Abstract

We report that it is possible to create a fiber electret by having both internal electrodes of a twin-hole fiber at the same anodic potential, i.e., without the use of a contacted cathode electrode. We find that a stronger and more temperature-stable charge distribution results when the fiber core is subjected to an external field near zero. Negative charges from the air surrounding the fiber are sufficient for the recording of an electric field across the core of the fiber that is twice stronger than when one anode and one cathode electrode are used. The enhancement in stability and in the strength of the effective χ(2) induced are a significant step towards the wider use of fibers with a second order optical nonlinearity.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett. 16(22), 1732–1734 (1991).
    [CrossRef] [PubMed]
  2. P. G. Kazansky, L. Dong, and P. S. J. Russell, “High second-order nonlinearity in poled silicate fibers,” Opt. Lett. 19(10), 701–703 (1994).
    [CrossRef] [PubMed]
  3. X. C. Long, R. A. Myers, and S. R. J. Brueck, “Measurement of linear electro-optic effect in temperature/electric-field poled optical fibres,” Electron. Lett. 30(25), 2162–2163 (1994).
    [CrossRef]
  4. D. E. Carlson, K. W. Hang, and G. F. Stockdale, “Electrode ‘polarization’ in alkali-containing glasses,” J. Am. Ceram. Soc. 55(7), 337–341 (1972).
    [CrossRef]
  5. W. A. Lanford, K. Davis, P. Lamarche, T. Laursen, R. Groleau, and R. H. Doremus, “Hydration of soda-lime glass,” J. Non-Cryst. Solids 33(2), 249–266 (1979).
    [CrossRef]
  6. T. J. Alley, S. R. J. Brueck, and R. A. Myers, “Space charge dynamics in thermally poled fused silica,” J. Non-Cryst. Solids 242(2-3), 165–176 (1998).
    [CrossRef]
  7. P. G. Kazansky and P. St. J. Russel, “Thermally poled glass: frozen-in electric field or oriented dipoles?” Opt. Commun. 110(5-6), 611–614 (1994).
    [CrossRef]
  8. W. Margulis and F. Laurell, “Interferometric study of poled glass under etching,” Opt. Lett. 21(21), 1786–1788 (1996).
    [CrossRef] [PubMed]
  9. A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, and G. Martinelli, “Complete characterization of the nonlinear spatial distribution induced in poled silica glass with a submicron resolution,” Appl. Phys. Lett. 83(17), 3623–3625 (2003).
    [CrossRef]
  10. T. G. Alley and S. R. Brueck, “Visualization of the nonlinear optical space-charge region of bulk thermally poled fused-silica glass,” Opt. Lett. 23(15), 1170–1172 (1998).
    [CrossRef]
  11. Y. Quiquempois, A. Kudlinski, and G. Martinelli, “Zero-potential condition in thermally poled silica samples: evidence of a negative electric field outside the depletion layer,” J. Opt. Soc. Am. B 22(3), 598–604 (2005).
    [CrossRef]
  12. W. Xu, D. Wong, and S. Fleming, “Evolution of linear electro-optic coefficients and third-order nonlinearity during prolonged negative thermal poling of silica fibre,” Electron. Lett. 35(11), 922–923 (1999).
    [CrossRef]
  13. P. Blazkiewicz, W. Xu, D. Wong, and S. Fleming, “Mechanism for thermal poling in twin-hole silicate fibers,” J. Opt. Soc. Am. B 19(4), 870–874 (2002).
    [CrossRef]
  14. N. Myrén and W. Margulis, “Time evolution of frozen-in field during poling of fiber with alloy electrodes,” Opt. Express 13(9), 3438–3444 (2005).
    [CrossRef] [PubMed]
  15. H. An and S. Fleming, “Investigation of the spatial distribution of second-order nonlinearity in thermally poled optical fibers,” Opt. Express 13(9), 3500–3505 (2005).
    [CrossRef] [PubMed]
  16. K. Lee, P. Hu, J. L. Blows, D. Thorncraft, and J. Baxter, “200-m optical fiber with an integrated electrode and its poling,” Opt. Lett. 29(18), 2124–2126 (2004).
    [CrossRef] [PubMed]
  17. K. Lee, P. Henry, S. Fleming, and J. L. Blows, “Drawing of Optical Fiber With Internal Co-drawn Wire and Conductive Coating and Electrooptic Modulation Demonstration,” IEEE Photon. Technol. Lett. 18(8), 914–916 (2006).
    [CrossRef]
  18. Y. Quiquempois, A. Kudlinski, G. Martinelli, G. A. Quintero, P. M. Gouvea, I. C. S. Carvalho, and W. Margulis, “Time evolution of the second-order nonlinear distribution of poled Infrasil samples during annealing experiments,” Opt. Express 14(26), 12984–12993 (2006).
    [CrossRef] [PubMed]

