- reconstructing light beam,” Nature 419, 145–147 (2002).
[Crossref] [PubMed]

Siviloglou, G. A.

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of Accelerating Airy Beams,” Phys. Rev. Lett. 99, 213901 (2007).
[Crossref]

Stabinis, A.

V. Jarutis, R. Paškauskas, and A. Stabinis, “Focusing of Laguerre-Gaussian beams by axicon,” Opt. Commun. 184, 105–112 (2000).
[Crossref]

Stevenson, D. J.

X. Tsampoula, V. Garcés-Chávez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett. 91, 053902 (2007).
[Crossref]

Tsampoula, X.

T. Čižmár, V. Kollárová, X. Tsampoula, F. Gunn-Moore, W. Sibbett, Z. Bouchal, and K. Dholakia, “Generation of multiple Bessel beams for a biophotonics workstation,” Opt. Express 16, 14024–14035 (2008).
[Crossref]

X. Tsampoula, V. Garcés-Chávez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett. 91, 053902 (2007).
[Crossref]

Turunen, J.

M. Honkanen and J. Turunen, “Tandem systems for efficient generation of uniform-axial-intensity Bessel fields,” Opt. Commun. 154, 368–375 (1998).
[Crossref]

Wagner, J.

Z. Bouchal, J. Wagner, and M. Chlup, “Self-reconstruction of a distorted nondiffracting beam,” Opt. Commun. 151, 207–211 (1998).
[Crossref]

Zemánek, P.

O. Brzobohatß ižmár and P. Zemánek, “High quality quasi-Bessel beam generated by round-tip axicon,” Opt. Express 16, 12688–12700 (2008).

T. Čižmár, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86, 174,101:1–3 (2005).

Appl. Opt. (1)

Appl. Phys. Lett. (2)

T. Čižmár, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86, 174,101:1–3 (2005).

X. Tsampoula, V. Garcés-Chávez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett. 91, 053902 (2007).
[Crossref]

J. Opt. Soc. Am. A (1)

Nature (1)

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self- reconstructing light beam,” Nature 419, 145–147 (2002).
[Crossref] [PubMed]

Nature Photonics (1)

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nature Photonics 2, 675–678 (2008).
[Crossref]

Opt. Commun. (4)

Z. Bouchal, J. Wagner, and M. Chlup, “Self-reconstruction of a distorted nondiffracting beam,” Opt. Commun. 151, 207–211 (1998).
[Crossref]

V. Jarutis, R. Paškauskas, and A. Stabinis, “Focusing of Laguerre-Gaussian beams by axicon,” Opt. Commun. 184, 105–112 (2000).
[Crossref]

M. Honkanen and J. Turunen, “Tandem systems for efficient generation of uniform-axial-intensity Bessel fields,” Opt. Commun. 154, 368–375 (1998).
[Crossref]

P. Johannisson, D. Anderson, M. Lisak, and M. Marklund, “Nonlinear Bessel beams,” Opt. Commun. 222, 107–115 (2003).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Optik (1)

R. Gerchberg and W. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

Phys. Rev. Lett. (3)

V. Karásek, T. Čižmár, O. Brzobohatýmánek, V. Garcés-Chávez, and K. Dholakia, “Long-range one-dimensional longitudinal optical binding,” Phys. Rev. Lett. 101, 143601 (2008).
[Crossref] [PubMed]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of Accelerating Airy Beams,” Phys. Rev. Lett. 99, 213901 (2007).
[Crossref]

J. Durnin, J. J. Miceli, and J. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

A Bessel beam generated by an annular aperture in a back focal plane of a lens. R is the radius of the annular aperture, d is the annulus thickness and f is the focal length of the lens.

Fig. 2.
Fig. 2.

Axicon-generated Bessel beam. w is the half-width of the Gaussian beam and α is the angle under which the light is refracted by the axicon.

Fig. 3.
Fig. 3.

Bessel beam generated by an oblate-tipped axicon.

Fig. 4.
Fig. 4.

An example of the spatial spectrum obtained by equation (10) for the case of k r0/k=0.01 and k·zmax =1.5·106.

Fig. 5.
Fig. 5.

The retrieved on-axis intensity for a spatial spectrum truncated to the range of kr /k∊〈0,0.02〉.

Fig. 6.
Fig. 6.

The retrieved on-axis intensity for a spatial spectrum from the Fig. 4 enveloped by a Gaussian function centered at k r0 with a half-width of k r0/4.

Fig. 7.
Fig. 7.

Spatial spectrum of Bessel beam with the uniformly growing intensity over the interval z∊〈-zmax ,zmax 〉 for the same parameters as in the previous case. In this case the spectrum is complex and we show its absolute value.

Fig. 8.
Fig. 8.

The retrieved on-axis intensity for a spatial spectrum from the Fig. 7 enveloped by a Gaussian function for the same parameters as in the previous case.

Fig. 9.
Fig. 9.

Left: Hologram generated by the above described procedure described in 5.1. Right: resulting field in the image plane.

Fig. 10.
Fig. 10.

The comparison between the simulation and the experimentally obtained data for the case of the quasi-Bessel beams with the uniform intensity, uniformly increasing and uniformly decreasing intensity.

Fig. 11.
Fig. 11.

The comparison between the simulation and the experimentally obtained data for the case of the quasi-Bessel beams with a growing and a decreasing central core diameter and the beam with the central core reducing in diameter towards both axial directions from the center. The plotted curves showing the central core diameter were obtained by fitting the Bessel beam profile to the data.

Fig. 12.
Fig. 12.

The intensity of the same signal recorded at different places of the CCD chip.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

S(kx,ky,z=0)=U(x,y,z=0)ei(kxx+kyy)dxdy.
S(kr,z=0)=0U(r,z=0)J0(krr)rdr ,
U(r,z=0)=0S(kr,z=0)J0(krr)krdkr .
U (r=0,z)=0kkzS(k2kz2,z=0)eikzzdkz.
U (r=0,z)sin(bdz)z eiaz ,
U (r=0,z)ze(ztanαw)2+ikzcosα,
U (r=0,z)=A(z)eikz0z,
S(k2kz2,z=0)=12πkzA(z)eikz0zeikzzdz.
A (z)={1,ifzzmax0,ifz>zmax
S(kr,z=0)=sin[zmax(kzkz0)]πkz(kzkz0)
U(r=0,z)=A (z)eikz0(z)z

Metrics