2006 (2)

K. Lee, P. Henry, S. Fleming, and J. L. Blows, “Drawing of Optical Fiber With Internal Co-drawn Wire and Conductive Coating and Electrooptic Modulation Demonstration,” IEEE Photon. Technol. Lett. 18(8), 914–916 (2006).
[CrossRef]

Y. Quiquempois, A. Kudlinski, G. Martinelli, G. A. Quintero, P. M. Gouvea, I. C. S. Carvalho, and W. Margulis, “Time evolution of the second-order nonlinear distribution of poled Infrasil samples during annealing experiments,” Opt. Express 14(26), 12984–12993 (2006).
[CrossRef] [PubMed]

2005 (3)

2004 (1)

2003 (1)

A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, and G. Martinelli, “Complete characterization of the nonlinear spatial distribution induced in poled silica glass with a submicron resolution,” Appl. Phys. Lett. 83(17), 3623–3625 (2003).
[CrossRef]

2002 (1)

1999 (1)

W. Xu, D. Wong, and S. Fleming, “Evolution of linear electro-optic coefficients and third-order nonlinearity during prolonged negative thermal poling of silica fibre,” Electron. Lett. 35(11), 922–923 (1999).
[CrossRef]

1998 (2)

T. G. Alley and S. R. Brueck, “Visualization of the nonlinear optical space-charge region of bulk thermally poled fused-silica glass,” Opt. Lett. 23(15), 1170–1172 (1998).
[CrossRef]

T. J. Alley, S. R. J. Brueck, and R. A. Myers, “Space charge dynamics in thermally poled fused silica,” J. Non-Cryst. Solids 242(2-3), 165–176 (1998).
[CrossRef]

1996 (1)

1994 (3)

P. G. Kazansky and P. St. J. Russel, “Thermally poled glass: frozen-in electric field or oriented dipoles?” Opt. Commun. 110(5-6), 611–614 (1994).
[CrossRef]

P. G. Kazansky, L. Dong, and P. S. J. Russell, “High second-order nonlinearity in poled silicate fibers,” Opt. Lett. 19(10), 701–703 (1994).
[CrossRef] [PubMed]

X. C. Long, R. A. Myers, and S. R. J. Brueck, “Measurement of linear electro-optic effect in temperature/electric-field poled optical fibres,” Electron. Lett. 30(25), 2162–2163 (1994).
[CrossRef]

1991 (1)

1979 (1)

W. A. Lanford, K. Davis, P. Lamarche, T. Laursen, R. Groleau, and R. H. Doremus, “Hydration of soda-lime glass,” J. Non-Cryst. Solids 33(2), 249–266 (1979).
[CrossRef]

1972 (1)

D. E. Carlson, K. W. Hang, and G. F. Stockdale, “Electrode ‘polarization’ in alkali-containing glasses,” J. Am. Ceram. Soc. 55(7), 337–341 (1972).
[CrossRef]

Alley, T. G.

Alley, T. J.

T. J. Alley, S. R. J. Brueck, and R. A. Myers, “Space charge dynamics in thermally poled fused silica,” J. Non-Cryst. Solids 242(2-3), 165–176 (1998).
[CrossRef]

An, H.

Baxter, J.

Blazkiewicz, P.

Blows, J. L.

K. Lee, P. Henry, S. Fleming, and J. L. Blows, “Drawing of Optical Fiber With Internal Co-drawn Wire and Conductive Coating and Electrooptic Modulation Demonstration,” IEEE Photon. Technol. Lett. 18(8), 914–916 (2006).
[CrossRef]

K. Lee, P. Hu, J. L. Blows, D. Thorncraft, and J. Baxter, “200-m optical fiber with an integrated electrode and its poling,” Opt. Lett. 29(18), 2124–2126 (2004).
[CrossRef] [PubMed]

Brueck, S. R.

Brueck, S. R. J.

T. J. Alley, S. R. J. Brueck, and R. A. Myers, “Space charge dynamics in thermally poled fused silica,” J. Non-Cryst. Solids 242(2-3), 165–176 (1998).
[CrossRef]

X. C. Long, R. A. Myers, and S. R. J. Brueck, “Measurement of linear electro-optic effect in temperature/electric-field poled optical fibres,” Electron. Lett. 30(25), 2162–2163 (1994).
[CrossRef]

R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett. 16(22), 1732–1734 (1991).
[CrossRef] [PubMed]

Carlson, D. E.

D. E. Carlson, K. W. Hang, and G. F. Stockdale, “Electrode ‘polarization’ in alkali-containing glasses,” J. Am. Ceram. Soc. 55(7), 337–341 (1972).
[CrossRef]

Carvalho, I. C. S.

Davis, K.

W. A. Lanford, K. Davis, P. Lamarche, T. Laursen, R. Groleau, and R. H. Doremus, “Hydration of soda-lime glass,” J. Non-Cryst. Solids 33(2), 249–266 (1979).
[CrossRef]

Dong, L.

Doremus, R. H.

W. A. Lanford, K. Davis, P. Lamarche, T. Laursen, R. Groleau, and R. H. Doremus, “Hydration of soda-lime glass,” J. Non-Cryst. Solids 33(2), 249–266 (1979).
[CrossRef]

Fleming, S.

K. Lee, P. Henry, S. Fleming, and J. L. Blows, “Drawing of Optical Fiber With Internal Co-drawn Wire and Conductive Coating and Electrooptic Modulation Demonstration,” IEEE Photon. Technol. Lett. 18(8), 914–916 (2006).
[CrossRef]

H. An and S. Fleming, “Investigation of the spatial distribution of second-order nonlinearity in thermally poled optical fibers,” Opt. Express 13(9), 3500–3505 (2005).
[CrossRef] [PubMed]

P. Blazkiewicz, W. Xu, D. Wong, and S. Fleming, “Mechanism for thermal poling in twin-hole silicate fibers,” J. Opt. Soc. Am. B 19(4), 870–874 (2002).
[CrossRef]

W. Xu, D. Wong, and S. Fleming, “Evolution of linear electro-optic coefficients and third-order nonlinearity during prolonged negative thermal poling of silica fibre,” Electron. Lett. 35(11), 922–923 (1999).
[CrossRef]

Gouvea, P. M.

Groleau, R.

W. A. Lanford, K. Davis, P. Lamarche, T. Laursen, R. Groleau, and R. H. Doremus, “Hydration of soda-lime glass,” J. Non-Cryst. Solids 33(2), 249–266 (1979).
[CrossRef]

Hang, K. W.

D. E. Carlson, K. W. Hang, and G. F. Stockdale, “Electrode ‘polarization’ in alkali-containing glasses,” J. Am. Ceram. Soc. 55(7), 337–341 (1972).
[CrossRef]

Henry, P.

K. Lee, P. Henry, S. Fleming, and J. L. Blows, “Drawing of Optical Fiber With Internal Co-drawn Wire and Conductive Coating and Electrooptic Modulation Demonstration,” IEEE Photon. Technol. Lett. 18(8), 914–916 (2006).
[CrossRef]

Hu, P.

Kazansky, P. G.

P. G. Kazansky, L. Dong, and P. S. J. Russell, “High second-order nonlinearity in poled silicate fibers,” Opt. Lett. 19(10), 701–703 (1994).
[CrossRef] [PubMed]

P. G. Kazansky and P. St. J. Russel, “Thermally poled glass: frozen-in electric field or oriented dipoles?” Opt. Commun. 110(5-6), 611–614 (1994).
[CrossRef]

Kudlinski, A.

Lamarche, P.

W. A. Lanford, K. Davis, P. Lamarche, T. Laursen, R. Groleau, and R. H. Doremus, “Hydration of soda-lime glass,” J. Non-Cryst. Solids 33(2), 249–266 (1979).
[CrossRef]

Lanford, W. A.

W. A. Lanford, K. Davis, P. Lamarche, T. Laursen, R. Groleau, and R. H. Doremus, “Hydration of soda-lime glass,” J. Non-Cryst. Solids 33(2), 249–266 (1979).
[CrossRef]

Laurell, F.

Laursen, T.

W. A. Lanford, K. Davis, P. Lamarche, T. Laursen, R. Groleau, and R. H. Doremus, “Hydration of soda-lime glass,” J. Non-Cryst. Solids 33(2), 249–266 (1979).
[CrossRef]

Lee, K.

K. Lee, P. Henry, S. Fleming, and J. L. Blows, “Drawing of Optical Fiber With Internal Co-drawn Wire and Conductive Coating and Electrooptic Modulation Demonstration,” IEEE Photon. Technol. Lett. 18(8), 914–916 (2006).
[CrossRef]

K. Lee, P. Hu, J. L. Blows, D. Thorncraft, and J. Baxter, “200-m optical fiber with an integrated electrode and its poling,” Opt. Lett. 29(18), 2124–2126 (2004).
[CrossRef] [PubMed]

Lelek, M.

A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, and G. Martinelli, “Complete characterization of the nonlinear spatial distribution induced in poled silica glass with a submicron resolution,” Appl. Phys. Lett. 83(17), 3623–3625 (2003).
[CrossRef]

Long, X. C.

X. C. Long, R. A. Myers, and S. R. J. Brueck, “Measurement of linear electro-optic effect in temperature/electric-field poled optical fibres,” Electron. Lett. 30(25), 2162–2163 (1994).
[CrossRef]

Margulis, W.

Martinelli, G.

Mukherjee, N.

Myers, R. A.

T. J. Alley, S. R. J. Brueck, and R. A. Myers, “Space charge dynamics in thermally poled fused silica,” J. Non-Cryst. Solids 242(2-3), 165–176 (1998).
[CrossRef]

X. C. Long, R. A. Myers, and S. R. J. Brueck, “Measurement of linear electro-optic effect in temperature/electric-field poled optical fibres,” Electron. Lett. 30(25), 2162–2163 (1994).
[CrossRef]

R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett. 16(22), 1732–1734 (1991).
[CrossRef] [PubMed]

Myrén, N.

Quintero, G. A.

Quiquempois, Y.

Russel, P. St. J.

P. G. Kazansky and P. St. J. Russel, “Thermally poled glass: frozen-in electric field or oriented dipoles?” Opt. Commun. 110(5-6), 611–614 (1994).
[CrossRef]

Russell, P. S. J.

Stockdale, G. F.

D. E. Carlson, K. W. Hang, and G. F. Stockdale, “Electrode ‘polarization’ in alkali-containing glasses,” J. Am. Ceram. Soc. 55(7), 337–341 (1972).
[CrossRef]

Thorncraft, D.

Wong, D.

P. Blazkiewicz, W. Xu, D. Wong, and S. Fleming, “Mechanism for thermal poling in twin-hole silicate fibers,” J. Opt. Soc. Am. B 19(4), 870–874 (2002).
[CrossRef]

W. Xu, D. Wong, and S. Fleming, “Evolution of linear electro-optic coefficients and third-order nonlinearity during prolonged negative thermal poling of silica fibre,” Electron. Lett. 35(11), 922–923 (1999).
[CrossRef]

Xu, W.

P. Blazkiewicz, W. Xu, D. Wong, and S. Fleming, “Mechanism for thermal poling in twin-hole silicate fibers,” J. Opt. Soc. Am. B 19(4), 870–874 (2002).
[CrossRef]

W. Xu, D. Wong, and S. Fleming, “Evolution of linear electro-optic coefficients and third-order nonlinearity during prolonged negative thermal poling of silica fibre,” Electron. Lett. 35(11), 922–923 (1999).
[CrossRef]

Zeghlache, H.

A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, and G. Martinelli, “Complete characterization of the nonlinear spatial distribution induced in poled silica glass with a submicron resolution,” Appl. Phys. Lett. 83(17), 3623–3625 (2003).
[CrossRef]

Appl. Phys. Lett. (1)

A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, and G. Martinelli, “Complete characterization of the nonlinear spatial distribution induced in poled silica glass with a submicron resolution,” Appl. Phys. Lett. 83(17), 3623–3625 (2003).
[CrossRef]

Electron. Lett. (2)

W. Xu, D. Wong, and S. Fleming, “Evolution of linear electro-optic coefficients and third-order nonlinearity during prolonged negative thermal poling of silica fibre,” Electron. Lett. 35(11), 922–923 (1999).
[CrossRef]

X. C. Long, R. A. Myers, and S. R. J. Brueck, “Measurement of linear electro-optic effect in temperature/electric-field poled optical fibres,” Electron. Lett. 30(25), 2162–2163 (1994).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

K. Lee, P. Henry, S. Fleming, and J. L. Blows, “Drawing of Optical Fiber With Internal Co-drawn Wire and Conductive Coating and Electrooptic Modulation Demonstration,” IEEE Photon. Technol. Lett. 18(8), 914–916 (2006).
[CrossRef]

J. Am. Ceram. Soc. (1)

D. E. Carlson, K. W. Hang, and G. F. Stockdale, “Electrode ‘polarization’ in alkali-containing glasses,” J. Am. Ceram. Soc. 55(7), 337–341 (1972).
[CrossRef]

J. Non-Cryst. Solids (2)

W. A. Lanford, K. Davis, P. Lamarche, T. Laursen, R. Groleau, and R. H. Doremus, “Hydration of soda-lime glass,” J. Non-Cryst. Solids 33(2), 249–266 (1979).
[CrossRef]

T. J. Alley, S. R. J. Brueck, and R. A. Myers, “Space charge dynamics in thermally poled fused silica,” J. Non-Cryst. Solids 242(2-3), 165–176 (1998).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

P. G. Kazansky and P. St. J. Russel, “Thermally poled glass: frozen-in electric field or oriented dipoles?” Opt. Commun. 110(5-6), 611–614 (1994).
[CrossRef]

Opt. Express (3)

Opt. Lett. (5)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Charging circuit used to create an electret in an optical fiber, where both internal electrodes are at the same potential. The field recorded across the core becomes comparable to the breakdown field of silica. After electret creation, each electrode is connected to one pole of the bias supply and the fiber exhibits the linear electrooptical effect. The picture shows a SEM image of one of the 125-µm diameter fibers used. The white centre circle is the fiber core.

Fig. 2
Fig. 2

Fiber cross section after etching for 45 sec in HF. In (a), a single metal-filled electrode was used as anode, and the other hole was left empty. The fiber was charged for 33 min at 255 °C with 4.3 kV applied to the electrode. A circular depletion region is formed. In (b), both holes had electrodes connected to the same positive high voltage potential (4.3 kV). One depletion region is formed around each electrode, even if the potential difference between them is zero.

Fig. 3
Fig. 3

Phase shift induced in fiber as a function of voltage applied between the internal electrodes after the fiber has been charged with the set-up of Fig. 1. The phase shift is measured in π radians. The red curve is a parabolic fit to the data.

Fig. 4
Fig. 4

Isothermal annealing of poled (red) and charged (blue) at 250 °C on a linear time scale. The remaining electrooptical coefficient was measured after each erasure period from a parabolic fit as shown in Fig. 3.

Fig. 5
Fig. 5

Top row: equipotential map of fiber subjected to a charging voltage 5 kV applied to both internal electrodes assuming electrically grounded outer surface. Initially, the potential drop across the core is small (a), but grows as poling progresses (b). Bottom row: respective distribution of Na+ ions measured as 1021 ions/m3. The initial distribution of mobile ions is assumed to be uniform (c), and it evolves into a two-ring configuration (d).

Metrics